Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1046-1049  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Transpiration Intensity in Cereal Crops under  
the Conditions of Osmotic Stress  
1
,2  
2
1
Vladimir N. Vorob’ev *, Evgeniy A. Alexandrov , Alexander L. Mikhailov  
1
Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia  
2
Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia  
Received: 18/08/2019  
Accepted: 17/11/2019  
Published: 20/02/2020  
Abstract  
The study of leaf gas exchange among medium and highly drought tolerant spring varieties of Tríticum aestívum during  
moderate osmotic stress modeling showed a significant difference in the dynamics of transpiration intensity (E) at the initial stage  
of the experiment. The monotonic dynamics of E decrease correlated with the change in stomatal conductance of water (gw) and  
CO2 assimilation rate decrease (A) in a highly drought tolerant variety, which is explained by stomata closure. The dynamics of  
E among the varieties resistant to drought had the form of a complex curve with an extremum during the first 12 minutes of the  
experiment, which is explained by the gas embolism of xylem vessels. Embolization of a part of xylem vessels has led to the  
imbalance in gas exchange rates. 75% decrease of E during the experiment did not coincide with the change of gw, which  
decreased only by 50%. In addition, under conditions of E decrease, a significant decrease of A was not observed. Transpiration  
decrease during osmotic stress due to stomata closure led to 28% drop of A, and comparable decrease in transpiration due to  
xylem vascular embolism reduced A by 6%. It has been shown that the tendency to xylem vascular embolization in the medium-  
drought-tolerant variety of spring wheat Tríticum aestívum under the conditions of moderate water deficiency makes it possible  
2
to maintain a high level of CO assimilation rate, which is comparable with a highly resistant variety that can ultimately lead to a  
higher yield.  
2
Keywords: Gas embolism, transpiration rate, stomatal water conductivity, CO assimilation rate  
1
spring rye show a high degree of vascular segmentation in  
the root-shoot transition zone. About 80% of these roots are  
connected to the shoot system via tracheids. In spring  
varieties of these plants, 60% of the root vessels are directly  
connected to the shoot. Existing differences are  
characteristic not only for different species, but also for  
individual varieties of the same species (8, 25, 26). Despite  
the obvious negative effect of embolism, most plant species  
live with a certain share of non-functional xylem vessels  
due to gas embolism [9]. Besides, embolism can also have  
a positive value, since it protects the root system from  
water loss during drought (10, 22-24). Based on the  
foregoing, it can be assumed that the resistance to water  
deficiency among different drought tolerant varieties is  
1
Introduction  
Loss of water during transpiration should be  
equivalently supported by the rate of water uptake by the  
root. The imbalance between absorption and transpiration  
leads to water potential decrease in xylem vessels. Low  
potentials of water induce the formation of air bubbles  
within the xylem vessels (the so-called embolism or  
cavitation) (1, 2). In general, the phenomenon of gas  
embolism leads to water transport disruption in a plant,  
which negatively affects its vital activity. The ability of  
plants to restore the hydraulic conductivity of xylem (to  
eliminate gas embolism) depends on metabolic activity (3,  
4
), dormin level (5) and root pressure (for monocotyledons)  
(
6).  
associated, among other things, with  
a
different  
It is assumed that the likelihood of gas embolism in  
predisposition to xylem vessels gas embolism. At the same  
time, embolism of a part of vessels can reduce transpiration  
loss of water without significant damage to photosynthesis.  
To confirm this hypothesis, we analyzed the dynamics of  
cereals depends on the hydraulic architecture of the roots.  
The presence of a “safety zone” at the root-shoot transition  
points is a characteristic of spring barley (7), wheat and rye  
(
8). The central roots of winter wheat, winter barley and  
2
transpiration intensities (E) and CO assimilation rates (A)  
in medium and highly drought resistant varieties of spring  
wheat Tríticum aestívum during osmotic stress modeling.  
*
Corresponding author: Vladimir N. Vorob’ev, (a)  
Kazan Federal University and (b) Kazan Institute of  
Biochemistry and Biophysics, FRC Kazan Scientific  
Center, Russian Academy of Sciences. E-mail:  
almihailov@bk.ru. Tel.: 89274455173.  
2
Materials and Methods  
For research, we used 7-10-day old seedlings of winter  
wheat variety highly resistant to drought (Kazan 560),  
1046  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1046-1049  
spring wheat variety medium resistant to drought  
(
Simbirtsit) and spring highly resistant to drought wheat  
1
1
1
1
,8  
,6  
,4  
,2  
variety (Omskaya-36) provided by the Tatar Agricultural  
Research Institute (TatARI). Plants were germinated with  
tap water at illumination of 150 μmol/m2 with  
photoperiod of 16/8 at the temperature of 22 °C.  
The transpiration intensity (E) and the assimilation rate  
of CO (A) were determined by WALZ GFS 3000 gas  
a
2
1,0  
analyzer (Germany) with built-in software for the following  
parameters: relative humidity in the measuring cell - 70%  
0
,8  
,6  
a
0
(
at lower humidity, the transpiration intensity is not stable);  
b
air flow rate through the cell - 750 μmol/s; photoactive  
radiation (PAR) - 1000 μmol/m2; the temperature in the  
0,4  
,2  
0
cell is 22 °C; the concentration of CO  
00 ppm.  
The sample placed in the gas analyzer cell was kept at  
2
in the cell makes  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Time of exposure, min  
4
Figure 1: Dynamics of transpiration under the conditions of  
osmotic stress of spring and winter wheat Tríticum aestívum: a -  
spring wheat cultivar Simbirtsit, b - winter wheat cultivar Kazan  
these measurement parameters for 30 minutes (the time was  
determined empirically and is sufficient to stabilize  
transpiration under new conditions). A fixed transpiration  
level (5-6 values with an interval of 2 minutes) was the  
initial for subsequent measurements. Then a pause was  
provided in the measurement program, during which the  
growing solution quickly changed to the solution of  
polyethylene glycol (PEG) 6000 of the corresponding  
osmotic potential. Immediately after the solution  
replacement, the measurement program was started with  
the record of the main indicators of gas exchange (E, A,  
stomatal conductivity of water - gw) for 60 minutes within  
the interval of 2 minutes. To simulate osmotic stress, they  
used 18% PEG solution with theoretically calculated  
osmotic potential of -0.4 MPa. The experiments were  
repeated 4-6 times. The graphs show the characteristic  
dependences of transpiration intensity dynamics. The text  
presents mean ± SD.  
5
60  
It is known that vascular embolization is accompanied  
by a short-term increase of transpiration (11, 12). It is likely  
that a sharp increase by 0.4 MPa of the gradient between  
the air medium in the measuring cell of the gas analyzer  
and the aqueous medium in the tube where the roots are  
located leads to the formation of large cavitation bubbles in  
the vascular system of seedlings of the spring medium-  
drought-resistant wheat variety (Simbirtsit). For a winter  
cultivar highly resistant to drought (Kazan 560), such a  
pressure gradient is not enough for xylem vessel  
embolization. Regardless of the differences in the dynamics  
of transpiration intensity, stabilization of E is observed by  
the 30-40th minute of the experiment. However, the  
achieved level of spring variety transpiration intensity was  
0.53 mmol m-2s-1, whereas it made 0.24 mmol m-2s-1 for  
the winter variety.  
3
Results and Discussion  
The existing differences in the architecture of the root-  
shoot transition zone are characteristic not only between  
spring and winter crops, but also among spring varieties  
The possibility of gas embolism formation in spring  
and winter cereals during water deficiency is determined by  
the differences in the architecture of the hydraulic system  
of water transport from leaves to roots (7, 8). The central  
roots of winter wheat are highly segmented in the root-  
shoot transition zone, which can significantly reduce the  
risk of gas embolism. The increase of the osmotic gradient  
due to the placement of roots in the PEG solution leads to  
the expected decrease of winter wheat leaf transpiration  
rate of the variety Kazan 560 (Fig. 1, b), which is observed  
from the 8th minute after the solution replacement. The  
variety Simbirtsit, related to spring varieties, that is,  
without tracheids in root-shoot transition zone,  
demonstrated the complex dynamics of transpiration  
intensity. The increase in transpiration intensity (E) was  
observed already during the fourth minute after root  
placement in PEG solution (-0.4 MPa) and lasts 8 minutes.  
After reaching an extremum, E was sharply decreased  
going to a plateau after 30-40 minutes of root exposure in  
hypertonic PEG solution (Fig. 1, a).  
(
8). Given this circumstance, they suggested that the  
dynamics of highly drought-resistant spring variety  
Omskaya 36 transpiration will be similar to the dynamics of  
the winter highly resistant variety Kazan 560 transpiration  
during replacement the solution of the root habitat with a  
PEG solution. Figure 2 shows the dynamics of plant  
transpiration of Omskaya 36 varieties highly resistant to  
drought (Fig. 2, b), which differs little from the dynamics  
of the winter varieties highly resistant to drought (Kazan  
560) (Fig. 2, a).  
It can be assumed that the change in the transpiration of  
both varieties is based on the similarity of the stomatal  
apparatus regulation rate and the similar structure of the  
root-shoot transition zone, which determines the dynamics  
of E. The decrease of transpiration during osmotic stress  
may be due to water permeability decrease of the roots  
and/or the closure of stomata. In general, stomatal  
conductivity in both varieties decreases by 85 ± 5%.  
Comparing the stomatal conductivity of medium and  
drought resistant spring varieties, it should be noted that  
with the same osmotic stress, the stomatal conductivity of  
the Simbirtsit variety decreases only by 50 ± 4%. Under the  
1047  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1046-1049  
conditions of the proposed model of osmotic stress of the  
drought-resistant spring variety Omskaya 36, the dynamics  
of transpiration intensity is practically repeated by the  
dynamics of CO2 assimilation (Fig. 3). When E decreases  
by 80 ± 6%, A decreases by 28 ± 3%.  
1,4  
1,2  
1,0  
0,8  
0,6  
0,4  
0,2  
a
b
Figure 4: Comparison of the dynamics of transpiration intensity - E  
(empty squares) and the assimilation rate of CO2 - A (filled  
squares) in the drought-resistant variety of spring wheat cultivar  
Simbirtsit  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Time of exposure, min  
If at the beginning of the experiment the dynamics of A  
with some lag repeats the dynamics of E, then from about  
the twentieth minute there is a significant difference in the  
recorded indicators. Thus, E decreases by 75 ± 5%, and A  
by 6 ± 2% only. If we compare the variation of gw and E  
for a given variety, then their imbalance becomes apparent.  
With the decrease of E by 75 ± 5%, gw decreased only by  
50 ± 4%. Such a mismatch may be due to embolism of  
some vessels. Then the decrease of E is caused not so much  
by the closure of the stomata as by the decrease of xylem  
vessel number through which water is transported and this  
is probably the reason for a slight decrease. It is known that  
when moderate water deficiency occurs, anisohydric plants  
lose water during transpiration in exchange for CO2 intake.  
Such a strategy proves to be advantageous, and anisohydric  
plants can outperform isohydric ones in growth and yield  
Figure 2: Dynamics of transpiration under the conditions of  
osmotic stress of spring and winter wheat Tríticum aestívum: а -  
winter wheat cultivar Kazan 560; b - spring wheat of Omskaya 36  
2,2  
2,0  
1,8  
1,6  
1,4  
1,2  
1,0  
0,8  
0,6  
0,4  
0,2  
15  
14  
13  
12  
11  
10  
9
E
À
20  
30  
40  
50  
60  
70  
80  
90  
100  
(
13-16). Comparison of the maximum yield of the used  
Time of exposure, min  
spring varieties shows the advantage of medium drought  
tolerant variety, the yield of which can reach 6.58 t/ha,  
while the yield of the drought tolerant variety does not  
exceed 4.86 t/ha (17-21).  
Figure 3: Comparison of the dynamics of transpiration intensity - E  
empty squares) and the assimilation rate of CO2 - A (filled  
squares) in the drought-resistant spring wheat variety Omskaya 36  
(
It is likely that during the breeding of a variety highly  
resistant to drought, selection was aimed at the  
manifestation of isohydric properties, which are expressed  
in a stable maintaining of water potential of cells due to the  
closure of stomata. This thesis is confirmed by comparison  
of gw and E. Among the varieties highly resistant to  
drought under osmotic stress, gw decreases by 85 ± 5%. E  
is also decreased by the same level approximately. Under  
the same conditions, the drought-tolerant variety Simbirtsit  
4
Summary  
We have shown that the tendency to xylem vascular  
embolization in a medium-resistant variety of spring wheat  
Tríticum aestívum under the conditions of moderate water  
deficiency allows to maintain a high level of CO2  
assimilation rate with  
transpiration intensity, which ultimately leads to higher  
productivity as compared to a highly resistant variety.  
a
comparable decrease of  
(
Fig. 4) demonstrates an alternative change of the observed  
processes.  
Acknowledgements  
The work is performed according to the Russian  
Government Program of Competitive Growth of Kazan  
Federal University.  
References  
[
1] Perrone I, Pagliarani C, Lovisolo C, Chitarra W, Roman F,  
Schubert A. Recovery from water stress affects grape leaf  
petiole transcriptome. Planta. 2012 Jun 1;235(6):1383-96.  
[2] Brodersen C, McElrone A. Maintenance of xylem network  
1048  
Journal of Environmental Treatment Techniques  
2019, Special Issue on Environment, Management and Economy, Pages: 1046-1049  
transport capacity: a review of embolism repair in vascular  
plants. Frontiers in plant science. 2013 Apr 24;4:108.  
3] Nardini A, Gullo MA, Salleo S. Refilling embolized xylem  
conduits: is it a matter of phloem unloading?. Plant Science.  
Methodologies. 2020 Jan 1;4(1):19-33.  
[20] Belwal CK, Patel J. Solvent-free synthesis for imidazole-1-  
yl-acetic acid hydrochloride: an intermediate for zoledronic  
acid. Asian Journal of Green Chemistry. 2019 Oct 1;3(4, pp.  
418-549):483-91.  
[
2
011 Apr 1;180(4):604-11.  
[
4] Secchi F, Perrone I, Chitarra W, Zwieniecka AK, Lovisolo C,  
Zwieniecki MA. The dynamics of embolism refilling in  
abscisic acid (ABA)-deficient tomato plants. International  
Journal of Molecular Sciences. 2013 Jan;14(1):359-77.  
5] Giday H, Fanourakis D, Kjaer KH, Fomsgaard IS, Ottosen  
CO. Threshold response of stomatal closing ability to leaf  
abscisic acid concentration during growth. Journal of  
experimental botany. 2014 May 26;65(15):4361-70.  
[21] Mohammadnazar D, Samimi A. Nessacities of Studying  
HSE Management Position and Role in Iran Oil Industry.  
Journal of Chemical Reviews. 2019 Aug 30:252-9.  
[22] Magu TO, Agobi AU, HITLER L, Dass PM. A Review on  
Conducting Polymers-Based Composites for Energy Storage  
Application. Journal of Chemical Reviews. 2019 Jan 1;1(1, pp.  
1-77.):19-34.  
[23] Eldefrawy M, Gomaa EG, Salem S, Abdel Razik F. Cyclic  
Voltammetric studies of calcium acetate salt with Methylene  
blue (MB) Using Gold Electrode. Progress in Chemical and  
Biochemical Research. 2018 Oct 1;1(1, pp. 1-80):11-8.  
[24] Heravi MM, Abdi Oskooie H, Latifi Z, Hamidi H. One-Pot  
Synthesis of Tetracyanocyclopropane Derivatives Using  
Hexamethylenetetramine-Bromine (HMTAB). Advanced  
Journal of Chemistry-Section A. 2018 Sep 1;1(1, pp. 1-60):7-  
11.  
[
[
6] Cao KF, Yang SJ, Zhang YJ, Brodribb TJ. The maximum  
height of grasses is determined by roots. Ecology Letters. 2012  
Jul;15(7):666-72.  
[7] Luxová M. The hydraulic safety zone at the base of barley  
roots. Planta. 1986 Dec 1;169(4):465-70.  
[8] Aloni R, Griffith M. Functional xylem anatomy in root-shoot  
junctions of six cereal species. Planta. 1991 Apr 1;184(1):123-  
9
.
[
9] Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S,  
Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG,  
Jacobsen AL. Global convergence in the vulnerability of  
forests to drought. Nature. 2012 Nov;491(7426):752.  
[25] Salavati H, Teimouri A, Kazemi S. Synthesis and  
Characterization of Novel Composite-Based Phthalocyanine  
Used as Efficient Photocatalyst for the Degradation of Methyl  
Orange. Chemical Methodologies. 2017 Jun 1;1(1. pp. 1-  
86):12-27.  
[26] Mahdieh G, Fazilati M, Izadi M. Extraction and isolation of  
anti-hypertensive peptide by alkalase from spirulina platensis.  
Asian Journal of Green Chemistry. 2019 Jan 1;3(1. pp. 1-  
124):13-21.  
[10] Zimmerman MH, Brown CL. Trees: structure and  
function. New York, USA, Springer-Verlag.; 1971.  
[11]  
Hölttä T, Vesala T, Perämäki M, Nikinmaa E.  
Relationships between embolism, stem water tension, and  
diameter changes. Journal of Theoretical Biology. 2002 Mar  
7
;215(1):23-38.  
[
[
12] Hölttä T, Juurola E, Lindfors L, Porcar-Castell A.  
Cavitation induced by a surfactant leads to a transient release  
of water stress and subsequent ‘run away’embolism in Scots  
pine (Pinus sylvestris) seedlings. Journal of experimental  
botany. 2011 Oct 30;63(2):1057-67.  
13]  
Lin W, Peng Y, Li G, Arora R, Tang Z, Su W, Cai W.  
Isolation and functional characterization of PgTIP1,  
a
hormone-autotrophic cells-specific tonoplast aquaporin in  
ginseng. Journal of experimental botany. 2007 Jan  
1
9;58(5):947-56.  
[
[
14] Peng Y, Lin W, Cai W, Arora R. Overexpression of a  
Panax ginseng tonoplast aquaporin alters salt tolerance,  
drought tolerance and cold acclimation ability in transgenic  
Arabidopsis plants. Planta. 2007 Aug 1;226(3):729-40.  
15]  
McDowell N, Pockman WT, Allen CD, Breshears DD,  
Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG,  
Yepez EA. Mechanisms of plant survival and mortality during  
drought: why do some plants survive while others succumb to  
drought?. New phytologist. 2008 Jun;178(4):719-39.  
[
16]  
Sade N, Gebremedhin A, Moshelion M. Risk-taking  
plants: anisohydric behavior as a stress-resistance trait. Plant  
signaling & behavior. 2012 Jul 1;7(7):767-70.  
[
17Foda A, Mosallam H, El-Khateeb A, Fakih M. Cinnamomum  
zeylanicum Extract as Green Corrosion Inhibitor for Carbon  
Steel in Hydrochloric Acid Solutions. Progress in Chemical  
and Biochemical Research. 2019 Aug 1;2(3, pp. 83-120.):120-  
3
3.  
[
18] Walea A, Mulanib K, Dondeb K, Ponrathnama S, Chavana  
N. In Situ Generation of Ammonia: an Efficient Catalyst for  
the Synthesis of Phenol-Aniline-Formaldehyde Resol Resins.  
Advanced Journal of Chemistry, Section A: Theoretical,  
Engineering and Applied Chemistry. 2019 Aug 21.  
[
19] Nabati M, Lohrasbi E, Sabahnoo H, Bodaghi-Namileh V,  
Mazidi M, Mohammadnejad-Mehrabani H, Tavakkoli A,  
Gervand A. In Silico Study of Metoclopramide as A Small  
Molecule of Dopamine D2 Receptor: a Quantum-Mechanical  
(QM) Based Molecular Docking Treatment. Chemical  
1049