

J. Environ. Treat. Tech. ISSN: 2309-1185

Journal web link: http://www.jett.dormaj.com

Aspects of Environmental Pollutants on Male Fertility and Sperm Parameters

Zohre Nateghian¹, Elham Aliabadi²

¹PhD student of Anatomy, Department Anatomy, Shiraz University of Medical Sciences, Fars, Iran ²Associate Professor, Department Anatomy, Shiraz University of Medical Sciences, Fars, Iran

Abstract

Air pollution has considerable interest because it has multiple adverse effects on human health and the male reproductive system seems to be sensitive. For male fertility, environmental pollutants are vital owing to effects on semen quality. Male infertility is increasing in industrial countries with high air pollution. This review aims to investigate the effect of air pollution on fertility in humans based on available signs. Genetic and epigenetic alterations effect on the failure of male gamete. In this paper, we reviewed the major impacts of air pollutants on male infertility as well as the role of sperm DNA damage and epigenetic changes in male gamete. The DNA molecule and epigenetic changes, transmitted to future generations, can be altered and induced, respectively by some pollutants. A good knowledge on the effects of air contaminants on the molecular mechanisms leading to infertility is helpful for clinicians to identify the cause of infertility.

Keywords: Environmental Pollutants, Male Fertility, Sperm Parameters

Table of Contents

1 Introduction	299
2 Methods of Searching.	300
3 Mechanisms of action of air pollutants on fertility	
3.1 Action as endocrine disruptors	
3.2 Induction of reactive oxygen species (ROS)	
3.3 Cell DNA alteration	300
4 Epigenetic modifications	300
5 Effects of environmental pollutants on male fertility	301
5.1 Environmental pollutants and epigenetic changes in male germ cells	
5.2 Environmental pollutants and changes in sperm parameters	301
5.3 Environmental pollutants and changes in sperm DNA integrity and telomeres	302
5.4 Environmental pollutants and sperm DNA damage	302
5.5 Environmental pollutants and Epigenetic changes and male infertility	
5.6 Impact of Environmental pollutants on the male gamete in animals	
5.7 Impact of Environmental pollutants on the male gamete in humans	
6 Conclusion	
References	304

1 Introduction

In industrial countries, there has been an increase in infertility from 7% - 8% to 20% - 35% from 1960 by now, respectively (1). For the World Health Organization (WHO), the important priority is decreasing infertility rate (2). Based on some studies carried out, there has been a decrease in semen quality and sperm concentrations recently in most

places in the world. In addition, there has been a noticeable decrease in human sperm concentrations from 113 to 61 million/MI (which shows 50% reduction) during the last50 years (3). According to available evidence, fecundity and human semen quality have been decreasing during the last decades especially in Europe and the United States (2-4). Based on an estimate provided, there has been a decline by

Corresponding author: Dr. Elham Aliabadi, Associate Professor, Department of Anatomy, Shiraz University of Medical Sciences, Fars, Iran. E-mail:aliabade@sums.ac.ir.

1.5% each year in the sperm count in American males (5, 6). However, there has been an increase in the infertility rate in Iran for the last 20 years. Studies show that in one-fourth Iranian couples are infertile; thus, by the end of their reproductive age three-fourth will be infertile. Furthermore, the infertility and the primary infertility rate have been increased by 20% and two-fold, respectively, for the last two decades (7). On the other hand, this idea that important factors might lead to decreasing semen in quality in some areas not all of them can be supported by geographical variations effects on semen quality (8, 9) as well as other changes which are in men reproductive functions(4,5). Lifestyle and environmental factors contribute toward these changes and constant exposure to environmental endocrinedisrupting chemicals has been provided (6). According to the reports, the malfunction of male reproductive system may be a well sensitive marker for environmental danger (4). Either gonadal endocrine disruption or direct damage to the spermatogenesis may cause the changes of male reproductive system (6). Investigating the unclear results obtained from the effect lead (Pb) and cadmium (Cd) elements on some variables, including male infertility, sperm parameters and hormone concentration has been carried out by epidemiological studies. (Give reference).

Now, one of the most vital risk factors of metropolises is air pollution and it has an effect on all people, who live in urban areas. Owing to the importance of air pollution and effects, many studies have done to investigate adverse effects of it on the human health (10). Based on perinatal outcomes, there has been a correlation between air pollution and some adverse perinatal events, including reduced gestational period (11), preterm delivery (12-14) and low birth weight (15). However, the effect of air pollution on the fertility has not been clear yet, it has been interested due to multiple adverse effects, which were reported on human health (1). The impacts of air pollution on some items, including in vitro fertilization (IVF) success rates (16), mammalian fertility and semen quality (17-20) have been highlighted by some reports (21, 22). Clinical practice is tended to focus on the impacts of various air pollutants on fertility and knowing if subfertile populations are more sensitive toward these detrimental impacts. This review aims to investigate the effect of air pollution on fertility in humans based on available signs.

2 Methods of Searching

This study is a review investigating the effect of environmental air pollutants on reproductive health or fertility. The PubMed database is our source helping us to conduct the search in April 2019. In our study, there has been a combination of descriptors and terms correlated to air pollution and fertility so that every contaminant or substance such as gases, particulate matters, or volatile organic compounds in the air, which have an interference with human health or produce other harmful environmental effects, was considered as an air pollution (23). The entire search was conducted using the Advanced Search Builder and the keywords were found in 'Title OR Abstract'. Wetried to filter the hits by selecting articles, which are written in English.

3 Mechanisms of action of air pollutants on fertility

There have been 4 mechanisms for air pollutants effects on fertility, as follows: i) hormonal changes caused as a result of an endocrine disruptor action, ii) induction of oxidative stress, iii) cell DNA change and iv) epigenetic modifications. Air pollutants can play a key role as endocrine disruptors through activation of the aryl hydrocarbon receptor (AhR), estrogen or androgen receptors (24). One of the common cellular mechanism caused air pollutants and used adverse effects is acting directly as prooxidants of lipids and proteins or as free radicals' generators, developing the inflammatory responses induction and oxidative stress (25). The DNA molecule and epigenetic changes, including DNA methylation and histone modifications transmitted to future generations, can be altered and induced, respectively by some pollutants.

3.1 Action as endocrine disruptors

All air pollutants especially the PAHs and heavy metals like Cu, Pb, Znin PM, notablyfrom diesel exhaust (26, 27), are discussed in the article as endocrine disruptors with either estrogenic, antiestrogenicor anti-androgenic activity (28–33).

3.2 Induction of reactive oxygen species (ROS)

The most air pollutants like NO₂or O₃can generate ROS; in addition, ROS is produced by particulate matters (PM) using the heavy metals and the PAHs. They are able to change by CYP450 dihydro-dehydrogenase producing quinone redox, catalyzing electron transfer reactions and hence stimulating ROS production (34–37).

3.3 Cell DNA alteration

Inducing alterations in the cell DNA is the third mechanism discussed in the paper in order to explain the pathophysiologic mechanisms, which are in fertility alteration ledby air pollution. As discussed above, these DNA alterations could be related to oxidative stress, which is induced. Based on studies carried out on taxi drivers, DNA can be altered by the inflammation processes because of ROS (38). Besides, increasing annual some factors, including exposure to NOx, inhalable particulate matter and fine particulate matter (PM-2.5) cause telomere length to increase (39). After forming of DNA adducts, they might occur. Since some of molecules can bind to a DNA base within covalent bonding, then change gene expression. Moreover, mutation incidence can lead to alternating the cell DNA and increasing apoptosis risk. Some of air pollutants are able to form DNA adducts in germ cells and the PAHs, which are in PM (40, 41, 42).

4 Epigenetic modifications

Epigenetic modifications, which are noticeable changes in DNA methylation, are able to cause abnormal gene expression. These abnormalities have roles in impact of air pollution upon respiratory failure (43, 44) and carcinogenesis (45). According to studies carried out by Ding et al, both hypomethylation and hypermethylation were shown in rats exposed to PM-10, PM-2.5and NO₂(46) and mitochondrial (mt) DNA canbe affected bythese

changes (47). It was shown by Byun et al. blood mtDNA methylation, which is in the D-loop promoter, was accompanied with PM-2.5 levels (48). It was reported that epigenetic alterations are involved in the spermatogenesis failure (49). Based on findings of Stouder et al. (50), administration of alcohol in pregnant mice led to inducing hypomethylation of the H19 imprinted gene, in addition tothe decreased spermatogenesis. Furthermore, it is proven by Park et al., (51) that exposure to butylparaben (BP) for a long time can make DNA hypermethylation from the mitotic ina post-meiotic stage in tests for adult rats. Altering microRNA (miRNA) can occur by air pollutants. According to study done by Tsamou et al, the placental expression of miR-146a, miR-21 and miR-222, which are three miRNAs affected by air pollution exposure in leucocyte blood cells and also expressed in the placenta, was inversely accompanied with PM-2.5 exposure throughout the 2nd trimester of pregnancy (52). There are some details about environmental pollutants which are effective on male fertility as follows:

5 Effects of environmental pollutants on male fertility

5.1 Environmental pollutants and epigenetic changes in male germ cells

Reliable evidence for damage to spermiogenes, which is caused by ambient air pollution exposure notable for genotoxic impacts and epigenetic alterations is provided by experimental and clinical studies. It is needed to have more investigations on the clinical relevance of air pollutioninducedi mpactsin male germ cells. Indeed, one of the clinical challenges has been the diagnosis of environmentally induced DNA damage or male infertility. The importance of the genotoxic impact on human spermatozoa is or both the offspring's health and the reproductive performance of the men, who were exposed. There is a negative correlation between the semen quality and percentage of DNA-fragmented spermatozoa in an ejaculation (53; 54; 55). Although fragmented DNA with a spermatozoon is able to fertilize similarly an oocyte (56). Some studies have been carried out to show that the embryo and oocyte keep the ability to make a repair to DNA damage present in the paternal genome (57). Although there has been a question if all damage can be repaired. For example, double-stranded DNA breaks seem less repairable in comparison with single-stranded breaks and; therefore, they have a stronger effect on embryo development (58).

Indeed, the oocyte is able to repair DNA, which has damage of sperm, for a certain level that damage caused in this level will lead to fragmenting low rate embryonic development and embryos. In addition, it was shown by Carrell et al, (59) that measurement of DNA fragmentation in men, with partners had pregnancy losses repeatedly, had higher levels. Therefore, some events, including impaired embryo morphology of blastocysts, fertilization failure, repeated spontaneous abortions or embryo implantation failure might happen.

According to evidence, epigenetic changes cause toxicity mediated from some environmental pollutants (60), thus, studies should be accurately carried out to investigate probable direct interactions between epigenetics alterations, air contaminants, and sperm abnormalities. By alterations in

morphology and sperm number and a male fertility impairment, epigenetic modification of sperm gene function can have an effect on the reproductive outcome. It is important to reprogram epigenome and-imprinted loci throughout gametogenes is and peri-implantation stagesin order to maintain a suitable inheritance pattern, especially at imprinted loci (61). Based on data obtained from literatures such as animal and human studies, there has been an increasing concern about risk of various diseases in the offspring made using assisted reproductive technologies (62; 63). Most of abnormal conditions are correlated to epigenetic alterations, which lead into adversely affecting embryonic development and imprinting disorders, based on some strong evidence. To identify reasons of infertility and describe therapeutic and preventive protocols, clinicians need to have better information about air contaminants effects on the molecular mechanisms, which lead to male infertility (64).

5.2 Environmental pollutants and changes in sperm parameters

Air pollution as a common factor has an effect on reproductive functions in all countries for both men and women especially for sperm parameters in men. According the results obtained from meta-analysis that air pollution, however, decreases sperm motility, it does not affect the others parameters of spermogram. Some of stages in spermatogenesis and testicular size in mice were impaired and decreased, respectively, by post-natal and prenatal exposures to ambient air pollution (65). However, air pollution does not cause any changes in sperm counts in many studies; some abnormalities in DNA, sperm motility and morphology have been seen (66-69) and there is a negative correlation between air pollution and sperm counts specially in some population (70).

A decrease in sperm counts can occur due to exposure to environmental pollution in the world (71–77). In a reported done recently, it was shown that there is progressive decrease in sperm production throughout a period due to increasing air pollution in Greece (78). Although a relationship between either exposure to increasing air pollution or residence district and declined sperm production, including sperm per sample and concentration has not been found in the Czech Republic (66).

However, there was poorer morphology (both years) and lower sperm motility from 1994 samples for men sampled at the winter after increasing pollution in comparison with those of sampled after decreasing air pollution (Teplice in the fall and Prachatice the late winter or fall). Thus, based on the evidence, it is likely to have a relation between increasing air pollution and decreasing sperm quality. In addition, fertility data are not, however, available for this group of young men, there is a correlation between normal morphology and low values for sperm motility with infertility (79–82). In study carried out by Selevan et al (66), it was found that there is highly noticeable relation between exposure to high (1993) air pollution, periods of medium (1994) and poor sperm morphology. Increasing air pollution in winter 1993 was accompanied with increasing sperm percent and abnormal chromatin structure (COMPat). In clinical studies, high COMPat (> 30) has been accompanied with spontaneous abortion and infertility (83); however, this

measure has been used recently for epidemiology studies. In another study, there was a relation between increasing COMP α t and exposure to cigarette smoke such as air pollution containing genotoxic PAHs and elevated COMP α t (84). Thus, it can be deducted that smoking was kept in the COMP α t model. Regarding this, other measurement of genetic integrity called sperm aneuploidy noticeably increased in a subset of the same men exposed to high air pollution, including nonsmokers from the Teplice winter 1993 group in comparison with those exposed to low air pollution, including nonsmokers from the Teplice summer 1993 group, who were from Czech (84).

5.3 Environmental pollutants and changes in sperm DNA integrity and telomeres

Nowadays, it is believed, based on the available evidence, that sperm DNA integrity maybe a better factor to predict male fertility potentiality in comparison with common semen parameters (85). However, the most routine method used in a clinical setting called DNA fragmentation might not to be able to give complete information about DNA damages everityand the molecular mechanisms (85). Thus, it is needed urgently for male germ line cells to have more sensitive biomarkers of DNA integrity. Recently, there have been many studies about the effect of sperm telomeres in male infertility and reproduction (86). According to results obtained from studies, sperm telomere length could be as an extra sperm quality parameter which might add information regarding DNA damage and make a new way in evaluating infertile males (87, 88). It was shown, by a study conducted recently, that a probable relation has been between sperm telomere length and high environmental pressure, in which polluted areas (89).

Based on a study carried out recently, environmental exposure with high level might lead to increasing semen telomere length (TL) in young normospermic men, who have important effects and roles on sperm as a sensitive sentinel biomarker of environmental impactsthat was obtained for the first time (90). In addition, it has been shown tha tembryo quality development sperm and sperm telomere length (STL) have been correlated and TL is higher in normozoospermic than oligozoospermic men (91). The pollutants effect on semen telomere length has been evaluated in a just one study owing to a few types of PAHs; there was a shortening in semen TL ledby an impairment in telomerase (89) and it is shown that there has been a noticeable increase in telomere length in sperm for young men who live in places with high environmental pollutants exposure than others. These results reveal that one of the sensitive sentinel biomarkers of environmental exposure is semen. To do morestudies in majorpopulations, it is necessary to know the importance of telomere lengthening in places with high environmental situations.

5.4 Environmental pollutants and sperm DNA damage

Fertility can be affected by chromosomal aberrations, either structural or numerical. The chromosomal aberration sfrequency is approximately 0.6 % in the total population (92), while increaseup2%–14% in infertile males (93). There has been an increase in chromosomal aberrations due to increasing severity of infertility. In conclusion, as men, who have normal semen parameters, might have high-degree

DNA fragmentation, which can be an important reason for undiagnosed/unexplained infertility, sperm DNA integrity has been considered as a better suggestion to predict male fertility better in comparison with common semen analysis. In a study carried out by Rubes et al. (94) in 2005, it was revealed that air pollution was correlated with increasing damage of DNA in human sperm without any other changes associated with semen quality such as motility and sperm concentration. These results proved preceding evidence of sperm morphological abnormalities (95, 66) in men, who live in the Teplice District in Northern Bohemia (Czech Republic) an place in which high-levelair pollution has been annually registered (96; 97). Radwan et al. (98) observed a statistically noticeable relation between exposure to all examined air pollutants and abnormalities in sperm morphology using analyzing infertile men based on normal semen concentrations. It is probable that sperm DNA fragmentation was the most common reason of paternal DNA noticeably transmission to progeny and found in a high percentage of spermatozoa from infertile men, subfertile and also from subjects, which were exposed to toxicants (99).

In many studies, there has been a potential relation between fertility status and sperm DNA fragmentation (100-102). Rubes et al. (103,104) investigating seasonal differences in policemen worked in the center of Prague and exposed, which was verified by personal monitoring and ambient), revealed that there is notably higher DNA fragmentation in winter, that has high exposure compared to spring, that has low exposure for total non-smokers. Furthermore, it was seen a noticeable correlation between two standard indexes of DNA fragmentation, including Hdfi and detDFI with% of sperm with only high DNA damage and detectable DNA fragmentation Index, respectively, and specific genetic modification on DNA repair genes. A correlation was between immature sperm polymorphisms in GSTM1 gene codifying for one of the enzymes, which generally defend from many toxicants, and supported the genetic polymorphisms role as potential modifiers of associations between modifications in sperm quality and air pollution exposure (103,104). On the other hand, the idea for special factors, which present in some areas not all of them, might be in charge of declining semen quality, is maintained by the impact of geographical variables in the quality of semen and other alterations in men reproductive function (105-107).

5.5 Environmental pollutants and Epigenetic changes and male infertility

Heritable alterations in gene expression and in phenotype without changes in the DNA sequence are defined based on Epigenetics containing chemical changes to histone proteins related to DNA (histone modifications), the cytosine residues of DNA (DNA methylation) in addition to posttranscriptional regulation by noncoding microRNAs. Despite of the similarity of DNA sequence between humans, there has been a large epigenetic difference (108). Some diseases might be caused bychanges of epigenetic profile responding to environmental stimuli, and epigenetic modifications triggered by environmental exposure (109-111). There has not carried out any studies yet to investigate the direct impact of environmental toxicant exposure on male fertility abnormality and epigenetic stat; however, there

issome animal evidence making a suggestion that epigenome is altered by environment-induced abnormality in sperm parameters (112,113). Epigenetics mechanisms ultimately regulating the activity of gene and expression throughout differentiation and development are basic mechanisms for normal spermatogenesis and gonadal development (114-116). It has been clear that special errors, which are in the procedure of epigenetic control, mightoccur throughout every stage of spermatogenesis, negatively, having an effect on embryonic development and male fertility and (117).

Inrecent meta-analysis, alterations in miRNA profile caused sensitive indicators made from impacts of chronic and acute environmental exposure (118). There has not been published any special studies yet; however, the available data strongly makes a suggestion that air pollutants could have an impact on the miRNA signature, which are needed for normal spermatogenesis. miRNAs have an important role in meiosis, mitosis and spermatogenesis (119-121). In order to participate in every step control of male germ cell differentiation, throughout spermatogenesis, the miRNAs are stated in a cell-specific manner. The significance of miRNA paths for normal spermatogenesis has been revealed bymodels of genetically modified mouse, and functional studies have been conducted in order to dissect the specific miRNAs roles in different cell type (122). Based on clinical studies, spermatozoa from patients with seminal changes shows a differential miRNA profile (123,124). Therefore, on the one hand, there is a hard evidence of miRNA important role in spermatogenesis contributing to the mechanisms, which are involved in human fertility; on the other hand, the profile of miRNA expression has been offered as a new noninvasive, diagnostic biomarker of male fertility. Study conducted by Wang et al. (125), investigated samples of pooled semen acquired from infertile men and the results in comparison with normal fertile individuals as control groups. It was revealed that changes in miRNA profiles in both asthenozoospermia and azoospermia. The seven miRNAs level was noticeably lower and higher in azoospermia and asthenozoospermia, respectively, in comparison with control. Therefore, it was proposed by the authors that seven miRNAs may confirm molecular diagnostic value for infertility in males.

5.6 Impact of Environmental pollutants on the male gamete in animals

Studies conductedout on animals have revealed that different forms of air pollution have detrimental impactson the quality of sperm. A statistically noticeable decline in spermatozoa production has been expressedwhich is along with increasing abnormal sperm shapes in rats and miceexposed to car exhaust, remarkably from diesel vehicles (126–130). It has been reported that there is an impact on the nuclear quality of spermatozoa (131). It was observed by Yauk et al. that there was a statistically noticeable increase in sperm DNA breakage and hypermethylation in mice which were exposed to air pollutedin a Canadian city (132). There was a noticeable increase in the mutations rate, which wasfound in sperm DNA, particularly on the loci of DNA sequence repeats. The probability of genetic mutations in germ line cell's DNA increased by this last phenomenon such as spermatozoa, which are transmitted to descendants (133). However, Yoshida et al. reported structural alterations

in Leydig cells on the testicular level, (126); Watanabehas reported a Sertoli cells reduction in rats, which were exposed todiesel exhaust (127). It was shown by Jeng and Yuhaveon the hormonal level that prolonged exposure to PAHs leads to decreasing and increasing in blood testosterone levels and LH levels, respectively, at the end of the exposure time (46). It was found by Inyang et al. that there is a statistically noticeable decrease and increase in levels of blood testosterone and LH levels, respectively, in rats, which were exposed to a type of PAH: benzo (a) pyrene (134). According to study carried out on rates by Tsukue et al., hormonal alterationsin the group, which were exposed to diesel exhaust with a statistically noticeable increase in levels of blood testosterone and LH, were correlated with modifications in the weight of the accessory sex glands such as seminal vesicles and prostate (135). It was reported by Watanabe and Oonuki that there was a statistically noticeable increase in testosterone and estrogens levels and a noticeable decrease in the levels of FSH and LH in a group of rats, which were exposed to diesel exhaust. Moreover, an increase in degenerative cells was observed between spermatid and the spermatocytestages (130).

5.7 Impact of Environmental pollutants on the male gamete in humans

In the past few decades, there was a decrease in the sperm quality in industrialized countries (136, 137). The exposure to toxic materials in ambient and the environment air pollution can be a probable cause for these changes (138–140). Indeed, it has been revealed that professions, which were exposed to exhaust like toll collectors and worked on expressways, more regularly generate sperm abnormalities (141, 142). However, this paper is rich in this subject, there have not been enough studies on it since they do not investigate the same pollutants and their methods are different based on populations studied during exposure time. Besides, results obtained are not sometimes in agreement.

Although many studies reveal modifications, after exposure to air pollution, in parameters of sperm, giving evidence for decreasing the quality of sperm. These changes have a decrease in either sperm mobility (138, 140-146), or in the movement quality (138, 140). In addition, a decrease in the percentage of normal shapes, especially head morphology, along with changed sperm morphology is regularly mentioned (66, 140, 142,144-150, 151). Results obtained for sperm counts are not in agreement with a few studies reporting a noticeable decline in the concentration of sperm in semen after exposure to specific forms of air pollution (140, 142, 144, 149, and 152); however, others do not report noticeable impacts (66, 148, and 153). The results can be true for the proportion of alive spermatozoa such as sperm vitality, with a few studies investigating a noticeably negative impact of air pollution on these parameters (138,

Guven et al. carried out a study on comparison sperm parameters at males, who were exposed to exhaust from diesel vehicles during work at toll plazas on pathways with unexposed males, who worked as official personnel in the exact company. The exposed group had a statistically noticeable decline in sperm mobility, sperm counts as well as sperm morphology especially cephalic faults (142). Selevan et al, conducted a study on parameters of sperm in healthy young males from two areas of the CzechRepublic, a coal-producing region with high levels of air pollution (Teplice) and a less-polluted region (Prachatice).

In comparison with the low level of exposure, it was found that there a statistically noticeable negative effect of exposure to high and medium air pollution levels on the proportion of motile sperm that they are respectively for low, medium and high exposure are as follows: $36.2\% \pm 17$; $27.9\% \pm 18.1$ and $32.5\% \pm 13.2$. Those was also true for sperm morphology, noticeably sperm heads. On the other hand, In comparison with the low level of exposure, they did not have an impact of high or medium exposure to air pollution on all sperm count which are respectively for low, medium and high exposure as follows: 113.5 ± 130.7 million/ejaculate; 100.9 ± 97.6 and 129.1 ± 103.1 (66). The same team revealed that therea statistically noticeable increase in the percentage of spermatozoa along with abnormal chromatin such as abnormalities in DNA compaction and fragmentation in males, who were exposed to air pollution with high levels in the Teplice are of Czech Republic (153). Thus, these studies offer that air pollution might change sperm DNA (131, 154). Based on these observations, it was expressed by other authors that there is a probable impactof air pollution upon the sperm genome at the chromosomal level (144, 155). Therefore, the rate of aneuploidy in the sperm of Polish men associated with normal sperm concentrations (> or = 15 million/ml), which consult for infertility was measured by Jurewiczet al. (155). It was observed that there a noticeable relation between the rate of aneuploidy as well as exposure to sure air pollutants, significantly Y-chromosome disomy and disomy21 and PM-10 (β = 0.58 (95% CI: 0.46–0.72)), PM-2.5 (β = 0.68 (95% CI: 0.55-0.85)) and PM-2.5 ($\beta = 0.78$ (95% CI: 0.62-0.97)), after alteration for 12 confusing factors, including smoking, age ,season, alcohol consumption, , abstinence interval, past diseases, distance from the monitoring station,.

Recently, it was reported by some authors that there is an alteration in the circulating levels of hormones in the gonadal axis, which follows exposure to air pollution. According to study carried out by De Rosa et al., there is a comparison between a group of exposed men, who work at a toll plaza on an pathway and an unexposed group, who work as drivers, clerks, doctors and students or live in the same geographical region. According to altering sperm parameters, a noticeably higher level of FSH was observed in the group that were exposed (mean \pm SE: 4.1 ± 0.3 UI/l vs 3.2 ± 0.2 ; p < 0.05); however, it was kept within range of normal value (138). It was also found by Radwan et al. (150) that there is a negative correlation between exposure to specific air pollutants testosterone levels (PM-10, PM-2.5, CO and NO_x).

Therefore, there is a strong evidence regarding detrimental impacts of air pollution on male reproductive parameters; in addition, a decreased in male fertility can be in interest. Although, the many studies of human are retrospective. It was found just one study on a 2-year period in the youth, who were nonsmoker with healthy sperm donors from Los Angeles, California (152). The sample was completely small (n=48) and only motility and sperm concentration were investigated. Although, every sperm donor gave sample at least 10 times at the duration studied period. Only O_3 exposure revealed a noticeable effect on

parameters of sperm for the 4 air pollutants calculated at region, including PM-10,CO, NO₂andO₃) after alteration for many factors such as abstinence period and the other air pollutants. There was a 4.22% decline in concentration of sperm per inter quartile range (IQR) of increase in O₃ (p = 0.01) for every exposure until before semen collection 9 days. Moreover, there was 2.92% and 3.90% declines in concentration of sperm per IQR for an increase in O₃, respectively (p = 0.05 in both cases) (156) for the exposure 10-14 days and 70-90 days before ejaculation.

6 Conclusion

Clinical and experimental studies provide important evidence for damage to male gamete caused by air pollution for its genotoxic effects and epigenetic alterations. Diagnosis of environmentally induced male infertility by clinicians is likely to remain a challenge. An accurate knowledge of genotoxic effect on spermatogenesis is important not only for the fertility of the men exposed, but also for the offspring's health. Indeed, the percentage of DNA-fragmented spermatozoa in an ejaculate negatively correlates with semen quality on the other hand it is now clear that also a spermatozoon with fragmented DNA can fertilize an oocyte and cause to abnormal offspring. Indeed, the effect of epigenetic modification of sperm gene function can affect the reproductive outcome.

A large amount of literature data, including human and animal studies strongly suggest that the majority of risk of different diseases in the offspring are related to epigenetic alterations leading to imprinting disorders and adversely affecting embryonic development. A good knowledge about the effects of air contaminants on the molecular mechanisms cause to male infertility could help the clinicians to identify the cause of infertility and to define preventive and therapeutic protocol.

References

- Thompson ST. Preventable causes of male infertility. World journal of urology. 1993 May 1;11(2):111-9.
- Sharma R, Biedenharn KR, Fedor JM, Agarwal A. Lifestyle factors and reproductive health: taking control of your fertility. Reproductive Biology and Endocrinology. 2013 Dec;11(1):66.
- Joffe M. Infertility and environmental pollutants. British medical bulletin. 2003 Dec 1;68(1):47-70.
- Hauser R, Sokol R. Science linking environmental contaminant exposures with fertility and reproductive health impacts in the adult male. Fertility and sterility. 2008 Feb 1;89(2):e59-65.
- Akre O, Cnattingius S, Bergström R, Kvist U, Trichopoulos D, Ekbom A. Human fertility does not decline: evidence from Sweden. Fertility and sterility. 1999 Jun 1;71(6):1066-9.
- Hammoud A, Carrell DT, Gibson M, Sanderson M, Parker-Jones K, Peterson CM. Decreased sperm motility is associated with air pollution in Salt Lake City. Fertility and sterility. 2010 Apr 1;93(6):1875-9.
- Safarinejad MR. Infertility among couples in a population-based study in Iran: prevalence and associated risk factors. International journal of andrology. 2008 Jun;31(3):303-14.
- 8. Auger J, Kunstmann JM, Czyglik F, Jouannet P. Decline in semen quality among fertile men in Paris during the past 20 years. New England Journal of Medicine. 1995 Feb 2;332(5):281-5.
- Mendiola J, Jørgensen N, Andersson AM, Stahlhut RW, Liu F, Swan SH. Reproductive parameters in young men living in Rochester, New York. Fertility and sterility. 2014 Apr 1;101(4):1064-71

- .10. Brunekreef B, Holgate ST. Air pollution and health. The lancet. 2002 Oct 19;360(9341):1233-42.
- Candela S, Ranzi A, Bonvicini L, Baldacchini F, Marzaroli P, Evangelista A, Luberto F, Carretta E, Angelini P, Sterrantino AF, Broccoli S. Air pollution from incinerators and reproductive outcomes: a multisite study. Epidemiology. 2013 Nov 1:863-70.
- Dadvand P, Parker J, Bell ML, Bonzini M, Brauer M, Darrow LA, Gehring U, Glinianaia SV, Gouveia N, Ha EH, Leem JH. Maternal exposure to particulate air pollution and term birth weight: a multi-country evaluation of effect and heterogeneity. Environmental health perspectives. 2013 Feb 6;121(3):267-373.
- Pedersen M, Giorgis-Allemand L, Bernard C, Aguilera I, Andersen AM, Ballester F, Beelen RM, Chatzi L, Cirach M, Danileviciute A, Dedele A. Ambient air pollution and low birthweight: a European cohort study (ESCAPE). The lancet Respiratory medicine. 2013 Nov 1;1(9):695-704.
- Laurent O, Wu J, Li L, Chung J, Bartell S. Investigating the association between birth weight and complementary air pollution metrics: a cohort study. Environmental Health. 2013 Dec;12(1):18.
- 15. Estarlich M, Ballester F, Aguilera I, Fernández-Somoano A, Lertxundi A, Llop S, Freire C, Tardón A, Basterrechea M, Sunyer J, Iñiguez C. Residential exposure to outdoor air pollution during pregnancy and anthropometric measures at birth in a multicenter cohort in Spain. Environmental health perspectives. 2011 Mar 23;119(9):1333-8.
- Frutos V, González-Comadrán M, Sola I, Jacquemin B, Carreras R, Checa Vizcaino MA. Impact of air pollution on fertility: a systematic review. Gynecological Endocrinology. 2015 Jan 2;31(1):7-13.
- 17. Guven A, Kayikci A, Cam K, Arbak P, Balbay O, Cam M. Alterations in semen parameters of toll collectors working at motorways: does diesel exposure induce detrimental effects on semen?. Andrologia. 2008 Dec;40(6):346-51.
- Hammoud A, Carrell DT, Gibson M, Sanderson M, Parker-Jones K, Peterson CM. Decreased sperm motility is associated with air pollution in Salt Lake City. Fertility and sterility. 2010 Apr 1:93(6):1875-9.
- Rubes J, Selevan SG, Evenson DP, Zudova D, Vozdova M, Zudova Z, Robbins WA, Perreault SD. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Human Reproduction. 2005 Jun 24;20(10):2776-83.
- Rubes J, Selevan SG, Sram RJ, Evenson DP, Perreault SD. GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutation research/fundamental and molecular mechanisms of mutagenesis. 2007 Dec 1:625(1-2):20-8.
- Januário DA, Perin PM, Maluf M, Lichtenfels AJ, Nascimento Saldiva PH. Biological effects and dose-response assessment of diesel exhaust particles on in vitro early embryo development in mice. Toxicological Sciences. 2010 Jun 4;117(1):200-8.
- Mohallem SV, de Araujo Lobo DJ, Pesquero CR, Assuncao JV, de Andre PA, Saldiva PH, Dolhnikoff M. Decreased fertility in mice exposed to environmental air pollution in the city of Sao Paulo. Environmental research. 2005 Jun 1;98(2):196-202.
- Vizcaíno MA, Gonzalez-Comadran M, Jacquemin B. Outdoor air pollution and human infertility: a systematic review. Fertility and Sterility. 2016 Sep 15;106(4):897-904.
- De Coster S, Van Larebeke N. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. Journal of environmental and public health. 2012;2012.
- Kampa M, Castanas E. Human health effects of air pollution. Environmental pollution. 2008 Jan 1;151(2):362-7.
- Takeda K, Tsukue N, Yoshida S. Endocrine-disrupting activity of chemicals in diesel exhaust and diesel exhaust particles.

- Environmental sciences: an international journal of environmental physiology and toxicology. 2004;11(1):33-45.
- Wang J, Xie P, Kettrup A, Schramm KW. Inhibition of progesterone receptor activity in recombinant yeast by soot from fossil fuel combustion emissions and air particulate materials. Science of the total environment. 2005 Oct 15;349(1-3):120-8.
- 28. Okamura K, Kizu R, Toriba A, Murahashi T, Mizokami A, Burnstein KL, Klinge CM, Hayakawa K. Antiandrogenic activity of extracts of diesel exhaust particles emitted from diesel-engine truck under different engine loads and speeds. Toxicology. 2004 Feb 15;195(2-3):243-54.
- 29. Han Y, Xia Y, Zhu P, Qiao S, Zhao R, Jin N, Wang S, Song L, Fu G, Wang X. Reproductive hormones in relation to polycyclic aromatic hydrocarbon (PAH) metabolites among non-occupational exposure of males. Science of the total environment. 2010 Jan 15;408(4):768-73.
- Taneda S, Hayashi H, Sakata M, YOSHINO S, SUZUKI A, SAGAI M, MORI Y. Anti-estrogenic activity of diesel exhaust particles. Biological and Pharmaceutical Bulletin. 2000 Dec 1;23(12):1477-80.
- 31. Oh SM, Ryu BT, Chung KH. Identification of estrogenic and antiestrogenic activities of respirable diesel exhaust particles by bioassay-directed fractionation. Archives of pharmacal research. 2008 Jan 1;31(1):75-82.
- Noguchi K, Toriba A, Chung SW, Kizu R, Hayakawa K. Identification of estrogenic/anti-estrogenic compounds in diesel exhaust particulate extract. Biomedical Chromatography. 2007 Nov;21(11):1135-42.
- 33. Yoshida S, Hirano S, Shikagawa K, Hirata S, Rokuta S, Takano H, Ichinose T, Takeda K. Diesel exhaust particles suppress expression of sex steroid hormone receptors in TM3 mouse Leydig cells. Environmental toxicology and pharmacology. 2007 Nov 1;24(3):292-6.
- Agarwal A, Allamaneni SS. Free radicals and male reproduction. Journal of the Indian medical association. 2011 Mar;109(3):184-7.
- Arbak P, Yavuz O, Bukan N, Balbay O, Ulger F, Annakkaya AN. Serum oxidant and antioxidant levels in diesel exposed toll collectors. Journal of occupational health. 2004;46(4):281-8.
- Cho AK, Sioutas C, Miguel AH, Kumagai Y, Schmitz DA, Singh M, Eiguren-Fernandez A, Froines JR. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environmental research. 2005 Sep 1;99(1):40-7.
- 37. Sklorz M, Briedé JJ, Schnelle-Kreis J, Liu Y, Cyrys J, de Kok TM, Zimmermann R. Concentration of oxygenated polycyclic aromatic hydrocarbons and oxygen free radical formation from urban particulate matter. Journal of Toxicology and Environmental Health, Part A. 2007 Sep 28;70(21):1866-9.
- 38. Barth A, Brucker N, Moro AM, Nascimento S, Goethel G, Souto C, Fracasso R, Sauer E, Altknecht L, Da Costa B, Duarte M. Association between inflammation processes, DNA damage, and exposure to environmental pollutants. Environmental Science and Pollution Research. 2017 Jan 1;24(1):353-62.
- 39. Walton RT, Mudway IS, Dundas I, Marlin N, Koh LC, Aitlhadj L, Vulliamy T, Jamaludin JB, Wood HE, Barratt BM, Beevers S. Air pollution, ethnicity and telomere length in east London schoolchildren: an observational study. Environment international. 2016 Nov 1:96:41-7.
- 40. Gaspari L, Chang SS, Santella RM, Garte S, Pedotti P, Taioli E. Polycyclic aromatic hydrocarbon-DNA adducts in human sperm as a marker of DNA damage and infertility. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2003 Mar 3;535(2):155-60.
- 41. Jeng HA, Yu L. Alteration of sperm quality and hormone levels by polycyclic aromatic hydrocarbons on airborne particulate particles. Journal of Environmental Science and Health, Part A. 2008 Apr 29;43(7):675-81.
- 42. Rubes J, Selevan SG, Evenson DP, Zudova D, Vozdova M, Zudova Z, Robbins WA, Perreault SD. Episodic air pollution is

- associated with increased DNA fragmentation in human sperm without other changes in semen quality. Human Reproduction. 2005 Jun 24;20(10):2776-83.
- 43. Lepeule J, Bind MA, Baccarelli AA, Koutrakis P, Tarantini L, Litonjua A, Sparrow D, Vokonas P, Schwartz JD. Epigenetic influences on associations between air pollutants and lung function in elderly men: the normative aging study. Environmental health perspectives. 2014 Mar 6;122(6):566-72.
- Holloway JW, Savarimuthu Francis S, Fong KM, Yang IA. Genomics and the respiratory effects of air pollution exposure. Respirology. 2012 May;17(4):590-600.
- 45. Cao Y. Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications. Frontiers of medicine. 2015 Sep 1;9(3):261-74.
- Ding R, Jin Y, Liu X, Zhu Z, Zhang Y, Wang T, Xu Y. Characteristics of DNA methylation changes induced by trafficrelated air pollution. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2016 Jan 15;796:46-53.
- Byun HM, Barrow TM. Analysis of pollutant-induced changes in mitochondrial DNA methylation. InMitochondrial Medicine 2015 (pp. 271-283). Humana Press, New York, NY.
- 48. Byun HM, Colicino E, Trevisi L, Fan T, Christiani DC, Baccarelli AA. Effects of air pollution and blood mitochondrial DNA methylation on markers of heart rate variability. Journal of the American Heart Association. 2016 Apr 22;5(4):e003218.
- Vecoli C, Montano L, Andreassi MG. Environmental pollutants: genetic damage and epigenetic changes in male germ cells. Environmental Science and Pollution Research. 2016 Dec 1;23(23):23339-48.
- Stouder C, Somm E, Paoloni-Giacobino A. Prenatal exposure to ethanol: a specific effect on the H19 gene in sperm. Reproductive Toxicology. 2011 May 1;31(4):507-12.
- Park CJ, Nah WH, Lee JE, Oh YS, Gye MC. Butyl parabeninduced changes in DNA methylation in rat epididymal spermatozoa. Andrologia. 2012 May;44:187-93.
- 52. Tsamou M, Vrijens K, Madhloum N, Lefebvre W, Vanpoucke C, Nawrot TS. Air pollution-induced placental epigenetic alterations in early life: a candidate miRNA approach. Epigenetics. 2018 Feb 1;13(2):135-46.
- Lopes S, Sun JG, Jurisicova A, Meriano J, Casper RF. Sperm deoxyribonucleic acid fragmentation is increased in poorquality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertility and sterility. 1998 Mar 1;69(3):528-32.
- 54. IRVINE DS, TWIGG JP, GORDON EL, FULTON N, MILNE PA, AITKEN RJ. DNA integrity in human spermatozoa: relationships with semen quality. Journal of andrology. 2000 Jan 2;21(1):33-44.
- 55. MURATORI M, PIOMBONI P, BALDI E, FILIMBERTI E, PECCHIOLI P, MORETTI E, GAMBERA L, BACCETTI B, BIAGIOTTI R, FORTI G, Maggi M. Functional and ultrastructural features of DNA-fragmented human sperm. Journal of andrology. 2000 Nov 12;21(6):903-12.
- 56. Yamauchi Y, Riel JM, Ward MA. Paternal DNA damage resulting from various sperm treatments persists after fertilization and is similar before and after DNA replication. Journal of andrology. 2012 Mar 4;33(2):229-38.
- Ménézo Y, Dale B, Cohen M. DNA damage and repair in human oocytes and embryos: a review. Zygote. 2010 Nov;18(4):357-65
- 58. Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Human molecular genetics. 2008 Mar 18;17(13):1922-37.
- Carrell DT, Liu L, Peterson CM, Jones KP, Hatasaka HH, Erickson L, Campbell B. Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Archives of andrology. 2003 Jan 1;49(1):49-55.

- Baccarelli A, Bollati V. Epigenetics and environmental chemicals. Current opinion in pediatrics. 2009 Apr;21(2):243.
- Barakat TS, Jonkers I, Monkhorst K, Gribnau J. X-changing information on X inactivation. Experimental cell research. 2010 Mar 10;316(5):679-87.
- Pinborg A, Henningsen AK, Malchau SS, Loft A. Congenital anomalies after assisted reproductive technology. Fertility and sterility. 2013 Feb 1;99(2):327-32.
- Shufaro Y, Laufer N. Epigenetic concerns in assisted reproduction: update and critical review of the current literature. Fertility and sterility. 2013 Mar 1;99(3):605-6.
- 64. Vecoli C, Montano L, Andreassi MG. Environmental pollutants: genetic damage and epigenetic changes in male germ cells. Environmental Science and Pollution Research. 2016 Dec 1:23(23):23339-48.
- Pires A, de Melo EN, Mauad T, Nascimento Saldiva PH, de Siqueira Bueno HM. Pre-and postnatal exposure to ambient levels of urban particulate matter (PM2. 5) affects mice spermatogenesis. Inhalation toxicology. 2011 Mar 1;23(4):237-45
- 66. Selevan SG, Borkovec L, Slott VL, Zudová Z, Rubes J, Evenson DP, Perreault SD. Semen quality and reproductive health of young Czech men exposed to seasonal air pollution. Environmental Health Perspectives. 2000 Sep;108(9):887-94.
- 67. Rubes J, Selevan SG, Evenson DP, Zudova D, Vozdova M, Zudova Z, Robbins WA, Perreault SD. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Human Reproduction. 2005 Jun 24;20(10):2776-83.
- 68. Hammoud A, Carrell DT, Gibson M, Sanderson M, Parker-Jones K, Peterson CM. Decreased sperm motility is associated with air pollution in Salt Lake City. Fertility and sterility. 2010 Apr 1;93(6):1875-9.
- 69. Hansen C, Luben TJ, Sacks JD, Olshan A, Jeffay S, Strader L, Perreault SD. The effect of ambient air pollution on sperm quality. Environmental health perspectives. 2009 Sep 18;118(2):203-9.
- Guven A, Kayikci A, Cam K, Arbak P, Balbay O, Cam M. Alterations in semen parameters of toll collectors working at motorways: does diesel exposure induce detrimental effects on semen?. Andrologia. 2008 Dec;40(6):346-51.
- 71. Toppari J, Larsen JC, Christiansen P, Giwercman A, Grandjean P, Guillette Jr LJ, Jégou B, Jensen TK, Jouannet P, Keiding N, Leffers H. Male reproductive health and environmental xenoestrogens. Environmental health perspectives. 1996 Aug;104(suppl 4):741-803.
- Acacio BD, Gottfried T, Israel R, Sokol RZ. Evaluation of a large cohort of men presenting for a screening semen analysis. Fertility and sterility. 2000 Mar 1;73(3):595-7.
- Andersen AG, Jensen TK, Carlsen E, Jørgensen N, Andersson AM, Krarup T, Keiding N, Skakkebaek NE. High frequency of sub-optimal semen quality in an unselected population of young men. Human Reproduction. 2000 Feb 1;15(2):366-72.
- 74. Jensen TK, Vierula M, Hjollund NH, Saaranen M, Scheike T, Saarikoski S, Suominen J, Keiski A, Toppari J, Skakkebæk NE. Semen quality among Danish and Finnish men attempting to conceive. The Danish First Pregnancy Planner Study Team. European Journal of Endocrinology. 2000 Jan 1;142(1):47-52.
- Fisch H, Goluboff ET, Olson JH, Feldshuh J, Broder SJ, Barad DH. Semen analyses in 1,283 men from the United States over a 25-year period: no decline in quality. Fertility and sterility. 1996 May 1;65(5):1009-14.
- Carlsen E, Giwercman A, Keiding N, Skakkebæk NE. Evidence for decreasing quality of semen during past 50 years. Bmj. 1992 Sep 12;305(6854):609-13.
- Auger J, Kunstmann JM, Czyglik F, Jouannet P. Decline in semen quality among fertile men in Paris during the past 20 years. New England Journal of Medicine. 1995 Feb 2;332(5):281-5.

- Adamopoulos DA, Pappa A, Nicopoulou S, Andreou E, Karamertzanis M, Michopoulos J, Deligianni V, Simou M. Andrology: seminal volume and total sperm number trends in men attending subfertllity clinics in the greater Athens area during the period 1977–1993. Human Reproduction. 1996 Sep 1;11(9):1936-41.
- Jouannet P, Ducot B, Feneux D, Spira A. Male factors and the likelihood of pregnancy in infertile couples. I. Study of sperm characteristics. International journal of andrology. 1988 Oct:11(5):379-94.
- 80. Bartoov B, Eltes F, Pansky M, Lederman H, Caspi E, Soffer Y. Estimating fertility potential via semen analysis data. Human Reproduction. 1993 Jan 1;8(1):65-70.
- 81. AYALA C, STEINBERGER E, SMITH DP. The influence of semen analysis parameters on the fertility potential of infertile couples. Journal of andrology. 1996 Nov 12;17(6):718-25.
- ZINAMAN MJ, BROWN CC, SELEVAN SG, CLEGG ED. Semen quality and human fertility: a prospective study with healthy couples. Journal of Andrology. 2000 Jan 2;21(1):145-53.
- 83. Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, De Angelis P, Claussen OP. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Human reproduction. 1999 Apr 1;14(4):1039-49.
- 84. Potts RJ, Newbury CJ, Smith G, Notarianni LJ, Jefferies TM. Sperm chromatin damage associated with male smoking. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1999 Jan 25;423(1-2):103-11.
- 85. Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Human Reproduction. 2010 Aug 17;25(10):2415-26.
- Thilagavathi J, Venkatesh S, Dada R. Telomere length in reproduction. Andrologia. 2013 Oct 1;45(5):289-304.
- 87. Rocca MS, Speltra E, Menegazzo M, Garolla A, Foresta C, Ferlin A. Sperm telomere length as a parameter of sperm quality in normozoospermic men. Human reproduction (Oxford, England). 2016 Jun;31(6):1158-63.
- 88. Cariati F, Jaroudi S, Alfarawati S, Raberi A, Alviggi C, Pivonello R, Wells D. Investigation of sperm telomere length as a potential marker of paternal genome integrity and semen quality. Reproductive biomedicine online. 2016 Sep 1;33(3):404-11.
- 89. Ling X, Zhang G, Chen Q, Yang H, Sun L, Zhou N, Wang Z, Zou P, Wang X, Cui Z, Liu J. Shorter sperm telomere length in association with exposure to polycyclic aromatic hydrocarbons: Results from the MARHCS cohort study in Chongqing, China and in vivo animal experiments. Environment international. 2016 Oct 1:95:79-85.
- Vecoli C, Montano L, Borghini A, Notari T, Guglielmino A, Mercuri A, Turchi S, Andreassi M. Effects of highly polluted environment on sperm telomere length: a pilot study. International journal of molecular sciences. 2017 Aug;18(8):1703.
- 91. Yang Q, Zhao F, Dai S, Zhang N, Zhao W, Bai R, Sun Y. Sperm telomere length is positively associated with the quality of early embryonic development. Human reproduction. 2015 Jun 16;30(8):1876-81.
- 92. Berger R. The incidence of constitutional chromosome aberrations. Journal de genetique humaine. 1975 Oct;23:42-9.
- 93. Shi Q, Martin RH. Aneuploidy in human sperm: a review of the frequency and distribution of aneuploidy, effects of donor age and lifestyle factors. Cytogenetic and Genome Research. 2000;90(3-4):219-26.
- 94. Rubes J, Selevan SG, Evenson DP, Zudova D, Vozdova M, Zudova Z, Robbins WA, Perreault SD. Episodic air pollution is associated with increased DNA fragmentation in human sperm

- without other changes in semen quality. Human Reproduction. 2005 Jun 24;20(10):2776-83.
- 95. Robbins WA, Rubes J, Selevan SG, Perreault SD. Air pollution and sperm aneuploidy in healthy young men. Environ Epidemiol Toxicol. 1999;1(125ñ131):154.
- Moldan B, Schnoor JL. Czechoslovakia: examining a critically ill environment. Environmental science & technology. 1992 Jan;26(1):14-21.
- Sram RJ, BeneS I, Binková B, Dejmek J, Horstman D, Kotěsovec F, Otto D, Perreault SD, Rubes J, Selevan SG, Skalík I. Teplice program--the impact of air pollution on human health. Environmental health perspectives. 1996 Aug;104(suppl 4):699-714.
- 98. Radwan M, Jurewicz J, Polańska K, Sobala W, Radwan P, Bochenek M, Hanke W. Exposure to ambient air pollution-does it affect semen quality and the level of reproductive hormones?. Annals of human biology. 2016 Jan 2;43(1):50-6.
- Tamburrino L, Marchiani S, Montoya M, Marino FE, Natali I, Cambi M, Forti G, Baldi E, Muratori M. Mechanisms and clinical correlates of sperm DNA damage. Asian journal of andrology. 2012 Jan;14(1):24.
- Evenson DP, Wixon R. Clinical aspects of sperm DNA fragmentation detection and male infertility. Theriogenology. 2006 Mar 15:65(5):979-91.
- 101. Erenpreiss J, Spano M, Erenpreisa J, Bungum M, Giwercman A. Sperm chromatin structure and male fertility: biological and clinical aspects. Asian journal of andrology. 2006 Jan;8(1):11-29.
- 102. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, Giwercman A. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Human reproduction. 2006 Aug 18;22(1):174-9.
- 103. Ménézo Y, Dale B, Cohen M. DNA damage and repair in human oocytes and embryos: a review. Zygote. 2010 Nov;18(4):357-65.
- 104. Rubes J, Rybar R, Prinosilova P, Veznik Z, Chvatalova I, Solansky I, Sram RJ. Genetic polymorphisms influence the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2010 Jan 5;683(1-2):9-15
- 105. Auger J, Kunstmann JM, Czyglik F, Jouannet P. Decline in semen quality among fertile men in Paris during the past 20 years. New England Journal of Medicine. 1995 Feb 2:332(5):281-5.
- 106. Hauser R, Sokol R. Science linking environmental contaminant exposures with fertility and reproductive health impacts in the adult male. Fertility and sterility. 2008 Feb 1;89(2):e59-65.
- 107. Mendiola J, Jørgensen N, Andersson AM, Stahlhut RW, Liu F, Swan SH. Reproductive parameters in young men living in Rochester, New York. Fertility and sterility. 2014 Apr 1;101(4):1064-71.
- 108. Flanagan JM, Popendikyte V, Pozdniakovaite N, Sobolev M, Assadzadeh A, Schumacher A, Zangeneh M, Lau L, Virtanen C, Wang SC, Petronis A. Intra-and interindividual epigenetic variation in human germ cells. The American Journal of Human Genetics. 2006 Jul 1:79(1):67-84.
- 109. Hughes IA, Martin H, Jääskeläinen J. Genetic mechanisms of fetal male undermasculinization: a background to the role of endocrine disruptors. Environmental research. 2006 Jan 1;100(1):44-9.
- 110. Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. Science. 2010 Oct 29;330(6004):622-7.
- 111. Skinner MK. Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics. 2011 Jul;6(7):838.
- 112. Stouder C, Somm E, Paoloni-Giacobino A. Prenatal exposure to ethanol: a specific effect on the H19 gene in sperm. Reproductive Toxicology. 2011 May 1;31(4):507-12.

- 113. Park CJ, Nah WH, Lee JE, Oh YS, Gye MC. Butyl parabeninduced changes in DNA methylation in rat epididymal spermatozoa. Andrologia. 2012 May;44:187-93.
- 114. Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends in Endocrinology & Metabolism. 2010 Apr 1;21(4):214-22.
- 115. Rajender S, Avery K, Agarwal A. Epigenetics, spermatogenesis and male infertility. Mutation Research/Reviews in Mutation Research. 2011 May 1;727(3):62-71.
- Carrell DT. Epigenetics of the male gamete. Fertility and sterility. 2012 Feb 1;97(2):267-74.
- 117. Dada R, Kumar M, Jesudasan R, Fernández JL, Gosálvez J, Agarwal A. Epigenetics and its role in male infertility. Journal of assisted reproduction and genetics. 2012 Mar 1;29(3):213-23.
- 118. Vrijens K, Bollati V, Nawrot TS. MicroRNAs as potential signatures of environmental exposure or effect: a systematic review. Environmental health perspectives. 2015 Jan 16;123(5):399-411.
- 119. Hayashi K. Chuva de Sousa Lopes SM. Kaneda M., Tang F., Hajkova P., Lao K., O'Carroll D., Das PP, Tarakhovsky A., Miska EA, Surani MA. 2008.
- 120. Maatouk DM, Loveland KL, McManus MT, Moore K, Harfe BD. Dicer1 is required for differentiation of the mouse male germline. Biology of reproduction. 2008 Oct 1;79(4):696-703.
- Huszar JM, Payne CJ. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice. Biology of reproduction. 2013 Jan 1;88(1):15-.
- 122. Kotaja N. MicroRNAs and spermatogenesis. Fertility and sterility. 2014 Jun 1;101(6):1552-62..
- 123. Khazaie Y, Esfahani MH. MicroRNA and male infertility: a potential for diagnosis. International journal of fertility & sterility. 2014 Jul;8(2):113.
- 124. Salas-Huetos A, Blanco J, Vidal F, Godo A, Grossmann M, Pons MC, Silvia F, Garrido N, Anton E. Spermatozoa from patients with seminal alterations exhibit a differential microribonucleic acid profile. Fertility and sterility. 2015 Sep 1;104(3):591-601.
- 125. Wang C, Yang C, Chen X, Yao B, Yang C, Zhu C, Li L, Wang J, Li X, Shao Y, Liu Y. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clinical chemistry. 2011 Dec 1;57(12):1722-31.
- 126. Yoshida S, Sagai M, Oshio S, Umeda T, Ihara T, Sugamata M, Sugawara I, Takeda K. Exposure to diesel exhaust affects the male reproductive system of mice. International Journal of Andrology. 1999 Oct;22(5):307-15.
- 127. Watanabe N. Decreased number of sperms and Sertoli cells in mature rats exposed to diesel exhaust as fetuses. Toxicology letters. 2005 Jan 15:155(1):51-8.
- 128. Ieradi LA, Cristaldi M, Mascanzoni D, Cardarelli E, Grossi R, Campanella L. Genetic damage in urban mice exposed to traffic pollution. Environmental Pollution. 1996 Jan 1;92(3):323-8.
- 129. Jeng HA, Yu L. Alteration of sperm quality and hormone levels by polycyclic aromatic hydrocarbons on airborne particulate particles. Journal of Environmental Science and Health, Part A. 2008 Apr 29;43(7):675-81.
- 130. Watanabe N, Oonuki Y. Inhalation of diesel engine exhaust affects spermatogenesis in growing male rats. Environmental health perspectives. 1999 Jul;107(7):539-44.
- 131. Somers CM, Yauk CL, White PA, Parfett CL, Quinn JS. Air pollution induces heritable DNA mutations. Proceedings of the National Academy of Sciences. 2002 Dec 10;99(25):15904-7.
- 132. Yauk C, Polyzos A, Rowan-Carroll A, Somers CM, Godschalk RW, Van Schooten FJ, Berndt ML, Pogribny IP, Koturbash I, Williams A, Douglas GR. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. Proceedings of the National Academy of Sciences. 2008 Jan 15;105(2):605-10.

- 133. Somers CM, McCarry BE, Malek F, Quinn JS. Reduction of particulate air pollution lowers the risk of heritable mutations in mice. Science. 2004 May 14;304(5673):1008-10.
- 134. Inyang F, Ramesh A, Kopsombut P, Niaz MS, Hood DB, Nyanda AM, Archibong AE. Disruption of testicular steroidogenesis and epididymal function by inhaled benzo (a) pyrene. Reproductive Toxicology. 2003 Sep 1;17(5):527-37.
- 135. Tsukue N, Toda N, Tsubone H, Sagai M, Jin WZ, Watanabe G, Taya K, Birumachi JI, Suzuki AK. Diesel exhaust (DE) affects the regulation of testicular function in male Fischer 344 rats. Journal of toxicology and environmental health Part A. 2001 May 25;63(2):115-26.
- 136. Rolland M, Le Moal J, Wagner V, Royère D, De Mouzon J. Decline in semen concentration and morphology in a sample of 26 609 men close to general population between 1989 and 2005 in France. Human Reproduction. 2012 Dec 4;28(2):462-70.
- 137. Auger J, Kunstmann JM, Czyglik F, Jouannet P. Decline in semen quality among fertile men in Paris during the past 20 years. New England Journal of Medicine. 1995 Feb 2;332(5):281-5.
- 138. Rosa MD, Zarrilli S, Paesano L, Carbone U, Boggia B, Petretta M, Maisto A, Cimmino F, Puca G, Colao A, Lombardi G. Traffic pollutants affect fertility in men. Human Reproduction. 2003 May 1:18(5):1055-61.
- Jurewicz J, Hanke W, Radwan M, Bonde J. Environmental factors and semen quality. International journal of occupational medicine and environmental health. 2009 Jan 1;22(4):305-29.
- 140. Deng Z, Chen F, Zhang M, Lan L, Qiao Z, Cui Y, An J, Wang N, Fan Z, Zhao X, Li X. Association between air pollution and sperm quality: A systematic review and meta-analysis. Environmental pollution. 2016 Jan 1;208:663-9.
- 141. Arbak P, Yavuz O, Bukan N, Balbay O, Ulger F, Annakkaya AN. Serum oxidant and antioxidant levels in diesel exposed toll collectors. Journal of occupational health. 2004;46(4):281-8.
- 142. Guven A, Kayikci A, Cam K, Arbak P, Balbay O, Cam M. Alterations in semen parameters of toll collectors working at motorways: does diesel exposure induce detrimental effects on semen?. Andrologia. 2008 Dec;40(6):346-51.
- 143. Hammoud A, Carrell DT, Gibson M, Sanderson M, Parker-Jones K, Peterson CM. Decreased sperm motility is associated with air pollution in Salt Lake City. Fertility and sterility. 2010 Apr 1;93(6):1875-9.
- 144. Somers CM. Ambient air pollution exposure and damage to male gametes: human studies and in situ 'sentinel'animal experiments. Systems biology in reproductive medicine. 2011 Jan 1;57(1-2):63-71.
- 145. Sram R. Impact of air pollution on reproductive health.
- 146. Wijesekara GU, Fernando DM, Wijerathna S, Bandara N. Environmental and occupational exposures as a cause of male infertility.
- 147. Figà- Talamanca I, Cini C, Varricchio GC, Dondero F, Gandini L, Lenzi A, Lombardo F, Angelucci L, Di Grezia R, Patacchioli FR. Effects of prolonged autovehicle driving on male reproductive function: a study among taxi drivers. American journal of industrial medicine. 1996 Dec;30(6):750-
- 148. Hansen C, Luben TJ, Sacks JD, Olshan A, Jeffay S, Strader L, Perreault SD. The effect of ambient air pollution on sperm quality. Environmental health perspectives. 2009 Sep 18;118(2):203-9.
- 149. Hsu PC, Chen IY, Pan CH, Wu KY, Pan MH, Chen JR, Chen CJ, Chang-Chien GP, Hsu CH, Liu CS, Wu MT. Sperm DNA damage correlates with polycyclic aromatic hydrocarbons biomarker in coke-oven workers. International archives of occupational and environmental health. 2006 May 1;79(5):349-56
- 150. Radwan M, Jurewicz J, Polańska K, Sobala W, Radwan P, Bochenek M, Hanke W. Exposure to ambient air pollution-does it affect semen quality and the level of reproductive hormones?. Annals of human biology. 2016 Jan 2;43(1):50-6.

- 151. Gaspari L, Chang SS, Santella RM, Garte S, Pedotti P, Taioli E. Polycyclic aromatic hydrocarbon-DNA adducts in human sperm as a marker of DNA damage and infertility. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2003 Mar 3;535(2):155-60.
- 152. Sokol RZ, Kraft P, Fowler IM, Mamet R, Kim E, Berhane KT. Exposure to environmental ozone alters semen quality. Environmental health perspectives. 2005 Oct 5;114(3):360-5.
- 153. Rubes J, Selevan SG, Evenson DP, Zudova D, Vozdova M, Zudova Z, Robbins WA, Perreault SD. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Human Reproduction. 2005 Jun 24;20(10):2776-83.
- 154. Evenson DP, Wixon R. Environmental toxicants cause sperm DNA fragmentation as detected by the Sperm Chromatin Structure Assay (SCSA®). Toxicology and Applied Pharmacology. 2005 Sep 1;207(2):532-7.
- 155. Jurewicz J, Radwan M, Sobala W, Polańska K, Radwan P, Jakubowski L, Ulańska A, Hanke W. The relationship between exposure to air pollution and sperm disomy. Environmental and molecular mutagenesis. 2015 Jan;56(1):50-9.
- 156. Carré J, Gatimel N, Moreau J, Parinaud J, Léandri R. Does air pollution play a role in infertility?: a systematic review. Environmental Health. 2017 Dec;16(1):82.