Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1036-1040  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
The Study of the Possibility of using the Additive  
of Plant Origin for Improvement the Quality of  
Yeast and Wheat Bread  
1
1
2
2
Elena V. Savelyeva *, Elena E. Zinurova , Zamira Sh. Mingaleeva , Alexandr V. Maslov ,  
2
2
2
Oksana V. Starovoitova , Svetlana V. Borisova , Olga A. Reshetnik  
1
Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia  
2
Department of Food Production Technology, Kazan National Research Technological University, Kazan, Russia  
Received: 18/08/2019  
Accepted: 17/11/2019  
Published: 20/02/2020  
Abstract  
The effect of the additive of plant origin on the fermentation activity of pressed bakery yeast Saccharomyces cerevisiae, the  
impact of activated yeast on the fermentation process in dough semi-finished products and on the quality of white bread, made  
from premium wheat flour, were investigated in the work. The efficiency of yeast was evaluated, based on the rising power and  
fermentation activity of yeast. The impact of activated yeast on the fermentation process was determined by the acidity of dough  
semi-finished products. The quality of white bread, made from premium wheat flour, was evaluated according to organoleptic  
and physico-chemical parameters (moisture content, acidity, grain of crumb). It was found, that with the increase in concentration  
of the additive of plant origin, there were the improvement of rising power of yeast, and the intensification of acidity  
accumulation in dough semi-finished products. According to the organoleptic and physico-chemical evaluations, it is  
recommended to use the additive of plant origin in the process of yeast activation, at a dosage of 7% to the mass of flour, without  
the deterioration of consumer properties of bread, compared to the control sample.  
Keywords: Bakery yeast, Preliminary activation, Fermentation activity, White bread made from premium wheat flour  
1
1
Introduction  
nutrient medium (RF patents No. 2656397, No. 2388227).  
Physical methods involve the improvement of throughput  
capability of cell membranes under the influence of  
electromagnetic, ultrasonic, acoustic, and laser processing  
(RF patents No. 2200194, No. 2184145, No. 2288262, No.  
2272420). It is promising to use the powders from cereals,  
containing nutrients necessary for yeast cells, as the  
activators (RF patents No. 2358007, No. 2257406).  
The studied additive of plant origin contains maltose,  
enzymes, vitamins, microelements and other biologically  
active substances. In the presence of maltose in a nutrient  
medium, the quantity and activity of maltopermaease and  
α-glucosidase enzymes gradually increase in the cells of  
yeast. The maltopermease enzyme catalyzes the transfer of  
maltose through the cell membrane inside the cell, where,  
under the action of α-glucosidase, the disaccharide is  
hydrolyzed into two glucose molecules. Then, under the  
effect of enzymes of zymase complex, glucose decomposes  
with the formation of ethyl alcohol, carbon dioxide, and  
with the release of energy (4). In comparison with premium  
wheat flour, the additive of plant origin is characterized by  
a high content of thiamine, minerals: magnesium, zinc,  
In the production of pressed bakery yeasts  
Saccharomyces cerevisiae, they are cultivated by aeration  
on a sucrose medium, to accelerate the growth of biomass.  
As a result, they have active respiratory enzymes and low-  
active fermentation enzymes. When kneading the dough,  
yeast comes to the anaerobic maltose medium. A certain  
period of time is required for the adaptation of yeast to new  
conditions. In order to reduce this time, the preliminary  
activation of yeast is performed. This is the process of  
transformation of the enzymatic complex of yeast from  
respiration to fermentation (1). Preliminary activation of  
yeast allows to reduce the time of dough fermentation and  
to improve the quality of finished bakery products (2, 3).  
There are chemical and physical methods for the  
preliminary activation of yeast, which differ in the nature of  
the effect on yeast cells. Chemical methods consist in the  
activation of the enzyme systems of yeast cells, due to the  
addition of activators, accelerating metabolism, to the  
Corresponding author: Elena V. Savelyeva, Kazan  
Federal University. E-mail: lenazinurva@yandex.ru.  
1036  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1036-1040  
iron, copper and phosphorus.  
amount, that the total mass of wheat flour and plant origin  
additive, used for the preliminary activation of yeast, was  
equal to the mass of flour, used for the doughing of the  
control sample.  
The fermentation activity of yeast was determined by  
the following indicators:  
Thiamine is  
a
part of the enzyme pyruvate  
decarboxylase, which is necessary in the process of  
alcoholic fermentation for decarboxylation of pyroracemic  
acid into acetaldehyde; it participates in nitrogen  
metabolism, stimulates the hydrolysis of maltose and the  
fermentation activity of yeast in general (4, 5). The ions of  
magnesium, zinc and iron in the yeast cell are the  
coenzymes, and are involved in the process of activation of  
many reactions. Magnesium regulates the metabolism of  
pyroracemic acid; it is necessary as the coenzyme and  
activator of a number of glycolytic enzymes; it contributes  
to the stability of cell membranes and the resistance of the  
yeast cell to ethyl alcohol, high temperature, increased  
concentration of dry substances and osmotic effect. Zinc is  
involved in the carbohydrate, nitrogen and phosphorus  
metabolism of the yeast cell. It stimulates the consumption  
of maltose and maltotriose by the yeast, promotes the  
synthesis of riboflavin, and stimulates the proliferation of  
cells. Iron and copper are necessary for the yeast in order to  
synthesize the respiratory enzymes, to increase the  
fermentative activity of yeast, and to stimulate the budding  
of cells (in small quantities). Phosphorus is a part of nucleic  
acids, ATP, phospholipids, cell wall polymers; it can be  
accumulated in cell in the form of polyphosphates (4, 5).  
The purpose of the work is to study the effect of the  
additive of plant origin on the fermentation activity of  
yeast, the quality of dough semi-finished and finished  
products, prepared with the use of preliminary activated  
yeast.  
1. rising power;  
2. fermentation activity: zymase and maltase.  
The rising power of yeast was defined in an accelerated  
manner (6,16).  
Determination of zymase and maltase activity of yeast  
was carried out according to standard methods. The unit of  
activity was the time in minutes, spent on the release of 10  
3
cm of carbon dioxide by the yeast, during the fermentation  
of a glucose or maltose solution, with a concentration of  
5%, at a temperature of 35°C (6). To exclude the influence  
of sugars, contained in the additive of plant origin, on the  
measurement results, the samples with the introduction of  
plant origin additive in glucose and maltose solutions were  
taken as control, without preliminary activation of yeast in  
the nutrient medium. The results of measurement of  
maltase and zymase activities after the activation of yeast in  
the nutrient medium were considered as the experiment.  
The effect of activated pressed yeast on the maturation  
of dough semi-finished products was assessed by the  
increasing of dough titrable acidity. Before kneading the  
dough, preliminary activation of yeast was carried out in a  
nutrient medium, containing the additive of plant origin.  
The dough was kneaded, following the recipe for white  
bread, made from premium wheat flour, according to  
GOST 26987-86. The containers with dough semi-finished  
products were placed in a thermostat with a temperature of  
32°C for fermentation. To determine the acidity, the  
samples were taken every 30 minutes. The acidity of the  
dough semi-finished products was defined by the titration  
with an aqueous solution of NaOH, with a concentration of  
2
Materials And Methods  
The following raw materials were used for the research:  
-
pressed bakery yeast “Lux Extra” TU 9182-038-  
4
2
8975583-2011;  
-
premium bread wheat flour "Makfa" GOST R 52189-  
3
003;  
0.1 mol/ dm , in accordance with GOST 27493. Acidity  
-
-
-
edible salt GOST R 51574-2018;  
white sugar GOST 33222-2015;  
drinking water GOST R 51232-98.  
was stated in degrees.  
The assessment of the quality of finished bakery  
products was carried out, based on the following indicators:  
1. physico-chemical;  
In this work, pressed bakery yeast was previously  
activated in a nutrient medium, which was prepared by  
mixing of water and the additive of plant origin.  
2. organoleptic.  
Physical and chemical indicators. The moisture content  
in the crumb of bakery products was determined according  
to GOST 21094, by placing the sample in a drying cabinet  
SESh-ZM; it was stated as a percentage. The acidity of the  
crumb of bakery products was determined according to  
GOST 5670, by the titration with an aqueous solution of  
Preliminary activation of the yeast was carried out in  
the following way: the nutrient medium with a moisture  
content of 70% was prepared using the additive of plant  
origin and water. During the study, three variants of the  
composition of the nutrient medium were applied (Test No.  
3
1, Test No. 2, Test No. 3), in which the content of the  
NaOH, with a concentration of 0.1 mol/ dm ; it was stated  
additive of plant origin was gradually increased. Shredded  
pressed yeast was added to the prepared nutrient medium in  
the amount, necessary for the analysis. The resulting  
mixture was stirred and kept at a temperature of 32 °C for  
in degrees. The crumb grain of the products was  
determined according to GOST 5669; it was stated as a  
percentage.  
Organoleptic indicators. The shape, surface condition,  
color, state of the crumb (baking, kneading, grain), taste  
and aroma of bakery products) were defined according to  
10, 20, 30, and 40 minutes. In the process of doughing of  
test samples, premium wheat flour was added in such  
1037  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1036-1040  
GOST 5667, by the organs of senses, and were evaluated  
on a scale of one to ten. The average score was calculated  
taking into account the weight coefficient.  
Table 2: The effect of the additive of plant origin on  
zymase and maltase activity of yeast  
Time of  
activation, Test No. 1  
min  
Test No. 2  
Test No. 3  
3
Results  
Zymase activity, min  
At the initial stage, we studied the dependence of the  
0
3
22.5 ± 0.5  
14.9 ± 0.5  
33.8  
23.1 ± 0.5  
13.5 ± 0.5  
41.6  
21.7 ± 0.5  
12.4 ± 0.5  
42.9  
rising power of yeast on the amount of plant origin  
additive, used in the nutrient medium (Test No. 1, Test No.  
0
, %  
2, Test No. 3), and on the duration of preliminary  
Maltase activity, min  
activation, i.e. on the time of the yeast exposure in the  
nutrient medium (10, 20, 30 and 40 min). After holding the  
yeast in the nutrient medium, the rising power was  
determined according to the methodology. The results of  
measuring of the rising power of yeast are presented in  
table 1.  
0
29.7 ± 0.5  
20.1 ± 0.5  
32.3  
31.3 ± 0.5  
18.5 ± 0.5  
40.9  
32.8 ± 0.5  
16.6 ± 0.5  
49.4  
30  
, %  
Further researches were aimed at studying the effect of  
activated yeast on the rate of acidity accumulation during  
the fermentation of dough semi-finished products. The  
variants of the composition of nutrient medium were  
presented in the form of the concentration of the additive of  
plant origin, as a percentage to the mass of flour for the  
formula of white bread, made from premium wheat flour,  
which amounted to 5%, 7% and 10% to the mass of flour.  
Preliminary activation of yeast was carried out before  
kneading the dough with premium wheat flour. At the end  
of fermentation, the acidity of dough should be 3.0 degrees,  
according to the standards. Figure 1 shows the dynamics of  
acidity accumulation in dough semi-finished products over  
150 minutes.  
Table 1: The effect of the nutrient medium composition and  
the duration of activation on the rising power of yeast  
Time of  
activation, min  
Test  
Test  
Test  
Control  
No. 1 No. 2 No. 3  
2
±
2
± 1.0  
20.6  
±
2
±
5.7  
0.6  
1.0  
24.7  
± 0.7  
20.1  
± 0.9  
18.7  
± 1.0  
21.3  
± 0.2  
22.9  
± 0.8  
21.6  
± 0.3  
23.2  
± 0.2  
23.2  
± 1.0  
1
2
3
4
0
0
0
0
4
3.3 ±  
1.0  
0.6  
4.0  
0.2  
It follows from Table 1 that with the increase in the  
duration of activation, there is the improvement of the  
rising power. However, with the duration of activation of  
40 minutes, the rising power began to decline. The optimal  
time for activation of pressed yeast in a nutrient medium  
was 30 min. As a result of activation, the rising power of  
pressed yeast has increased on average by 52%, relative to  
the control sample.  
The effect of various concentrations of the additive of  
plant origin in a nutrient medium on the activity of yeast  
enzymes of the zymase complex and maltase, with the  
optimal duration of the activation process of 30 min is  
presented in Table 2. The variants of measuring of the  
zymase and maltase activity, with the use of plant origin  
additive in glucose and maltose solutions, but without  
holding the yeast in a nutrient medium containing this  
additive, were taken as the control. It follows from Table 2  
that with the increase in the concentration of additive of  
plant origin in the nutrient medium, there is the  
improvement in the zymase and maltase activity. With  
regard to these indicators, the optimal variant is the  
composition of nutrient medium, used in the Test No. 3.  
The increase in zymase and maltase activity with this  
composition of the nutrient medium was 42.9% and 49.4%,  
respectively.  
Figure 1: The dynamics of acidity accumulation in dough semi-  
finished products  
As can be seen from Figure 1, the test sample with a  
concentration of the additive of 5% to the mass of flour  
reached the required acidity in 90 minutes of fermentation;  
the sample with a concentration of 7% - in 75 minutes; the  
sample with a concentration of 10% - in 60 minutes of  
fermentation. Moreover, the control sample did not reach  
the required acidity in 150 minutes of fermentation. Figure  
2 presents the data on the increase in acidity of dough semi-  
finished products. The increase in acidity of dough semi-  
finished products with a concentration of plant origin  
additive of 5% to the mass of flour was 2.1 degrees, in the  
test sample with 7% of the additive - 2.0 degrees, in the  
1038  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1036-1040  
sample with 10% of the additive - 2.4 degrees. With regard  
to the control sample, the increase in acidity was 2.2, 2.5  
and 2.8 degrees, respectively. Table 3 presents the effect of  
the additive of plant origin on the physicochemical  
parameters of finished bread.  
decreased in relation to the control by 12.5% and 25%,  
respectively. The data obtained are explained by the effect  
of enzymes of plant origin additive on the starch flour  
grains. The result is a partial disturbance of their structure  
and the accumulation of dextrins that provides a lesser  
degree of retrogradation of starch and the decrease in water  
loss during the storage of finished products. In the sample  
with the concentration of the additive of 10% to the mass of  
flour, the value of shrinkage has increased by 12.5%,  
relative to the control. This is due to the higher content of  
enzymes, compared with other samples. The structure of  
starch grains is destroyed to a greater extent. The increased  
amount of dextrins is formed, which are not able to hold a  
sufficient amount of water. As a result, there is more  
intensive evaporation during the storage of bread that  
increases the rate of shrinkage (8-10-14).  
Organoleptic analysis showed that the experimental  
samples of bread had more intensely colored crust,  
compared to the control, rich taste and aroma of freshly  
baked bread. This is due to the action of amylolytic  
enzymes, contained in the additive of plant origin.  
Compared to the control, the experimental samples had a  
darker crumb that was associated with the dark color of the  
additive. The crumb grain in all samples was uniform; well  
developed crumb grain was observed in the sample with the  
concentration of the additive of 7% to the mass of flour.  
According to the results of organoleptic analysis, the  
experimental sample of bread, with the concentration of the  
additive of plant origin of 7% to the mass of flour, received  
the highest score (15, 17, 18, 19, 20).  
Figure 2: Accumulation of acidity over 150 minutes of  
fermentation of dough semi-finished products  
Table 3: Physico-chemical characteristics of the finished  
product  
The concentration of the  
additive of plant origin to the  
Indicator  
Control  
mass of flour, %  
5
7
10  
Moisture  
41.2±0.  
5
40.2±0.  
39.3±0.  
4
0.4±0.5  
78.4±1.0  
.2±0.1  
content, %  
5
5
8
0
3.0±1.  
82.5±1.  
0
81.5±1.  
0
Grain, %  
Acidity,  
degree  
2
2.3±0.1  
1.4±0.1  
2.4±0.1  
2.4±0.1  
4 Summary  
1. It was established, that the preliminary activation of  
Shrinkage  
pressed bakery yeast for 30 minutes in a nutrient medium,  
containing the additive of plant origin, allowed to increase  
the rising power of yeast by an average of 52%, and to  
increase the zymase and maltase activity, relative to the  
control, by an average of 39% and 41%, respectively.  
for 1 hour, 1.6±0.1  
%
1.2±0.1  
1.8±0.1  
As follows from Table 3, the moisture content in the  
test sample, with a concentration of the additive of 5% to  
the mass of flour, was higher by 2.0%, compared to the  
control. In the experimental samples with the  
concentrations of the additive of plant origin of 7% and  
2. It was found, that the use of activated yeast in the  
process of making of dough semi-finished products  
contributed to the reduction in fermentation duration by an  
average of 195 minutes, compared to the control sample.  
1
0%, the indicator of moisture content decreased, compared  
3. It was determined, that the application of the additive  
to the control, by 0.5% and 2.7%, respectively. This was  
due to the increase in the content of free water in dough  
semi-finished products, as a result of hydrolytic effect of  
amylolytic enzymes of the additive on the starch flour  
grains (7-11-12).  
The greatest increase in crumb grain of the finished  
product (by 5.9% relative to the control sample) occurred  
when the concentration of the additive was 5% to the mass  
of flour. The acidity of the test samples, compared with the  
control, was higher by 0.1-0.2 degrees. The value of  
shrinkage in experimental samples with the concentrations  
of the additive of 5% and 7% to the mass of flour has  
in the amount of 7% to the mass of flour in the formula for  
white bread, made from premium wheat flour, made it  
possible to increase the crumb grain by 5%, and to reduce  
the shrinkage by 25%, relative to the control. This sample  
was characterized by a more developed crumb grain,  
compared to other samples.  
4. According to the results of organoleptic analysis, it  
was defined, that the experimental sample of bread, with  
the concentration of the additive of plant origin of 7% to  
the mass of flour, received the highest score.  
1039  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1036-1040  
5
Conclusion  
Thus, the use of the studied additive of plant origin at a  
12. Hayat A, Jahangir TM, Yar Khuhawar M, Alamgir M, Ali R,  
Ali A, Musharraf SG. Determination of Important Phenolic  
Compounds in Pakistani Brown Rice Varieties in Controlled,  
Germinated and Fermented Conditions by High Performance  
Liquid Chromatography. Progress in Chemical and  
Biochemical Research. 2019 Aug 1;2(3, pp. 83-120.):134-42.  
13. Shyama T, Ajita A, Jangida R. Optimized Rhodium  
Dissolution Process Using Aqua Regia. Advanced Journal of  
Chemistry, Section A: Theoretical, Engineering and Applied  
Chemistry. 2019 Aug 21.  
concentration of 7% to the mass of flour, in the process of  
preliminary activation of pressed bakery yeast, contributed  
to an increase in the fermentation activity of yeast, the  
intensification of fermentation process in dough semi-  
finished products, the improvement of physicochemical  
parameters and consumer properties of the finished  
products.  
1
1
1
1
4. Dehno Khalaji A. Nano-sized Mercury (II) Schiff Base  
Complexes: Synthesis, Characterization and Thermal Studies.  
Chemical Methodologies. 2020 Jan 1;4(1):34-9.  
Acknowledgements  
The work is performed according to the Russian  
Government Program of Competitive Growth of Kazan  
Federal University.  
5. ANDAYESH R, ELHAMI S. Application of modified sawdust  
for solid phase extraction, preconcentration and determination  
of trace lead in water samples.2016.  
References  
6. Sajjadifar S, Hamidi H, Pal K. Revisiting of Boron Sulfonic  
Acid Applications in Organic Synthesis: Mini-Review. Journal  
of Chemical Reviews. 2019 Jan 1;1(1, pp. 1-77.):35-46.  
7. Gomaa EG, Berghout MA, Moustafa MR, El Taweel FM, Farid  
HM. Thermodynamic and Theoretical solvation parameters for  
1
2
3
. Levashov RR, Mingaleeva ZS. Determination of the optimal  
concentration of biologically active additive in bakery  
products manufacturing. Bulletin of Kazan Technological  
University. 2015; 19(16): 136-138.  
. Starovoitova OV, Kilyakov EL, Mingaleeva ZS. The effect of a  
complex improver on the baking properties of flour and  
fermentation activity of yeast. Bulletin of Kazan  
Technological University. 2012; 15(14): 196-198.  
2
-amino-4, 5-dimethylthiophene-3-carboxamide (ADTC) in  
Ethanol and Mixed EtOH-H2O solvents. Progress in Chemical  
and Biochemical Research. 2018 Oct 1;1(1, pp. 1-80):19-28.  
8. Amini I, Pal K, Esmaeilpoor S, Abdelkarim A. Prediction of  
two-dimensional gas chromatography time-of-flight mass  
spectrometry retention times of 160 pesticides and 25  
environmental organic pollutants in grape by multivariate  
chemometrics methods. Advanced Journal of Chemistry-  
Section A. 2018 Sep 1;1(1, pp. 1-65):12-31.  
1
. Gélinas P. Inventions on baker's yeast storage and activation at  
the bakery plant. Recent patents on food, nutrition  
agriculture. 2010 Jan 1;2(1):1-1.  
&
4
5
. Berry DR. Biology of yeast. Hodder Education; 1982.  
. Meledina TV, Davydenko SG, Vasil'eva LM. Fiziologicheskoe  
sostoyanie drozhzhei [The physiological state of the yeast].  
Textbook. St. Petersburg. 2013.  
1
2
9. Ramazani A, Sheikhi M, Yahyaei H. Molecular Structure,  
NMR, FMO, MEP and NBO Analysis of Ethyl-(Z)-3-phenyl-  
6
7
. Borisova S.V. Biology and genetics of yeast: study guide.  
Kazan: KNRTU, 2011: 108 p.  
2
-(5-phenyl-2H-1, 2, 3, 4-tetraazol-2-yl)-2-propenoate Based  
on HF and DFT Calculations. Chemical Methodologies. 2017  
Jun 1;1:28-48.  
.
Naguleswaran S, Vasanthan T, Hoover R, Bressler D.  
Amylolysis of amylopectin and amylose isolated from wheat,  
triticale, corn and barley starches. Food Hydrocolloids. 2014  
Mar 1;35:686-93.  
0. Rezaee Nezhad E, Tahmasebi R. Ionic liquid supported on  
magnetic nanoparticles as an efficient and reusable green  
catalyst for synthesis of benzimidazole derivatives under  
solvent and solvent-free conditions. Asian Journal of Green  
Chemistry. 2019 Jan 1;3(1. pp. 1-124):34-42.  
8
9
1
. Haghighat-Kharazi S, Milani JM, Kasaai MR, Khajeh K.  
Microencapsulation of α-amylase in beeswax and its  
application in gluten-free bread as an anti-staling agent. LWT.  
2
018 Jun 1;92:73-9.  
. Monteau JY, Purlis E, Besbes E, Jury V, Le-Bail A. Water  
transfer in bread during staling: Physical phenomena and  
modelling. Journal of Food Engineering. 2017 Oct 1;211:95-  
1
03.  
0. Gomes-Ruffi CR, da Cunha RH, Almeida EL, Chang YK, Steel  
CJ. Effect of the emulsifier sodium stearoyl lactylate and of  
the enzyme maltogenic amylase on the quality of pan bread  
during storage. LWT-Food Science and Technology. 2012  
Nov 1;49(1):96-101.  
1
1. Pagar T, Ghotekar S, Pagar K, Pansambal S, Oza R. A review  
on bio-synthesized Co3O4 nanoparticles using plant extracts  
and their diverse applications. Journal of Chemical Reviews.  
2
019 Sep 23:260-70.  
1040