Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1089-1092  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
The Role of Statistical Methods in the Estimation  
of Management Efficiency  
*
Ekaterina A. Grigoreva , Elvira A. Polovkina, Tatiana N. Gubaidullina  
Institute of Management, Economics and Finance, Kazan Federal University, Kazan, Russia  
Received: 13/09/2019  
Accepted: 22/11/2019  
Published: 20/12/2019  
Abstract  
One of the tasks set for economic science is the study of the theoretical foundations for further improving production efficiency,  
which serves as the fundamental basis for modern economic development. A lot of work has been devoted to questions of the  
methodology for statistical studies on production efficiency and labour productivity. Nevertheless, some problems remain  
insufficiently studied, in particular, questions on a generalizing indicator of economic efficiency, and analysis of management  
efficiency growth factors. The authors of the paper consider the possibility of using statistical methods to identify the influence of  
organizational factors on improving production efficiency, and propose methods for calculating the impact of management on  
production efficiency. The paper discusses the methodology of statistical study of management effectiveness. Much attention is paid  
to the correlation and regression analysis. A model is proposed, making it possible to adequately use systematic approaches to the  
problem of the statistical study of the production and management.  
Keywords: efficiency, factor analysis, production function, fixed assets, correlation and regression analysis, regression,  
management.  
1
materialized labour in the field of management and on the  
1
Introduction  
results achieved in the same field. Management effectiveness  
in the broad sense involves the study of the contribution of  
management itself to the final results of the production and  
economic activities of the respective units. The study of  
management effectiveness in the narrow sense is of  
independent interest.  
Management is part of the entire production process. It is  
called upon to ensure the fullest use and development of the  
productive forces potential in order to satisfy the whole  
complex of social needs and achieve social goals with the  
least expenditure of total labour. From these positions, the  
category of management efficiency should reflect the  
contribution of management to the overall results of  
production and economic activity.  
2 Methods  
At the same time, management is a relatively independent  
sphere of productive labour application, which is  
characterized by the size of management resources and the  
value of total labour costs. In this regard, the results of  
managerial activity can be considered in two aspects: from  
the standpoint of the governing system itself as a subject of  
management and from the standpoint of the entire  
management system as an organic unity of the subject and the  
object of management (1). Accordingly, one can distinguish  
two approaches to assessing management effectiveness:  
assessing management effectiveness in the narrow and broad  
sense of the interpretation of this term.  
To improve management, an assessment and analysis of  
its effectiveness is required. Of particular relevance are the  
issues of evaluating management effectiveness in the context  
of the work progress to strengthen an integrated approach to  
planning in economic sectors and solving major economic  
and social problems. It is important here already at the  
project stage to evaluate the effectiveness of the planned set  
of measures to improve management (2).  
In recent years, many methods have been created in the  
field of evaluating management effectiveness. They  
highlighted a number of factors of management effectiveness,  
examined the issues of grouping these factors, and proposed  
indicators. This, for example, is an indicator being the ratio  
of the management expenditures growth volume to the  
production growth volume obtained by increasing labour  
productivity, or an indicator being the ratio of the sum of  
management expenditures to the net product output, etc. (3).  
Along with certain advantages, each technique contains  
controversial provisions. Analysis of existing methods for  
Management efficiency in the narrow sense characterizes  
management as an independent sphere of labour application  
and is focused on studying the costs of living and  
Corresponding author: Ekaterina A. Grigoreva, Kazan  
Federal University. Email: ekaterina_kazan@mail.ru.  
1
089  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1089-1092  
assessing management effectiveness leads to the conclusion  
that their main drawback is the lack of a systematic approach  
to the construction of indicators.  
average annual value of production assets, minus the value of  
fixed assets of the management apparatus. A function of the  
form (2) allows us to evaluate the contribution of  
management to the overall results of production activities. It  
is a particular type of production and management function.  
It is advisable to especially highlight in the composition  
of fixed assets the computer equipment and study their  
influence on the achieved production results. A sufficiently  
large number of factors can be included into production  
functions, that is, they are quite suitable for describing  
multifactorial economic processes. In the general case, the  
production and management function have the form:  
With a systematic approach, management at any level is  
considered, on the one hand, as a system that includes a  
number of subsystems of a lower level, and on the other  
hand, as a subsystem included in a more complex formation,  
namely production. This determines the need, firstly, for a  
systematic comprehensive assessment of management  
efficiency, which would allow taking into account all the  
essential aspects of management as a system, and the  
influence of individual factors on the overall level of  
efficiency. Such an assessment should include the use of a  
hierarchical system of indicators and a study of the  
effectiveness factors themselves. Secondly, it is necessary to  
take into account the specifics of management as a subsystem  
of social production. This means that the constructed system  
of indicators should take into account the dual nature of  
managerial activity in the system of social production, that is,  
it should be presented as indicators characterizing the  
influence of management on production results, and  
indicators of the control system effectiveness itself. Thirdly,  
the methodological linking of management performance  
indicators with social production efficiency indicators is  
mandatory. In particular, the subsystem of management  
performance indicators should be an organic part of the  
system of social production effectiveness indicators; a  
generalized management efficiency indicator should be  
calculated in such a way that it is simultaneously a parameter  
of a generalized production efficiency indicator (4, 11).  
To implement this approach, statistical methods and  
modern technologies can be used. In particular, it seems  
promising to use production functions in combination with  
correlation and regression analysis to evaluate the  
management effectiveness of the apparatus of production  
functions.  
(3)  
where  
are expended production factors;  
expended management factors. For  
-
a
function of the form (3) that is non-negative, continuous, and  
differentiable with respect to all arguments, a number of  
characteristics of control efficiency can be calculated:  
-
The marginal rate of effectiveness for each factor  
(4)  
Which will show the change in the result of the  
production activity of a object when the production or  
managerial factor changes by one and at the fixed values of  
the remaining factors;  
-
Change in the result of the production activity of  
the system due to the cumulative change in production  
factors:  
(
5)  
3
Results and Discussion  
The production function is a model of the production  
-
Change in the result of production and economic  
activity due to the cumulative change in management factors  
results dependence on expended production factors. In the  
study of economic development using production functions,  
two main factors are usually distinguished: expended living  
labour estimated by the number of industrial production  
(6)  
personnel , and the average annual value of fixed assets  
:
-
-
Marginal rate of substitution for factor  
with factor  
,
(1)  
(7)  
If we take into account that the result of the production  
and economic activity of a object is determined not only by  
the costs of production resources, but also depends on the so-  
called managerial factors, then the allocation of these  
components or the use of production and management  
functions of the form seems reasonable:  
-
Management efficiency indicator in the form of the ratio  
of the production growth volume resulting from the  
strengthening of intensive growth factors to the managerial  
resource expenditures growth volume  
(2)  
(8)  
where Y is the result of the production activities of the object;  
is the number of workers; L is the number of  
administrative personnel; C is the average annual value of  
fixed assets of the management apparatus; and C is the  
L
1
2
1
2
1
090  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1089-1092  
where I is a set of indices of all intensive production volume  
factors. In this case, it is often necessary to identify factors  
assigning them to one or another group. As a rule, a scheme  
for classifying factors has already been set. However, it is  
often more useful in the construction of classification to go  
based on the object’s properties in their diversity and not  
based on a predetermined scheme to the natural types, which  
often leads to a result having a great heuristic value. In this  
case, the apparatus of cluster analysis can be successfully  
used (7). It is not necessary to express factors in  
quantitatively similar assessments; moreover, the use of  
appropriate similarity factors opens up the possibility of the  
simultaneous use of quantitative and qualitative  
characteristics. The type of grouping obtained depends on a  
given criterion for the optimality of the grouping or objective  
function. Thus, depending on the objective function, various  
partitions of the initial set of factors and objects can be  
obtained (8, 13).  
X j  
growth factors;  
is an increment of j-th factor compared  
to the baseline period or plan. If some factor j used in  
formula (8) is not given in the form of expenditures, then it  
can be reduced to them using values  
showing how many  
factor i increment units is equivalent to one factor j increment  
unit. For example, if the value of the factor i interchangeable  
with factor j expressed in the form of expenditures is known,  
then the notional expenditures for achieving the actual value  
of j factor will be:  
(
9)  
Then the formula (8) will take the form:  
(
10)  
5
Conclusions  
In real conditions, most economic phenomena are  
where I  
presented in the form of expenditures; and I  
indices j of management factors presented in a different form,  
moreover I +I =I.  
1
is the set of all indices j of management factors  
interconnected by certain dependencies. In addition, specific  
modelling conditions may require aggregation of the initial  
information about the object in question with minimal losses.  
In this case, the problem arises of reducing the description of  
a system consisting of many variables, some of which are  
connected by dependencies, to the description of a system  
consisting of a smaller number of independent derivatives of  
variables. In this case, a factor analysis apparatus can be used  
to determine the model parameters. The main advantages of  
factor analysis are the ability to use dependent factors and  
taking into account the hidden components of factors. If, for  
example, technical and economic factors include the scale of  
production, then when constructing a factor analysis model,  
the hidden components of this factor are also taken into  
account - the size of fixed assets, the number of employees,  
and gross output. To establish the type of function f, multiple  
correlation and regression analysis can be used (9, 12). The  
mathematical basis for identifying the type of connection by  
2
is the set of all  
1
2
4
Summary  
The proposed approach to the construction of a system of  
management performance indicators ensures the  
interconnection of production and management performance  
indicators. It also opens up the possibility of creating a  
system of indicators which are logically interconnected and  
united by a single target area.  
The use of multifactor production functions for each  
particular case encounters two main difficulties: firstly, the  
need for an analytical expression of the function f; secondly,  
the need to select factors for building the model. Both of  
these problems can be quite effectively solved using  
statistical methods.  
Several statistical methods can be used to select and  
group the most significant production and managerial factors:  
expert assessment methods, correlation analysis, cluster  
analysis, and various versions of factor analysis (5,15,16).  
To select the most significant factors, as a rule, the  
method of correlation analysis is used: the matrix of pair  
correlation coefficients between the considered factors,  
including the effective one, are analysed, and the most  
significant of them are selected on this basis. Correlation  
analysis as a formal mathematical apparatus is advisable to  
combine with expert methods, which allow, firstly, to obtain  
informal assessments of specialists and, secondly, to assess  
the impact of quantitatively immeasurable factors (6, 17).  
When assessing the degree of influence of each factor on  
the final indicator, it is advisable to use analysis of variance.  
This method allows not only to evaluate the contribution of  
each factor to the final indicator, to find out how significant  
the influence of factors not included in the model is, but also,  
without starting modelling, to study the combined effect of a  
number of factors on the modelled indicator.  
this method is the possibility of  
representation of the response function f by a Tailor  
polynomial Y:  
a fairly accurate  
mn  
mn  
mn  
2
Y  a  a X  a X X  a X ...  
0
i
i
ij  
i
j
ii  
i
i1  
ij  
i1  
With  
decomposition  
coefficients  
a , a , a ,..., a ,..., a ,...  
0
1
2
12  
n
Modelling allows us to get sample regression coefficients  
b , b , b ,..., b ,..., b ,...,  
0
1
2
12  
n
which are sufficiently close  
in their values to the coefficients of the theoretical expansion.  
Correlation analysis is based on a number of prerequisites  
necessary for its implementation: the availability of  
information for a certain period of time, the independence of  
factors, the uniformity of sample estimates, and some others  
(
10, 14, 15). All of these conditions may be observed when  
Modern requirements for the analysis of economic  
development require consideration of all its significant  
solving the task under consideration. For example, the  
fulfilment of the independence condition can be achieved by  
1
091  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1089-1092  
switching from a model of indicators to a model of growth,  
and by elimination of two strongly correlated factors the one  
which is less correlated with the final indicator. After the  
elimination of each factor, as well as after the final creation  
of the model, it should be checked for adequacy to the real  
process (significance) by any criterion (for example, by the  
Fisher criterion). If a polynomial of the chosen degree does  
not provide a sufficiently good approximation, then the  
exponent should be increased (18, 19, 20).  
10. Suhartono S. Time series forecasting by using seasonal  
autoregressive integrated moving average: Subset, multiplicative  
or additive model. J. Math. Stat. 2011;7:20-7.  
1
1. Matandare MA. Botswana Unemployment Rate Trends by  
Gender: Relative Analysis with Upper Middle Income Southern  
African Countries (2000-2016). Dutch Journal of Finance and  
Management.2018;2(2):04.  
12. Mendonça CMCD, Andrade AMVD. Elements of Digital  
Transformation in Dynamic Capabilities in a Brazilian Capital.  
Journal  
of  
Information  
Systems  
Engineering  
&
Management.2018;3(3):18.  
1
3. Tambunan H. The Effectiveness of the Problem Solving Strategy  
and the Scientific Approach to Students’ Mathematical  
Capabilities in High Order Thinking Skills. International  
Electronic Journal of Mathematics Education.2019;14(2):293-  
302.  
6
Acknowledgements  
The work is performed according to the Russian  
Government Program of Competitive Growth of Kazan  
Federal University.  
1
1
1
4. Alpeisso GT, Dossanova KK, Baigonyssova KO, & Kozhenova  
LZ. National identity in the modern education of Kazakhstan.  
Opción.2018;34(85-2):544-568.  
5. Mohammadnazar D, Samimi A. Nessacities of Studying HSE  
Management Position and Role in Iran Oil Industry. Journal of  
Chemical Reviews. 2019 Aug 30:252-9.  
6. Nabati M, Bodaghi-Namileh V, Sarshar S. Molecular Modeling  
of the antagonist compound esketamine and its molecular  
docking study with non-competitive N-methyl-D-aspartate  
References  
1
.
Kravets AG, Belov AG. Advanced business performance  
management: the structure of  
system. Innovations based on information and communication  
technologies.2015;1:566-568.  
a performance management  
2
3
.
.
Polovkina EA, Grigoryeva EA. A statistical study of production  
capacities as a factor in the growth of labour productivity.  
Accounting and Statistics.2017:2(46):73-81.  
Polovkina EA, Grigoryeva EA, Kadochnikova EI. Statistical  
evaluation of the influence of organizational factors on labour  
productivity. Scientific works of the Free Economic Society of  
Russia.2017;204:392-407.  
(NMDA) receptors NR1, NR2A, NR2B and NR2D. Progress in  
Chemical and Biochemical Research. 2019 Sep 1;2(3):108-19.  
7. Abagale S, Atiemo S, Abagale F, Ampofo A, Amoah C, Aguure  
S, Yaw O. Pesticide Residues Detected in Selected Crops, Fish  
and Soil from Irrigation Sites in the Upper East Region of  
Ghana. Advanced Journal of Chemistry, Section A: Theoretical,  
Engineering and Applied Chemistry. 2019 Aug 30.  
8. Sajjadifar S, Amini I, Amoozadeh T. Silica Boron sulfonic acid  
as a new and efficient catalyst for the green synthesis of  
quinoxaline derivatives at room temperature. Chemical  
Methodologies. 2017 Jun 1;1(1. pp. 1-86):1-1.  
9. Mohammadi Zeydi M, Mahmoodi NO, Ardeshiri Terogeni G.  
Sulfonylbis (1, 4-phenylene) bissulfamic acid (SPSA):  
Introduction of an efficient and reusable catalyst for the  
synthesis of bis (indolyl) methanes. Asian Journal of Green  
Chemistry. 2017 Oct 1;1(2. pp. 56-141):78-88.  
0. Hariani D, WK PS. Combination of feed protein level and  
laserpuncture induction of broodstock catfish (Clarias sp.) to  
increase estrogen, vitellogenin, and egg quality. EurAsian  
Journal of BioSciences. 2019 Jul 7;13(2):769-79.  
1
4
5
6
7
8
.
.
.
.
.
Babaeva ZS, Rabadanova ZB. Economic diagnostics in the  
analysis and management of production efficiency. Scientific  
Review. Series 1: Economics and Law.2011;6:87-89.  
Fedorovich VO, Fedorovich TV. Modelling the management of  
the economic efficiency of the production process.Industrial  
policy in the Russian Federation.1999;1:69-77.  
Polovkina EA, Grigoreva EA. Methodological aspects of  
production capacity. International Journal of Economic  
Perspectives.2017;11(3):1613-1619.  
Garifova LF, Grigoreva EA, Polovkina EA. Forecasting of  
consumer demand with the use of multi-factor dynamic models.  
Opcion.2018;34(86): 188-198.  
Grigoreva Ekaterina A, Polovkina Elvira A, Zulfakarova Lilya  
F. A statistical study of production capacities: methodological  
aspects. DILEMAS CONTEMPORANEOS-EDUCACION  
POLITICA Y VALORES.2018;6(83).  
1
1
2
9
.
Krasnopevtseva IV. Mathematical modelling of organizational  
factors influence on labour productivity level of the working  
industrial enterprises. VSGUTU 2013 bulletin.2013;3(42):80-86.  
1
092