Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1050-1062  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
The Result of Experiment on Neural Network  
Leaning of Human Art Drawing  
1
*
2
3
Svetlana V. Veretekhina , Maxim A. Kudryavtsev , Vladimir L. Simonov , Elena V.  
4
5
Potekhina , Tatyana V. Karyagina  
1Department of Information Systems, Networks and Security, Russian State Social University, Moscow, Russia  
2
Postgraduate Study Mathematical Support of Computers, Complex and Computer networks, Russian State Social University, Moscow, Russia  
3
Department of Information Systems, Networks and Security, Russian State Social University, Moscow, Russia  
4
5
Department of Mathematics and Computer Science, Faculty of Information Technologies, Faculty of Information Technologies, Russian State Social  
University, Moscow, Russia  
Department of Mathematics and Computer Science, Faculty of Information Technologies, Faculty of Information Technologies, Russian State Social  
University, Moscow, Russia  
Received: 13/09/2019  
Accepted: 22/11/2019  
Published: 20/12/2019  
Abstract  
In the article, the authors consider one of the most pressing problems of our time. In the first part of the article authors describes  
the most modern and effective heuristic and multi-heuristic algorithms that can be used in NP-hard problems solving. The most  
effective algorithms considered in order to produce answers that are as close as possible to the correct solutions in a satisfactory time.  
In the second part, the authors develop the idea of us in intelligent algorithms and methods, giving examples of machine learning of  
neural networks. In particular, it raises the question about assessing the quality of the neural networks in both on classic templates  
and in the most difficult situations concerning the creative process. A large number of experiments were conducted as a part of the  
work, and the data was collected in the process of the neural network training such as its reaction to individual objects. The results  
are briefly sorted and presented in the form of tables intended for the further analyze, in order to develop mathematical models and  
algorithms for assessing the quality of the learning process for modern neural networks.  
Keywords: Artificial intelligence, Neural networks, Machine learning, Deep learning, Heuristic algorithms, Cuckoo algorithm,  
Agent approach, Multi-heuristic approach, Learning optimization, Particle swarm optimization  
1
spiritual values or the result of creating objectively new. The  
1
1
Introduction  
main criterion that distinguishes creativity from  
manufacturing (production) is the uniqueness of its result.  
The result of creativity can`t be directly derived from the  
initial conditions. No one, except perhaps the author, can get  
exactly the same result if you create the same initial situation  
for him. Thus, in the process of creativity, the author invests  
in the material, in addition to labor, some irreducible to labor  
operations or the logical conclusion of the possibility,  
expresses in the end some aspects of his personality. It is this  
fact that gives the products of creativity additional value in  
comparison with the products of production. In creativity, not  
only the result, but the process itself is valuable.  
.1 Artificial Intelligence and Creativity  
The history of Artificial intelligence showed several  
stages of its development. First stage: Early enthusiasm and  
high expectations. The second stage: Machine learning is a  
period of development of artificial intelligence with the  
advent of large amounts of data. The third stage: Deep  
training of artificial intelligence is the next stage of  
development, new opportunities. England mathematician and  
philosopher Alan Turing is the founder of artificial  
intelligence. He developed a theoretical model of a computer.  
Modern programming languages, such as C, Pascal, Java, are  
equivalent to a Turing machine. Modern technologies are  
considered intelligent if they allow to solve creative  
problems. Definition from Wikipedia: "Creativity is a process  
of activity that creates qualitatively new materials and  
There are different kinds of creativity: technical,  
scientific, social, philosophical, cultural, pedagogical, artistic,  
musical, sports, game, etc. All kinds of creativity correspond  
to the types of spiritual human activity. All kinds of human  
creativity give  
a NEW output (discovery, invention,  
Corresponding autor: Svetlana V. Veretekhina, Department  
of Information Systems, Networks and Security, Russian  
State Social University, Moscow, Russia. E-mail:  
innovation). Creativity and personality are inextricably  
linked. N.A. Berdyaev (2003) (4) writes: "Personality is not a  
substance, in the creative aspect".  
1
050  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1050-1062  
Neurobiological bases of creativity are connected with  
the work of neural networks of the nervous system (9).  
Creativity and personality are inextricably linked. Reflecting  
on the nature of unconscious creativity described in (1).  
Roem Wallace in 1926 identified four stages of creative  
thinking: preparation - incubation - insight - test (6, 20).  
Insight - a poly-semantic term from the field of zoo-  
psychology, psychology and psychiatry, describing the  
complex mental, the essence of which is unexpected, partly  
intuitive to understand the problem and "sudden" finding its  
solution. Insight is not an Epiphany of logic. Research in this  
area belongs to scientists: Karl Dunker, Max Wertheimer,  
Professor of the University of Gottingen - Wolfgang Koehler.  
Artificial intelligence is a property of intelligent systems  
to perform creative functions, which are traditionally  
considered the prerogative of man; science and technology of  
creating intelligent machines, especially intelligent computer  
programs (2).  
NATO experts give the following definition of Artificial  
intelligence: "the Capacity provided by the optimal or  
suboptimal choice from a wide space of opportunities to  
achieve goals by implementing strategies, based on training  
or adaptation to the environment" (19).  
Modern artificial intelligence - is the use of various  
algorithms, software analysis of big data (input) and the final  
solution (output),  
Artistic creativity is made on the basis of the laws of artistic  
and figurative reflection of reality.  
Can artificial intelligence draw anything NEW? To begin  
with, we will discern whether artificial intelligence is able to  
recognize a human figure. The research was conducted at the  
Russian state social University.  
Students performed  
laboratory work on the training of artificial intelligence on  
the site https://quickdraw.withgoogle.com. "Can a neural  
network learn to recognize patterns?". The main task of the  
study is to create the largest set of data in the form of  
drawings and help in the development of machine learning  
technologies. The neural network offered a person to draw an  
object in 20 seconds. For example: mailbox, glass of wine,  
kitchen stove, palm, line, square, face, belt, ocean, mobile  
phone, etc. - an infinite number of items. The study involved  
44 people, students of higher education (compiled a list of  
participants of the experiment). Each student completed 10  
tasks. One task included 6 drawings. The students were  
making drawings. The neural network recognized some of the  
drawings, but did not recognize some of the drawings. During  
the experiment, the reasons why the neural network could not  
recognize the pattern were revealed. 375 unique objects were  
analyzed. The most common drawings are square, bear,  
butterfly, camel. More than 10 times students used 73  
objects. Unique objects (participated in the experiment 1-2  
times)  35 pieces. As a result, it was necessary to determine  
the level of thinking of the neural network. According to the  
results of the experiment, a report was formed on the  
recognized figures (excellent figure).  
The most productive algorithms for planning are:  
1
2
3
4
5
6
.
.
.
.
.
.
Genetic algorithm (3, 10, 16).  
Two-phase neural networks (14).  
Differential evolution (11, 12, 24).  
Particle swarm optimization (5, 8, 13, 15, 23, 25).  
The sampling similarity algorithm (21).  
Hybrid differential evolution and sequential  
quadratic programming algorithm.  
7
8
9
.
.
.
Artificial bee colony algorithm (22)  
Optimization learning algorithms (7)  
Cuckoo algorithm for solving problems in the  
energy sector (18, 26).  
Cuckoo algorithm is one of the most modern meta-  
heuristic algorithms, which has become popular due to  
optimization processes in the field of energy. The cuckoo  
algorithm is widely and successfully applied to various  
technical optimization problems, such as economic load  
optimization, hydrothermal planning, and distributed network  
reconfiguration.  
With the use of artificial intelligence, mathematical  
calculations are carried out according to the algorithms  
incorporated in the program and performed by various  
software. Artificial intelligence, equipped with mathematical  
tools, is able to solve complex science-intensive problems.  
The authors in their study put forward a hypothesis about  
how much we train artificial intelligence in the field of  
artistic creativity (on the example of the analysis of human  
drawings).  
Figure 1: Neural network result of recognizing the man drawings.  
So, the subjects performed 10 iterations (approaches) of 6  
figures. As a result of the research, conclusions are drawn.  
The analysis of unrecognized drawings is carried out.  
According to the results of 25 experiments, the data are  
summarized. Each subject drew conclusions on the basis of  
mental (speculative) conclusions and equated the level of  
training of the neural network to the initial drawing skills of  
the child, thereby determining the level of thinking of the  
neural network, equating it to the age of the child.  
2
Methodological Framework  
Artistic creativity is a special human activity that  
Experiment 1. In the experiment, 60 pictures, among the  
generates a qualitatively new work and is distinguished by  
uniqueness, originality and socio-historical uniqueness.  
unidentified (not witnesses) of figures  
Unrecognized description of the drawings:  
13 pieces.  
1
051  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1050-1062  
1
2
3
4
5
6
7
8
9
1
1
1
1
.
.
.
.
.
.
.
.
.
Squirrel poorly drawn  
3)stitches could not portray  
4)snorkel with the mask depicted, the system didn't  
recognize  
Baseball bat the system is not yet trained  
Matches - the system is not yet trained  
Nail - system not yet trained  
The aircraft system is not yet trained  
Crocodile - the system is still not trained  
The tube with the mask is poorly drawn  
Foot  badly drawn  
5) batthe system did not recognize  
6)ladder the system does not recognize  
7)the dog  the system didn't recognize  
8)fireplace the system does not recognize  
9)bed  the system didn't recognize  
10) rabbit - the system didn't recognize  
11)basketball was not able to portray  
12)pie system not recognized  
The key system is still not trained  
0. Watermelon - system is still not trained  
1. The aircraft system is not yet trained  
2. Avocado - system is still not trained  
3. Bandage - badly drawn  
13)the steak was not able to portray  
Result: at the moment the system corresponds to a 5-year-  
old child. In my opinion, AI corresponds to the development  
of a child aged 5 years. Most of the drawings are not  
recognized due to the fact that I am very bad with a computer  
mouse, the consequence of this is the inability to determine  
the figure of AI. System thinking is appropriate to a 5 y.o.  
child.  
Result: as a result of the experiment, 60 drawings were  
made, among the unidentified (not understood drawings)  13  
pieces. The reason for the system error is that the system is  
not yet trained or the person did not draw well.  
System thinking is appropriate to a 2-4 y.o. child.  
Experiment 2. In the experiment, 60 pictures, recognized  
-
39, unrecognized - 21. Basically, the problem of not  
Experiment 8. As a result of the experiment, 60  
drawings were made that were not recognized by the system -  
17. Unidentified drawings: Sink, Candlestick, Train, Green  
beans, Trombone, Telephone, Crab, Fish, air conditioning,  
Foot, Cat, Stairs, Letter, Fan, Raccoon, Cruise liner, Balloon.  
Describe the problem: Some pictures were not recognized.  
Several figures the system could not recognize due to the  
small number of samples in the database.  
recognizing the picture was in poor-quality drawings of a  
person. Intelligence corresponds to a child of about seven (7)  
years.  
Result: System thinking is appropriate to a 7y.o.child.  
Experiment 3. As a result of the experiment, 16  
iterations of 6 figures and 1 iteration with 4 figures (the total  
number of 100 figures) were made. Among unidentified (not  
understandable drawings)  
41 units. Description of  
Result: artificial intelligence corresponds to the  
development of the child at the level of 14-18 years. The  
system is not yet trained, maybe the person painted badly.  
System thinking is appropriate to a 14 y.o. child.  
Experiment 9. As a result of the experiment, 10  
iterations were carried out. Among the 60 drawings, the  
system did not recognize 19 drawings. The main reason is the  
lack of skill of the artist or not enough time to portray the  
object.  
Result: the neural Network is not sufficiently trained, as  
many simple, accurately drawn objects, the neural network  
did not recognize. In my opinion, artificial intelligence  
corresponds to the development of a child at the age of 6  
years. System thinking is appropriateto a 6 y.o. child.  
Experiment 10. As a result of the experiment, 10  
iterations were carried out, the total number of drawings  60.  
Not recognized by the system  9 (dishwasher, trombone,  
angel, lantern, Scorpion, bracelet, leaf, foot).  
Result: the Problem of non-recognition, in most cases,  
was the “human problem”, that is, the wrong interpretation of  
the picture, although we should not exclude the fact that the  
system is not fully trained in the recognition of individual  
elements. System thinking is appropriate to a 5 y.o. child.  
Experiment 11. As a result of the experiment, 10  
iterations were carried out. Of the total number of drawings  
44 are recognized, not recognized by the system 16.  
Unrecognized pictures: BlackBerry (the problem of man), the  
hand (the problem ISS), a calculator(problem ISS), air  
conditioning (man's problem), Wallet (the problem of man),  
toe (problem ISS), bandage (the problem ISS), the bulb (the  
problem ISS), the balloon (the problem ISS), the bed (the  
problem ISS), sleeping bag(man's problem), nail (problem  
unrecognized drawings - the system is not yet trained or  
poorly drawn. Thinking corresponds to a child of 6 years. The  
system didn't recognize 41 out of 100.  
Result: System thinking is appropriate to a 6 y.o.child.  
Experiment 4. As a result of the experiment, 10  
iterations were carried out. Among the 60 drawings, 14 were  
not recognized, among which the first problem is the problem  
of the information system, and 13 poorly drawn images.  
Artificial intelligence corresponds to a 3-year-old child  
Result: System thinking is appropriate to a 3 y.o.child.  
Experiment 5. As a result of the experiment, 10  
iterations were carried out, where 6 figures were drawn in  
each. Among 60 drawings, 38 images were recognized, 22  
images were not recognized. Some images were not  
recognized due to the fault of the person, namely: 3 images  
could not be performed by the person from 22 unrecognized.  
Artificial intelligence corresponds to a child  5 years.  
Result: System thinking is appropriate to a 5 y.o. child.  
Experiment 6. The experiment was carried out 10  
iterations of 60 drawings unrecognized 6 figures (10%), the  
cause of the problem person and 1 picture in error AI (1.6%).  
AI corresponds to a child under 10 years of age.  
Result: System thinking is appropriate to a 10 y.o. child.  
Experiment 7. As a result of the experiment, 10  
iterations were carried out, among 60 drawings. Not  
recognized - 16 drawings  because of the low skill of  
drawing a person. Of the 100 drawings, the system did not  
recognize 42. The system is not perfect and needs to be  
improved. Of the 60 drawings made, the system could not  
recognize 13 drawings, namely:  
1
2
)the toe is not able to portray  
)bird  the system didn't recognize  
1
052  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1050-1062  
ISS), goatee(the problem of man), avocado (the problem  
ISS).  
subjects; 3) incorrect drawings. In my opinion, the neural  
network corresponds to the development of a 10y.o. child.  
Experiment 17. When training the neural network, as a  
result of the experiment, 10 iterations were carried out the  
total number of drawings 60, not recognized by the system -  
11. Unrecognized drawings and description of the problem:  
Car inability of the system to recognize the pattern  
Bird - the inability to portray a figure for 20 seconds  
Car pickup - inability to draw a picture  
Result: Most of the drawings are not recognized because  
of the limitations of artificial intelligence. In my opinion, IIS  
corresponds to the development of a 4y.o. child.  
Experiment 12. When training the neural network, as a  
result of the experiment, 10 iterations were performed. Of the  
total number of drawings (60); not recognized by the system  
14. List of unrecognized pictures: whale (the problem of  
man), wax crayon (the problem of the neural network), fire  
hydrant (the problem of man), tractor (the problem of the  
neural network), green beans (man's problem), ceiling fan  
Truck  inability of the system to recognize the symbol  
Sock  the inability of the system to recognize a slightly  
inaccurate character  
(
problem people),  
a
postcard (the problem of man),  
Bottle capinability to draw a picture in 20 seconds  
Teapot - inability of the system to recognize the symbol  
Underwear  inability of the system to recognize the  
symbol  
Bird - the inability to portray a figure for 20 seconds  
Envelope  inability of the system to recognize the  
pattern  
watermelon (the problem of the neural network), camera (the  
problem of man), stitch (the problem of the neural network),  
pencil (the problem of man), Zebra (problem people), the  
bulb (the problem of the neural network), the hand (man's  
problem). In 9 out of 14 cases, the human factor, which  
means the wrong picture, was the fault of the incorrect  
definition of the figure.  
Bracelet  incorrect question and the inability of the  
Result: in my opinion, the neural network corresponds to  
the development of a 13 y.o. child.  
Experiment 13. When training the neural network, as a  
result of the experiment, 10 iterations were carried out. Of the  
total number of drawings - 60, not recognized by the system –  
system to isolate the desired element.  
Result: the neural network corresponds to the  
development of a child -10 years. Since some complex  
characters are recognized, true, and some are not.System  
thinking is appropriate to a child of 10 years.  
Experiment 18. When training the neural network, as a  
result of the experiment, 10 iterations were carried out.  
Among unidentified (not understandable drawings)  29. The  
system is not trained or the person drew badly.  
Conclusion: the Thinking of the neural network  
corresponds to a child 2-4 years old, because the neural  
network did not recognize 29 of the 60 drawings. System  
thinking is appropriate to a 2-4 y.o. child.  
Experiment 19. When training the neural network, as a  
result of the experiment, 10 iterations were carried out. The  
system did not recognize 13 of the 60 drawings. The system  
did not recognize:  
bird - system determined that it is a diamond  
purse - 2 times - the system determined that it is a socket  
and toaster  
12. Unrecognized drawings  Crab (the neural network is not  
trained), rabbit (it is not clear drawn), sleeping bag (it is not  
clear drawn), violin, key and Dolphin (the neural network is  
not trained), Inbox (dropped twice, was drawn in two  
different ways, the neural network is not trained), it is unclear  
drawn - eraser, peanuts, mermaid and protein. Description of  
the problem  in 6 cases, the neural network is not trained -  
could not recognize the pictures, in the other 6 cases there  
was not enough time or an error was made.  
Result: in my opinion, the neural network corresponds to  
the development of a 14 y.o. child.  
Experiment 14. When training the neural network, as a  
result of the experiment, 10 iterations were carried out. Of the  
total number of drawings are not recognized by the system  
19.  
Result: in my opinion, the neural network corresponds to  
the development of a 8y.o. child.  
baseball - the system has determined that it is a tennis  
racket  
Experiment 15. When training the neural network, as a  
result of the experiment, 10 iterations were carried out. Of the  
total number of drawings in 60, not recognized by the system  
snail - the system determined that the drawn spoon  
postcard - the system has determined that it is an  
envelope  
-
17. Unidentified: headphones, bandage, pie, bulldozer,  
hurricane - the system determined that the tornado is  
drawn  
ocean - the system determined that the pool is drawn  
violin - the system determined that the cello is drawn  
toilet - the system determined that the dishwasher is  
drawn  
anvil, sword, purse, Cup, BlackBerry, sea turtle, anvil, green  
beans, cruise ship, guitar, calculator, wax chalk, asparagus.  
Result: the Problem: 1) "did Not know how to draw an  
object"; 2) Incorrectly drew the object; 3) Not enough time  
for the execution of the figure. In my opinion, the IIA  
corresponds to the development of a 7-8y.o. child.  
Experiment 16. When training the neural network, as a  
result of the experiment, 10 iterations were carried out. Of the  
total number of drawings  60, unrecognized by the system-  
blueberries - the system has determined that the painted  
peas  
the laptop system has determined that the painted oven  
raccoon system determined that the dog is drawn  
Result: the Intelligence of this system is at the level of 5-  
6 year old child. Some of the drawings, the system failed to  
recognize their fault, as was the figure the user is drawing  
bad. System thinking is appropriate to a 5-6 y.o. child.  
1
2. Unrecognized drawings: Zebra, knee, lighthouse, goatee,  
foot, purse, BlackBerry, watermelon, ice cream, basketball,  
map, scissors.  
Result: the Reasons for the failures: 1) could not  
complete the picture in 20 seconds; 2) ignorance of some  
1
053  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1050-1062  
Experiment 20. The neural network did not recognize  
from 60 figures 19. From observations, it can be concluded  
that the trained neural network corresponds to a child of 8  
years.  
Result: system thinking is appropriate to a child of 8  
years.  
Experiment 21. Thinking of IIS is running at 58%. The  
system did not recognize 25 of the 60 drawings.  
Result: it is not possible to determine the level of thinking  
of the neural network.  
Experiment 22. When training the neural network, as a  
result of the experiment, 10 iterations were carried out.  
Human factor. The input data sent by the user  
does not correspond to the actual image of the object;  
Neural network memory. The images of objects  
recorded in the neural network memory have different ways  
of representation (a three-dimensional object, two-  
a
dimensional object, a minimalist style of representation, etc.),  
which prevents the comparison of the input data with the data  
in memory.  
Result: it is impossible to determine the level of thinking  
of the neural network.  
Experiment 25. The results Produced by 10 iterations of  
communication with the artificial intelligence of the neural  
network. Unrecognized drawings  15. The system didn't  
recognize: the Boat  the system does not recognize the Tree  
 the system does not recognize the Grapes  badly drawn,  
the Rake  the system does not recognize the Torch  the  
system does not recognize Omar poorly drawn, Swing-  
Board  incorrectly drawn, the Crocodile is poorly drawn, the  
Great wall of China  incorrectly drawn, the BlackBerry  
system does not recognize the Owl is poorly drawn, the  
Ladder system didn't recognize, Green beans  the system  
does not recognize Jacuzzi  the system does not recognize  
the Nail system is not recognized.  
Among unidentified (incomprehensible) drawings  
3.  
Description of unrecognized drawings: 1. Cloud. (the neural  
network is not trained.)2. Giraffe. (Man poorly painted).3.  
Water slide. (Man poorly painted. The level of neural  
network development corresponds to the level of a 12-year-  
old child.  
Result: System thinking is appropriate to a 12y.o. child.  
Experiment 23. When training the neural network, as a  
result of the experiment, 10 iterations were carried out.  
Among the unidentified (not clear) of figures  13 pieces.  
The system is not yet trained or the person has drawn badly.  
Thinking of ICI corresponds to a child of 2 years. The neural  
network did not recognize 13 of the 60 drawings.  
Result: System thinking is appropriate to a 2 y.o. child.  
Experiment 24. When training the neural network, as a  
result of the experiment, 10 iterations were carried out.  
Among the unidentified (not clear) of figures -7. The system  
is not yet trained or the person has drawn badly.  
Result: the Level of development of artificial intelligence  
of the neural network is at the level of a 5-year-old child. In  
most cases, the drawings were not recognized due to the lack  
of training of the neural network. Thinking corresponds to a  
5y.o. child.  
Summarizing the results of the experiments, the  
information processing automated.  
Cause of error:  
Table 1: Presents statistical data of 25 experiments.  
The number of correct answers  
+
The number of wrong answers  
(empty)  
(empty)  
1
0
0
1
+
-
Result  
Picture description  
Avocado  
Bus  
(empty)  
-
1
+
1
-
_
+
4
-
5
8
7
4
8
3
4
5
4
2
3
6
9
6
4
1
12  
8
10  
7
14  
5
7
8
8
3
7
Car  
Pickup car  
Shark  
1
1
2
1
2
1
2
1
2
1
1
1
Barn  
Rollercoaster  
Pineapple  
Angel  
Peanut  
Watermelon  
Harp  
Butterfly  
Banana  
Paintcan  
Drum  
1
1
2
2
2
1
3
1
1
1
5
1
2
7
14  
10  
6
1
8
12  
10  
10  
9
11  
3
1
1
1
1
Drums  
6
5
5
1
2
Basketball  
Swimming pool  
Baseball  
Baseballbat  
Squirrel  
Binoculars  
Bat  
3
2
2
3
5
2
1
1
1
1
2
2
1
6
5
1
3
1
1
1
1
1
4
5
Wineglass  
Hospital  
4
3
1
1
054  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1050-1062  
Beard  
Boot  
Bracelet  
Diamond  
Broccoli  
Alarm  
Bulldozer  
Boomerang  
Bottleofwine  
Vase  
3
6
3
7
4
9
4
3
5
8
6
2
6
7
2
6
6
3
2
3
9
1
1
1
2
2
1
3
4
1
10  
8
11  
7
5
9
6
8
8
9
6
3
8
8
8
13  
7
7
6
7
13  
1
4
4
6
9
6
7
8
8
3
5
4
11  
8
8
7
4
6
5
3
10  
8
4
4
6
5
11  
8
6
10  
5
12  
4
4
2
8
1
1
1
1
1
1
3
1
1
3
Tub  
Bucket  
GreatChinesewall  
Bike  
1
1
1
1
1
1
1
1
Fan  
Camel  
Helicopter  
Fork  
Grape  
1
4
2
1
1
1
1
3
1
1
1
2
1
1
1
Cello  
1
1
2
Waterslide  
Waterslides  
Balloon  
Waxchalk  
Octagon  
Bow tie  
Hamburger  
Dumbbell  
Guitar  
Eye  
Mountain  
Pea  
Rake  
Mushroom  
Truck  
Pear  
Door  
Dolphin  
Tree  
Jacuzzi  
Sofa  
Rain  
House  
Dragon  
Drill  
Oven  
2
2
2
2
6
8
4
3
6
7
3
3
1
10  
6
6
6
2
5
1
2
9
7
1
1
6
4
4
4
5
10  
3
8
4
4
2
4
1
2
1
2
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
1
Hedgehog  
BlackBerry  
Raccoon  
Giraffe  
Fence  
1
3
1
1
1
2
1
1
1
1
Brewingteapot  
Curl  
2
3
1
Lock  
Castle  
Star  
Zebra  
Greenbeans  
Beans  
Zigzag  
Snake  
Stop” sign  
Umbrella  
Tooth  
1
1
1
2
2
1
3
6
3
3
4
2
4
2
1
1
11  
11  
5
5
5
2
1
1
1
1
1
1
1
3
1
055  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1050-1062  
Toothpaste  
Toothbrush  
Yoga  
6
5
2
3
2
8
6
2
4
4
5
6
1
3
4
4
1
14  
1
1
1
1
1
1
1
1
10  
6
3
5
3
10  
11  
11  
7
6
9
9
1
4
10  
6
7
16  
6
1
6
1
8
1
6
12  
9
10  
7
12  
10  
6
6
10  
4
1
7
5
5
11  
3
3
Cactus  
1
1
Calendar  
Calculator  
Camera  
Stone  
Camouflage  
Canoe  
Pencil  
Map  
Potato  
Frenchfries  
Boat  
2
2
2
3
1
2
1
2
1
1
4
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
2
Swing  
SwingBoard  
Square  
kangaroo  
Brush  
paintbrush  
Brush  
1
2
1
1
1
1
1
2
2
3
2
3
Whale  
5
1
3
8
5
5
4
10  
7
4
WhaleWall  
Keyboard  
Clarinet  
Strawberry  
Key  
GolfClub  
Book  
Knee  
1
1
1
1
2
1
1
1
1
1
3
2
1
1
1
1
1
1
1
1
1
Wheel  
1
1
Mosquito  
Houseplant  
Dresser  
Computer  
Compass  
Computer  
Envelope  
Conditioner  
Basket  
Cow  
Crown  
Fire  
CoffeeCup  
Purse  
3
7
3
1
2
1
1
1
1
3
1
4
5
3
4
1
1
1
4
1
1
1
1
2
1
2
1
4
6
2
4
11  
4
1
1
1
4
2
1
2
2
1
1
3
9
Cat  
Crab  
Bed  
8
2
4
1
1
10  
10  
9
1
2
1
1
Bed  
Crocodile  
Rabbit  
Circle  
Mug  
CruiseShip  
CruiseLiner  
Cover  
1
1
8
3
6
10  
4
1
5
5
11  
3
8
12  
1
1
2
1
1
1
1
2
1
1
1
1
BottleCap  
Bush  
Palm  
Bulb  
Eraser  
1
1
1
4
1
6
3
4
9
4
6
5
1
1
1
2
4
1
5
1
1
1
1
1
3
1
1
Swan  
Lion  
3
1
1
056  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1050-1062  
Candy  
Stairs  
Years. Mouse  
FlyingSaucer  
Bat  
Line  
Sheet  
Persons  
Person  
Spoon  
Elbow  
Shovel  
Horse  
Bulb  
Moon  
Frog  
Ambulance  
Lighthouse  
Bear  
5
3
1
1
6
11  
1
10  
5
5
12  
1
11  
6
4
5
14  
7
9
7
7
2
15  
5
6
8
6
4
1
7
8
11  
7
7
7
6
8
3
7
7
6
8
6
2
8
3
2
7
6
7
6
3
1
7
7
12  
4
1
10  
7
3
12  
8
3
1
2
1
4
1
6
4
3
3
1
8
5
3
4
9
2
7
1
4
1
2
3
4
1
1
1
1
1
1
1
1
1
2
1
1
3
1
1
3
3
2
1
1
1
1
2
1
1
1
2
4
4
3
2
4
8
1
Mill  
Broom  
Sword  
1
2
1
1
1
2
3
AnimalMigration  
Microwave  
MicrowaveOven  
Microphone  
MobilePhone  
Brain  
1
1
4
7
6
6
4
3
4
3
2
2
5
3
5
2
2
4
2
2
2
4
1
2
3
1
1
1
2
1
1
1
Lightning  
Hammer  
Mona  
2
1
1
2
3
2
Carrot  
IceCream  
SeaTurtle  
Most  
Motorcycle  
Ant  
1
1
1
1
3
1
1
1
1
1
1
Mouse  
Anvil  
2
1
1
2
1
WristWatch  
Headphones  
Skyscraper  
Skyscraper  
Underwear  
Foot  
Nail  
Scissors  
Nose  
1
1
1
1
1
2
1
2
1
1
1
1
2
1
1
2
2
1
2
1
1
1
1
1
Socks  
Sock  
4
4
7
2
3
1
Rhinoceros  
Laptop  
Monkey  
Marmoset  
Cloud  
Sheep  
Necklace  
Ocean  
Lobster  
Octopus  
Screwdriver  
Glasses  
Tent  
1
2
2
1
1
7
6
3
5
1
5
1
4
6
6
2
1
2
2
2
3
1
1
1
1
1
1
6
3
6
8
1
1
1
1
1
1
1
Finger  
1
1
9
1
057  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1050-1062  
Toe  
Palm  
Panda  
Parachute  
SailingShip  
Pliers  
Passport  
Pliers  
Spider  
Pen  
Plumage  
Hourglass  
Cookie  
4
7
5
6
6
1
7
2
7
5
1
8
1
5
2
3
3
1
1
1
1
7
7
9
7
9
1
9
7
8
7
1
9
3
9
2
9
6
1
1
3
2
1
1
2
1
1
1
1
1
1
1
2
Jacket  
Pickup  
Saw  
Penguin  
Pie  
2
1
2
1
1
2
1
2
2
1
2
4
Letter  
Pizza  
1
2
1
2
1
5
11  
4
7
2
8
7
1
3
5
13  
1
10  
8
6
7
7
11  
8
13  
7
4
8
9
8
4
5
5
11  
8
3
1
6
4
5
2
1
1
TeddyBear  
Beach  
Bandage  
Submarine  
Candlestick  
Pillow  
3
1
1
5
1
5
1
1
1
1
7
1
1
3
6
1
7
5
5
3
5
5
4
7
1
3
5
2
4
2
4
2
9
Pillow  
Train  
1
1
1
1
FireEngine  
FireHydrant  
FireHydrant  
PoliceCar  
Pomade  
Doughnut  
Parrot  
Dishwasher  
CeilingFan  
PostCard  
Mailbox  
Belt  
AccessLadder  
Pond  
Bird  
Console  
Gun  
5
1
1
1
2
2
1
2
1
1
1
1
2
1
1
2
1
2
2
1
2
1
1
1
1
2
1
1
1
1
2
1
2
3
1
1
1
2
1
1
1
2
1
2
1
1
2
1
Bee  
Radio  
Rainbow  
Sink  
PictureFrame  
PictureFrame  
River  
Socket  
RollerSkates  
Roth  
5
1
2
1
5
2
9
7
1
4
4
4
3
4
7
4
3
3
1
2
10  
12  
4
8
6
7
8
8
7
3
2
1
1
Hand  
1
Mouthpiece  
Mermaid  
Fish  
Backpack  
Garden  
GardenHose  
Saxophone  
Aircraft  
1
3
2
1
1
2
2
1
1
1
1
2
2
1
7
5
1
058  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1050-1062  
TrafficLights  
2
5
2
10  
5
8
9
4
1
1
3
7
8
2
4
8
4
3
1
7
3
2
1
1
1
2
7
6
14  
10  
9
11  
8
1
1
7
7
12  
2
5
11  
5
11  
7
7
8
8
1
6
5
1
10  
8
10  
3
8
8
Candle  
Pig  
Sweater  
Heart  
Bench  
Skateboard  
Pan  
Griddle  
Ambulance  
Scorpion  
Clip  
Violin  
Remand  
Elephant  
Snowman  
Snowflake  
Dog  
Owl  
Sun  
SleepingBag  
Asparagus  
Match  
1
1
3
1
2
2
1
1
1
1
2
1
1
1
3
1
2
3
1
1
1
3
1
1
2
5
2
1
1
1
1
1
2
2
4
1
2
Matches  
Quiltings  
Stitch  
Steak  
Stereo  
2
1
1
2
1
1
1
1
1
1
2
6
5
7
3
4
5
6
1
1
1
1
1
1
Stethoscope  
WashingMachine  
Table  
2
2
1
2
1
1
Chair  
Foot  
Ties  
1
1
1
11  
1
Sandwich  
Table  
Tv  
Phone  
TennisRacket  
Tigris  
Axe  
Tornado  
1
1
1
7
4
8
3
7
6
5
2
7
10  
4
8
3
4
3
3
4
5
5
2
5
9
3
5
2
2
1
1
2
1
1
1
1
2
Cake  
BirthdayCake  
Torchere  
Toaster  
1
1
1
1
1
Grass  
Tractor  
1
2
1
3
1
8
Trombone  
Springboard for jumping the water  
Triangle  
1
1
5
10  
4
2
2
1
1
1
5
6
10  
6
9
5
9
1
1
1
1
1
Trombone  
Pipe  
1
1
1
1
1
Trumpet (MusicalInstrument)  
Pipe(Muses. Tool)  
Trumpet(MusicalInstrument)  
TubeAndMask  
TubeWithMask  
Toilet  
1
1
1
2
2
8
6
7
1
5
1
1
1
1
1
1
1
2
Snail  
1
1
StreetLamp  
SmilingFace  
Smile  
1
1
10  
Hurricane  
2
1
1
059  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1050-1062  
Moustache  
Duck  
2
5
2
1
1
1
5
9
2
Ear  
Flag  
7
2
5
6
3
4
6
6
1
1
1
9
2
5
7
4
10  
7
10  
7
Flamingo  
FeltPen  
Lantern  
Piano  
FruitIce  
Van  
1
2
2
2
1
2
1
1
Jersey  
6
1
Football  
Bread  
HockeyStick  
HockeyPuck  
Hot Dog  
Flower  
4
8
6
5
4
5
7
1
2
1
1
6
10  
9
7
6
6
8
1
2
1
2
1
1
1
1
Church  
Kettle  
Clock  
Cup  
Suitcase  
Skull  
Turtle  
Blueberry  
Hexagon  
SchoolBus  
Helmet  
FlipFlops  
Hat  
Shorts  
Pants  
Brush  
EiffelTower  
Goatee  
3
2
7
5
2
4
4
4
4
3
3
3
3
1
4
1
1
1
1
1
5
8
7
6
3
7
6
8
6
3
6
3
6
1
7
4
1
1
1
2
1
1
1
1
1
1
1
2
1
1
1
1
2
1
1
1
1
2
1
1
2
Apple  
4
5
The overall result  
1491  
220  
4
225 305  
4
133 41  
3
9
76  
1
2512  
As a result of data processing the following dependencies  
are obtained. Figure 2. - The ratio of unrecognized neural  
network drawings and recognized objects (pictures). From  
figure 2 it can be seen that the recognized neural network  
drawings - 59%, which is 18% more than unrecognized.  
From figure 3 it is seen that is not recognized iteration -27%  
recognized iteration -73%. Figure 4 shows that the human  
factor is the cause of errors in pattern recognition by the  
neural network, which is explained by the following reasons:  
not every person (subject) is an artist, so most  
people do not have the ability to draw, do not have the skills  
to image objects and objects;  
not enough time to complete the picture, the more  
that are in need of training the neural network includes  
training complex pictures such as: Green beans, Mona Lisa,  
migration, anvil, nose, jail, detention facility, stress time,  
trombone (musical instrument) and clarinet (musical  
instrument), a goatee.  
Figure 2: Not recognized and recognized objects (in %).  
1
060  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1050-1062  
4
Discussion  
October 11, 2019. Russian President Vladimir Putin  
approved a national strategy for the development of artificial  
intelligence until 2030. “In order to accelerate the  
development of artificial intelligence in the Russian  
Federation, conduct scientific research in the field of artificial  
intelligence, increase the availability of information and  
computing resources for users, improve the training system in  
this area, it is necessary to apply a national strategy for the  
development of artificial intelligence until 2030,” - the  
document says (17).  
«Artificial intelligence in  
a
strategy refers to  
technological solutions that allow you to simulate the  
cognitive functions of a person and get results when  
performing certain tasks that are comparable, at least, with  
the results of intellectual human activity. Artificial  
intelligence includes IT infrastructure, software (including  
that using machine learning methods), as well as processes  
and services for processing data and finding solutions, the  
strategy says. Countries with the development of artificial  
intelligence will receive advantages not comparable to  
nuclear weapons, Russia has every chance of succeeding in  
this, said Russian President Vladimir Putin earlier» Putin  
V.V. approved the development strategy of artificial  
intelligence until 2030 (17).  
Figure 3: Not recognized and recognized iterations (in %).  
5
Conclusion  
The article presents the most modern and actual heuristic  
and multi-heuristic algorithms that can give solutions as close  
as possible to the correct ones by the satisfying time (solution  
of NP-difficult problems). It also touches upon the issue of  
assessing the quality of neural networks both on standard  
templates and for the most difficult situations related to the  
creative process. Within the framework of the work, twenty-  
five experiments were conducted and data on more than a  
hundred proposed images were collected and neural network  
reaction was noted to each of the described object. The  
obtained results are carefully sorted and presented in the form  
of tables intended for further analyze in order to develop  
mathematical models and algorithms for assessing the quality  
of the learning process of modern neural networks. The  
authors put forward the thesis about the need to develop  
mathematical models to assess the quality of machine  
learning algorithms. The authors classify the results obtained  
on the different stages of the machine learning. In the article  
discusses both typical examples of the modern neural  
network and the most complex ones related to the creative  
Figure 4: Cause of error (in iterations in %).  
3
Results  
It should be noted that students in the course of the  
experiment noted do not know the true meaning of some  
words. It is determined that the neural network learning  
algorithm requests an image of similar words, for example:  
1
2
3
4
5
.
.
.
.
.
Teddy Bear and Teddy bear.  
Cruise ship and Cruise liner  
Potatoes and French fries  
French fries and Chips  
Television  
Training of the neural network was carried out  
simultaneously by 45 students, performing many iterations.  
The first experiments on visual observation showed that  
neural network training corresponds to the thinking of a child  
aged 2 to 4 years. As the neural network was being trained,  
the neural network learning ability assessment came to the  
age of 7-8 years, then 12-14 years, sometimes up to 18 years  
and fell again to the development of a 5-year-old child. This  
suggests that the neural network is trainable. Participants of  
the experiment in 79% of cases considered guilty of a bad  
result of the Information system human factor  the inability  
of a person to draw an object correctly. Indeed, not everyone  
has artistic abilities.  
process. The authors conducted  
a huge number of  
experiments on different objects recognition and in general at  
different stages of machine learning. The authors also tried to  
assess the possibility of simulating the creative process  
through the deep machine learning. The main purpose of the  
publication is the publishing the results for the aim of the  
further analyze and developing methods and algorithms for  
assessing the quality of machine learning.  
References  
1
.
Adamar Zh. Psychology process study in the field of mathematic  
science. Moscow: Annex III. 1970.  
1
061  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1050-1062  
2
.
Averkin AN, Gaaze-Rapoport MG, Pospelov DA. Artificial  
intelligence dictionary. Moscow: Radio and  
communication.1992.  
the national technology initiative of Russian Federation. Modern  
journal of language teaching methods.2018;8(6):84-100.  
22. Wallas G. The Artof Thought. New York. 1926.  
3
4
.
.
Basu M. Economic environmental dispatch of hydrothermal  
power system. Int J Elec Power.2010;32:711-720.  
Berdyaev NA. Experience urges Catholics in logical  
metaphysics. Creativity and objectification. Moscow: AST.  
23. Xiang L, Jianzhong Z, Shuo O, Rui Z, Yongchuan Z. An  
adaptive chaotic artificial bee colony algorithm for short-term  
hydrothermal  
generation  
scheduling.  
Int  
J
Elec  
Power.2013;53:34-42.  
2
003.  
24. Ying W, Jianzhong Z, Chao Z, Yongqiang W, Hui Q. An  
improved self-adaptive PSO technique for short-term  
hydrothermal scheduling. Expert Syst Appl.2012;39:2288-2295.  
25. Youlin L, Jianzhong Z, Hui Q, Ying W, Yongchuan Z. An  
adaptive chaotic differential evolution for the short-term  
hydrothermal generation scheduling problem. Energ Convers  
Manage.2010;51:1481-1490.  
5
6
7
8
.
.
.
.
Binghui Y, Xiaohui Y, Jinwen W. Short-term hydro-thermal  
scheduling using particle swarm optimization method. Energ  
Convers Manage.2007;48:1902-1908.  
Galushkin AA. Organizations of the sphere of education and  
science methods of competitiveness improvement. European  
Research Studies Journal.2017;20(4B):421-431  
Hota PK, Barisal AK, Chakrabarti R. An improved PSO  
technique for short-term optimal hydrothermal scheduling. Electr  
Pow Syst Res.2009;79:104-117.  
Khitskov EA, Veretekhina SV, Medvedeva AV, Mnatsakanyan  
OL, Shmakova EG, Kotenev A. Digital transformation of  
society: Problems entering in the digital economy. Eurasian  
Journal of Analytical Chemistry.2017;7(5):855-873.  
Kumar S, Naresh R. Efficient real coded genetic algorithm to  
solve the non-convex hydrothermal scheduling problem. Int J  
Elec Power.2007;29:738-747.  
26. Cherniavskih, V.I., Sidelnikov, N.I., Dumacheva, E.V.,  
Borodaeva, Z.A., Glubsheva, T.N., Gorbacheva, A.A.,  
Vorobyova, O.V. and Korolkova, S., 2019. Biological resources  
of natural forage grassland of the cretaceous south of the  
European Russia. EurAsian Journal of BioSciences, 13(2),  
pp.845-849.  
9
1
.
0. Lakshminarasimman L, Subramanian S. Short-term scheduling  
of hydrothermal power system with cascaded reservoirs by using  
modified differential evolution. IEE Proc - General Transmission  
Distribution.2006;153:693-700.  
1
1. Lakshminarasimman L, Subramanian S. A modified hybrid  
differential evolution for short-term scheduling of hydrothermal  
power systems with cascaded reservoirs. Energ Convers  
Manage.2008;49:2513-2521.  
1
1
1
1
1
2. Mandal KK, Basu M, Chakraborty N. Particle swarm  
optimization technique based short-term hydrothermal  
scheduling. Appl Soft Comput.2008;8:1392-1399.  
3. Naresh R, Sharma J. Two-phase neural network based solution  
technique for short term hydrothermal scheduling. IEE Proc-  
Gener Transm Distrib.1999;146:657-663.  
4. Nima A, Hassan RS. Daily hydrothermal generation scheduling  
by  
a new modified adaptive particle swarm optimization  
technique. Electr Pow Syst Res.2010;80:723-732.  
5. Orero, S.O., Irving, M.R. (1998). A genetic algorithm modeling  
framework and solution technique for short termoptimal  
hydrothermal scheduling. IEEE T Power Syst, 13, 501-518.  
6. Ravindhranathreddy B, Suryakalavathi M. Coua Bird-Inspired  
Algorithm for Solving Power System Problem. International  
Journal of Swarm Intelligence and Evolutionary Computation  
Department of Electrical Engineering, Jawaharlal Nehru  
Technological University.2016;DOI: 10.4172 2090-  
7. RIF News. Putin V.V. approved the development strategy of  
artificial intelligence until  
8. Sivasubramani S, Swarup KS. Hybrid DESQP algorithm for  
non-convex short term hydrothermal scheduling problem. Energ  
Convers Manage.2011;52:757-761.  
9. Swain RK, Barisal AK, Hota PK, Chakrabarti R. Short-term  
hydrothermal scheduling using clonal selection algorithm. Int J  
Elec Power.2011;33:647-656.  
0. Veretekhina SV, Karyagina TV, Kornyushko VF, Burlyaeva EV,  
Kolybanov KY, Potekhina EV, Shmakova EG. Information  
system for monitoring the state of the natural environment  
according to the Russian Satellite. Ekoloji.2018;27(106):461-  
1
1
1
2
2
4
69.  
2
1. Veretekhina SV, Karyagina TV, Potekhina EV, Nakhratova EE,  
Pronkina TV, Makushkin SA. Mathematical methods of an  
estimation of economic efficiency of investments and the  
sequence of execution of starts of investment on the example of  
1
062