Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1030-1035  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
The Species of Diversity of Sredniy Kaban Lake  
by 18s Rrna of Hydrobionts on next-Generation  
Sequecing Method  
Anthony Elias Sverdrup, Ludmila L. Frolova*  
Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia  
Received: 05/08/2019  
Accepted: 20/11/2019  
Published: 20/12/2019  
Abstract  
The paper presents the freshwater Sredniy Kaban Lake species diversity study results, (Kazan, Russia) by the 18S rRNA gene  
based on the next-generation sequencing method. Lakes Sredniy Kaban, Verhniy Kaban, and Nizhniy Kaban are included in the  
system of urban lakes Kaban and are polluted lakes according to ecological studies. Sequences of 18S rRNA gene fragment of  
freshwater Sredniy Kaban lake hydrobionts in FASTQ format were submitted to international SRA database on the NCBI  
website SRR7510987, SRR7465570, SRR7516496 A total of 44292 (2016) and 36631 (2017) high-quality reads were obtained;  
13.1% (2016) and 58% (2017) of the hydrobionts was classified to the kingdom, while 12.75% (2016) and 57.6% (2017) was  
classified to the phylum level, 12.7% (2016) and 56.6% (2017) was classified to the class level, 7.9% (2016) and 56.2% (2017)  
was classified to the order level, 56.1% (2017) was classified to the family level, 56% (2017) was classified to the genus level,  
and 54.7% (2017) was classified to the species level. The analysis of the metagenomic data for Sredniy Kaban Lake shows that  
indicator organisms identified by the 18S rRNA gene are grouped between o-saprobity and b-mesosaprobity. Sredniy Kaban  
Lake can be characterized by water quality as a transition from a polluted to a clean state.  
Keywords: Saprobity, gene 18S rRNA, Next-generation sequencing, Freshwater lake, Ecology  
1
the systematic position of the body and the time of  
1
Introduction  
discrepancy with similar species based on the analysis of  
similarities and differences in rRNA sequences (4). For  
eukaryotes, it is most convenient to analyze 18S rRNA of  
the three types of rRNA. The paper presents the results of  
the study of the species diversity of the freshwater Sredniy  
Kaban Lake (Kazan, Russia) by 18S rRNA gene of  
freshwater organisms based on the next-generation  
sequencing method. Lakes Sredniy Kaban, Verhniy Kaban,  
and Nizhniy Kaban are included in the system of urban  
lakes Kaban. According to ecological studies, Kaban Lakes  
are polluted lakes.  
Sredniy Kaban Lake is included in the system of city  
lakes Kaban along with lakes Verhniy Kaban and Nizhniy  
Kaban. On shore of Sredniy Kaban Lake, there is a rowing  
center, which is a place for training athletes in all types of  
rowing. According to ecological studies, Sredniy Kaban  
Lake is a polluted lake.  
One of the methods for assessing the ecological state of  
water reservoirs is the bioindication method (1).  
Traditionally, the identification of species in a water sample  
is carried out visually using  
a
microscope. The  
development of modern methods of molecular genetics and  
bioinformatics allows identifying organisms by marker  
genes. Currently, next-generation sequencing methods  
have gained rapid development. Metagenomics can provide  
valuable information on the functional ecology of  
environmental communities (2). We previously used  
metagenomic DNA sequencing to analyze species diversity  
by СО1 marker gene of animal organisms to assess the  
ecological status of freshwater Sredniy Kaban Lake by  
bioindication (3). In contrast to the marker genes СО1 and  
rbcL, 18S rRNA gene is present in all eukaryotes. This is  
one of the most conserved genes that is used to determine  
2 Methods  
Sampling from Sredniy Kaban Lake (Kazan, Russia)  
was carried out in 2016-2017 in accordance with the  
standard hydrobiological methods (5). DNA isolation from  
the sediment obtained by centrifugation of 50 ml of the  
sample at a speed of 10000 g for 15 min was carried out  
using a set of FAST DNA Kit (MP biomedicals) according  
to the manufacturer's Protocol. Amplification of the  
extracted DNA was carried out by the Phusion High-  
Fidelity DNA polymerase (Thermo Fisher) using primers  
(
Table 1).  
The second PCR cycle was performed to index samples  
Nextera XT indices). Purification of PCR products was  
Corresponding author: Ludmila L. Frolova, Kazan  
Federal University. E-mail: Lucie.Frolova@gmail.com.  
(
1030  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1030-1035  
performed using Agencourt AMPure XP beads (Beckman  
Coulter). The obtained DNA libraries were sequenced on  
an Illumina MiSeq equipment (MiSeq Reagent kit v3).  
Metagenomic data were submitted to the international SRA  
database on the NCBI website with the numbers  
SRR7510987, SRR7465570, SRR7516496 (6). After  
filtering reads by quality, trimming of service sequences,  
and removing chimeric sequences, obtained nucleotide  
sequences of the hydrobionts’ 18S rRNA gene were aligned  
with the BLAST program to determine the taxonomic  
composition. The Krona chart (7) and GraphPad (8)  
software are used for charting.  
Kaban Lake, there is a large sports complex - the Rowing  
Sports Center. According to ecological studies, Sredniy  
Kaban Lake is a polluted lake.  
Table 1: Primers for PCR of 18S rRNA gene  
Primers  
Sequences  
'-  
SR1_Illum tcgtcggcagcgtcagatgtgtataagagacagattaccgcgg  
5
ina  
ctgct-3'  
Figure 1: Sredniy Kaban Lake (Kazan city, Russia)  
https://www.sport-line.ru/objects/grebnye-kanaly/76/]  
[
5
'-  
SR1r_Illu  
mina  
gtctcgtgggctcggagatgtgtataagagacagtacctggttg  
atqctgccagt-3'  
3.1 Krona chart of the hydrobionts represented by 18S  
rRNA gene amplicon-based species diversity  
The percentage distribution of hydrobionts of Sredniy  
Kaban Lake by reads for 2016, (Unclassified 87%) is  
shown in Fig. 2. Percentage distribution of hydrobionts of  
Sredniy Kaban Lake by reads for 2017, (Unclassified 42%)  
is shown in Fig. 3. Each circle represents the kingdom,  
phylum, class, order, family, genus, and species from the  
inside to the outside of the circle, respectively, indicated by  
percentage of diversity.  
3
Results and Discussion  
In 2016-2017 the next-generation sequencing method  
was used to identify hydrobionts by 18S rRNA gene from  
Sredniy Kaban Lake. It is a lake about 3 km in length and  
0
5
.6 km in wide and has the geographical coordinates -  
5.750352°N and 49.146739°E (Fig. 1). Sredniy Kaban  
Lake is located in the center of an industrial city, thus  
experiencing anthropogenic stress. On the shore of Sredniy  
Figure 2: The percentage of 18S rRNA hydrobionts by reads of Sredniy Kaban Lake (2016)  
1031  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1030-1035  
Figure 3: The percentage of 18S rRNA hydrobionts by reads of Sredniy Kaban Lake (2017)  
3
.2 The percentage of 18S rRNA hydrobionts by reads  
2017) shown in Figure 5. As can be seen in Fig. 5 among  
the hydrobionts, the most numerous according to the reads  
are Chromista (96.31% / 55.76%) and Metazoa - 43.6%  
(2017).  
of Sredniy Kaban Lake (2016)  
The percentage of species diversity of 18S rRNA  
hydrobionts of Sredniy Kaban Lake by kingdom (2016-  
2017), shown in Figure 4. As can be seen from Fig. 4, the  
most numerous at the kingdom level, respectively, by year  
are Chromista (90.48%/51.90%), Metazoa (4.76%/29.52%)  
and Viridiplantae 9.52% (2017) by species diversity.  
Figure 5: The percentage of 18S rRNA hydrobionts by reads of  
Sredniy Kaban Lake (2017)  
3.3 The percentage of 18S rRNA hydrobionts by reads  
of Sredniy Kaban Lake (2016)  
The percentage of species diversity of 18S rRNA  
hydrobionts of Sredniy Kaban Lake by kingdom (2016-  
Figure 4: The percentage of species diversity of 18S rRNA  
hydrobionts of Sredniy Kaban Lake by kingdom (2016-2017),  
shown in Figure 4  
2017), shown in Figure 5. As can be seen from Fig. 6, the  
most numerous at the phylum level for 2016 are  
Cryptophyta (8%), Ciliophora (2.5%), Cercozoa (1.2%),  
and Unclassified (87%); for 2017 - Dinoflagellata (30%),  
The percentage of species diversity of 18S rRNA  
hydrobionts of Sredniy Kaban Lake by kingdom (2016-  
1032  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1030-1035  
Arthropoda (23.3%), Ciliophora (1.64%), Rotifera (1.54%)  
and Unclassified (42.4%).  
Figure 6: The percentage of hydrobionts 18S rRNA of Sredniy  
Kaban Lake by types (2016-2017)  
3.4 The percentage of 18S rRNA hydrobionts of Sredniy  
Kaban Lake by species  
The species diversity of hydrobionts in 2017 is 54.7%  
in reads of the total number of organisms. Ten hydrobiont  
species are included on a top by reads - Ceratium  
hirundinella (52.7%), Bythotrephes cederstroemi (15.0%),  
Cyclops insignis (3.9%), Chydorus sphaericus (3.3%),  
Cyclops kolensis (2.0%), Keratella cochlearis (2.0%),  
Acanthocyclops viridis (1.5%), Daphnia pulex (0.5%),  
Filinia longiseta (0.5%), Erpobdella obscura (0.4%) (Fig  
Figure 7: The species of hydrobionts and reads of Sredniy Kaban  
Lake (2017)  
7). 140 species from Sredniy Kaban Lake were identified  
by 18S rRNA gene. Among them, there are 22 hydrobionts  
with saprobities in Sladechek's list (9). Table 2 shows the  
saprobionts of Sredniy Kaban Lake.  
1
Crustacea. A common inhabitant of the littoral region  
in lakes, frequently found in association with vegetation  
(
10).  
Table 2: Hydrobionts with saprobities in Sladechek's list of  
Sredniy Kaban Lake  
2, 9, 10, 14, 17  
Diatom, frequently present in brackish water  
and oligo-eutrophic freshwater (11,32).  
Species  
Acroperus harpae , Amphora ovalis ,  
Saprobity Reads %  
3
Freshwater invertebrates. It lives along the plant-  
1
2
covered banks of stagnant and slow-flowing bodies of  
water, where it feeds on small fragments of plant material,  
animals or carrion. Cyclops can survive unsuitable  
conditions by forming a cloak of slime (12).  
3
4
Cyclops insignis , Leptodora kindtii ,  
o-b  
b
3.993  
3.515  
5
Tintinnidium fluviatile ,  
6
Simocephalus vetulus  
7
Chydorus sphaericus , Cryptomonas  
4
8
9
Leptodora kindtii is a voracious predator and is  
curvata , Cocconeis placentula ,  
Cymbella cistula , Vorticella  
1
0
capable of controlling numbers of its preferred prey items,  
which are generally juveniles of Daphnia, Bosmina,  
Ceriodaphnia, Diaphanosoma, Diaptomus, Polyphemus  
mayeri11  
Keratella cochlearis12  
b-o  
a
1.954  
0.469  
and Cyclops (13,34).  
13  
14  
Daphnia pulex , Nitzschia palea  
5
Tintinnidium fluviatile  
- unicellular organisms,  
15  
Brachionus calyciflorus , Coleps  
b-a  
o
0.254  
0.140  
eukaryotes. A review of the ecology of the fresh-water  
Tintinnina indicated that water temperature seems to be the  
most essential ecologic factor (14).  
1
6
17  
hirtus , Cymatopleura solea  
18  
Acantholeberis curvirostris ,  
19  
Alonopsis elongata , Lepadella  
6
rhomboides20  
The highest frequency of S. vetulus is found in small  
Acineria incurvata21  
ponds and ditches. It occurs most commonly in near-neutral  
water and is rare in acid water. The conductivity varies  
between 0.784 mS / m (15).  
p
0.140  
0.005  
Cyclotella meneghiniana22  
a-b  
7
о – oligosaprobity (clean), o-b, b-o  between oligosaprobity and  
b-mesosaprobity, b-mesosaprobity (polluted), a-b  between a-  
and b-mesosaprobity, a-mesosaprobity (very polluted), p-  
saprobity (dirty)  
Inhabit at the bottom of freshwater, sometimes found  
in the water column (16,35,36).  
8
Algae, a freshwater species. They are not known to  
1033  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1030-1035  
produce any toxins (17). Cryptomonas are also  
photolithotrophs that contribute to oxygenic carbon fixation  
making them highly critical to the carbon levels of  
freshwater reservoirs (18).  
As can be seen from Fig. 8, most indicator organisms  
are grouped between о-saprobity and beta-mesosaprobity.  
The water quality of Sredniy Kaban Lake is characterized  
as a transition from a polluted to a clean state.  
11  
Freshwater species of Ciliata. Vorticella habitats  
may include moist soil, mud and plant roots. They are  
known to feed on bacteria and can also form extracellular  
associations with mosquitoes, nematodes, prawns, and  
tadpoles (19).  
4
Summary  
Based on the results of the study, the next-generation  
sequencing method was used to identify hydrobionts by the  
gene 18S rRNA for Sredniy Kaban Lake for 2016-2017.  
A total of 44292 (2016) and 36631 (2017) high-quality  
reads were obtained; 13.1% (2016) and 58% (2017) of the  
hydrobionts was classified to the kingdom, while 12.75%  
12  
Keratella cochlearis is a rotifer (20). The planktonic  
animal occurs worldwide in freshwater and marine habitats.  
13  
Daphnia pulex is a species of Crustacea. Daphnia  
pulex is an important model species for investigating  
ecological stoichiometry (21).  
(
2016) and 57.6% (2017) was classified to the phylum  
15  
Brachionus calyciflorus is a planktonic rotifer  
level, 12.7% (2016) and 56.6% (2017) was classified to the  
class level, 7.9% (2016) and 56.2% (2017) was classified  
to the order level, 56.1% (2017) was classified to the family  
level, 56% (2017) was classified to the genus level, and  
species occurring in freshwater. It is commonly used as a  
model organism in toxicology, ecology and evolutionary  
biology (22).  
16  
The C. hirtus does not posess algal symbionts and  
54.7% (2017) was classified to the species level.  
feeds directly on other microbes (23). Coleps feeds on  
bacteria, algae, flagellates, living and dead ciliates, animal  
and plant tissues (24,29).  
Altogether, 140 species of hydrobionts were identified,  
among which Sladechek saprobity was determined for 22  
species. Indicator hydrobionts are of the greatest  
18  
A. curvirostris is a littoral macrofiltrator. Since it  
importance for reads  
Chydorus sphaericus, b (3%), Keratella cochlearis, b-o  
2%). Thus, the quality of the water of Sredniy Kaban Lake  
is between a clean and polluted.  
- Cyclops insignis, o-b (4%),  
occurs with the highest frequency in acid water, it is used  
as an indicator of acid water (pH <5.0). It is most common  
in ponds and small lakes, often with a high content of  
humus (15).  
(
19  
A. elongata is one of the most common littoral  
5
Conclusions  
The use of the next-generation sequencing method  
species. It occurs in waters of different pH from 3.9 to 8.2.  
A. elongata is slightly more common in electrolyte poor  
water than in electrolyte-rich water (15).  
allows the identification of a large number of hydrobionts.  
The method can be used for bioindication in assessing the  
ecological status of water reservoirs. The results obtained  
are of great practical interest in the field of monitoring of  
water objects.  
20, 21  
Lepadella rhomboids and Acineria incurvata are  
species of Ciliata. The ciliates are a group of protozoans  
characterized by the presence of hair-like organelles called  
cilia (25,30,31).  
22  
Cyclotella is a centric diatom. Cyclotella occurs in  
Acknowledgments  
stagnant waters. The nutrient content does not matter. They  
live both floating (plankton) and on the ground (benthos).  
C. meneghiniana was firstly described by Kützing (26-  
The work is performed according to the Russian  
Government Program of Competitive Growth of Kazan  
Federal University. The authors would like to thank Dr.  
S.Malanin and E.Boulygina, scientists of Kazan Federal  
University for their assistance with experimental work.  
28,33).  
Fig. 8 shows the percentage of saprobionts of Sredniy  
Kaban Lake by reads for 2017.  
References  
1
. Kurilenko V, Zaitseva OV, Novikova EA, Osmolovskaya NG,  
Ufimtseva MD. Fundamentals of ecogeology, bioindication  
and bio-testing of aquatic ecosystems. 2003; 448.  
2
. Raes J, Letunic I, Yamada T, Jensen LJ, Bork P. Toward  
molecular traitbased ecology through integration of  
biogeochemical, geographical and metagenomic data.  
Molecular systems biology. 2011 Jan 1;7(1).  
3
. Khusainov AM, Frolova LL. The Ecological Estimation of  
Sredniy Kaban Lake Based on Molecular Methods.  
International Journal of Engineering & Technology, 2018;  
7
(4.7): 88-90.  
. Lafontaine DL, Tollervey D. Ribosomal rna. e LS. 2001 May  
0.  
. Bulon VV. Guidelines for the collection and processing of  
materials in hydrobiological studies in freshwater reservoirs.  
Phytoplankton and its products. L.: State scientific-research  
institute of a lake fish farm, 1981; 32.  
4
5
3
Figure 8. The percentage of reads by hydrobionts saprobity  
of Sredniy Kaban Lake (2017)  
6
. National  
Center  
for  
Biotechnology  
Information  
-
http://www.ncbi.nlm.nih.gov/  
1034  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1030-1035  
7
8
9
. Krona homepage - http://github.com/marbl/Krona/wiki  
. GraphPadSoftware - https://www.graphpad.com  
. Sladechek V. System of water quality from the biological point  
of view. Arch. Hydrobiol. Ergeb. Limnol. 1973; 179-191.  
of Chemistry-Section A (Theoretical, Engineering and Applied  
Chemistry). 2019 Sep 1;2(4, pp. 266-385):296-315.  
30. Suganthi A, TK R. Estimation of Anti-dengue Phytochemical  
Markers Gallic acid, Rutin and Quercetin in Methanolic  
Extract of Euphorbia hirta (L.) and Tawa-Tawa Capsule  
Formulation by Validated RP-HPLC Method. Chemical  
Methodologies. 2019 Jan 1;3(1. pp. 1-144):43-54.  
31. Khan M, Parmar DK, Bhatt HB. Imidazole mediated synthesis  
of spirooxindoles in water using isatin as a privileged scaffold.  
Asian Journal of Green Chemistry. 2019 Jan 18.  
1
1
0. Acroperus  
harpae  
-
http://cfb.unh.edu/cfbkey/html/Organisms/CCladocera/FChyd  
oridae/GAcroperus/Acroperus_harpae/acroperusharpae.html  
1. von Berg KH, Hoef-Emden K, Melkonian M. Der kosmos-  
algenführer: die wichtigsten süßwasseralgen im mikroskop.  
Kosmos; 2004.  
1
1
2. Cuvelier D, Walter TC. "Cyclops Müller, 1785". World  
Copepoda database.  
3. A. Herzig, P. Larsson, L.J. Weider, "Cladocera as Model  
Organisms in Biology", Hydrobiologia, vol. 307, pp. 273pp.  
32. Powar N, Pandav R. Overview of Borophene as a Potential  
Candidate in 2D Materials Science for the Energy  
Applications. Journal of Chemical Reviews. 2019 Oct 1;1(4,  
pp. 252-350.):271-81.  
2
73-282, 1995.  
33. Vinodhkumar G, Ramya R, Potheher I, Cyrac Peter A.  
Reduced graphene oxide based on simultaneous detection of  
neurotransmitters. Progress in Chemical and Biochemical  
Research. 2018 Oct 1;1(1, pp. 1-59):40-9.  
1
4. FOISSNER W, WILBERT N. Morphologie, Infraciliatur und  
Ökologie der limnischen Tintinnina: Tintinnidium fluviatile  
Stein, Tintinnidium pusillum Entz, Tintinnopsis cylindrata  
Daday  
und  
Codonella  
cratera  
(Leidy)(Ciliophora,  
34. Samimia A, Zarinabadib S, Kootenaeia AH, Azimia A,  
Mirzaeia M. Optimization of Naphtha Hydro-Threating Unit  
with Continuous Resuscitation Due to the Optimum  
Temperature of Octanizer Unit Reactors. development.  
1949;16:19.  
Polyhymenophora). The Journal of Protozoology. 1979  
Feb;26(1):90-103.  
1
1
5. Norwegian  
Biodiversity  
Information  
Center  
-
https://www.biodiversity.no/  
6. Ukhova NL, Olshvang VN. Invertebrate animals of the  
Visimsky reserve. The annotated list of species.  
Yekaterinburg: “SK Resource”, Raritet Publishing House.  
35. Vafaei-Nezhad M, Ghiasi R, Shafiei F. Conformational  
Analysis of 2-halo-1, 3, 2-dioxaphosphinanes: A Density  
Functional  
Theory  
(DFT)  
Investigation.  
Chemical  
2
014; 22.  
Methodologies. 2019 Sep 15.  
1
1
7. Choi B, Son M, Kim JI, Shin W. Taxonomy and phylogeny of  
the genus Cryptomonas (Cryptophyceae, Cryptophyta) from  
Korea. Algae. 2013;28(4):307-30.  
8. Hoef-Emden K, Melkonian M. Revision of the genus  
Cryptomonas (Cryptophyceae): a combination of molecular  
phylogeny and morphology provides insights into a long-  
hidden dimorphism. Protist. 2003 Oct 1;154(3-4):371-409.  
9. Patil CD, Narkhede CP, Suryawanshi RK, Patil SV. Vorticella  
sp: Prospective Mosquito biocontrol agent. Journal of  
arthropod-borne diseases. 2016 Dec;10(4):602.  
36. Taghavi Fardood S, Ramazani A, Azimzadeh Asiabi P,  
Bigdeli Fard Y, Ebadzadeha B. Microwave-assisted  
multicomponent reaction for the synthesis of 2-amino-4H-  
chromene derivatives using ilmenite (FeTiO3) as a magnetic  
catalyst under solvent-free conditions. Asian Journal of Green  
Chemistry. 2017 Jul 1;1(1. pp. 1-55):34-40.  
1
2
2
0. Streble H, Krauter D. Das LebenimWassertropfen. Mikroflora  
und Mikrofauna des Süßwassers. Kosmos Verlag, Stuttgart.  
2
006.  
1. Hall SR, Leibold MA, Lytle DA, Smith VH. Stoichiometry  
and planktonic grazer composition over gradients of light,  
nutrients, and predation risk. Ecology. 2004 Aug;85(8):2291-  
3
01.  
2. Brachionus  
https://en.wikipedia.org/wiki/Brachionus_calyciflorus  
3. Taxonomie und Ökologie von Ciliaten (Wimpertierchen) -  
http://www.ciliates.at/en/2016/01/29/coleps-hirtus-hirtus/  
4. Buonanno F, Anesi A, Guella G, Kumar S, Bharti D, La Terza  
A, Quassinti L, Bramucci M, Ortenzi C. Chemical offense by  
means of toxicysts in the freshwater ciliate, Coleps hirtus.  
Journal of Eukaryotic Microbiology. 2014 May;61(3):293-  
2
2
2
calyciflorus  
in  
Wikipedia  
-
3
04.  
2
2
5. Ciliata in Wikipedia - https://en.wikipedia.org/wiki/Ciliate  
6. Kützing FT. Die kieselschaligen Bacillarien oder Diatomeen.  
F. Förstemann; 1865.  
2
7. Asif M. Calcium Sensitizing and Phosphodiesterase-III  
Inhibitory Activity of Pyridazine Compounds: A Review.  
Journal of Chemical Reviews. 2019 Jan 1;1(1, pp. 1-77.):47-  
6
5.  
2
8. Itodo AU, Itodo OM, Iornumbe E, Fayomi MO. Sorptive  
chelation of metals by inorganic functionalized organic WOx–  
EDA nanowires: adsorbent characterization and isotherm  
studies. Progress in Chemical and Biochemical Research. 2019  
Oct 18;1(1, pp. 1-59):50-9.  
2
9. Taher MA, Damarany BK. Effect of partial substitution of raw  
gypsum with thermally treated phosphogypsum on the  
properties of Portland Pozzolanic Cement. Advanced Journal  
1035