Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 418-41ꢀ  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
A Formulation of Big Data Analytics Model in  
Strengthening the Disaster Risk Reduction  
1
2*  
3
Syamil Zayid , Nur Azaliah Abu Bakar , Mageshwari Valachamy , Nur Shuhada Abdul  
4
5
6
Malek , Suraya Yaacob , Noor Hafizah Hassan  
Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia  
Received: 13/08/2019 Accepted: 18/01/2020 Published: 20/02/2020  
Abstract  
A natural disaster is a serious event that contributes to the damage of infrastructures and property losses, the demand of  
budgetary allocation, disruption of economic and social activities, damages to the environment, and threat to human life. In disaster  
management, one of the aims is to reduce the impact of natural disaster through disaster risk management. However, the traditional  
data risk management mechanism to store and analyse huge disasters has become a challenge for relevant organizations due to its  
massive datasets, especially when it deals with big data and analytics. Therefore, the aim of this paper is to formulate a big data  
analytics model to strengthen the disaster risk reduction for Selangor State, Malaysia, comprehending both traditional datasets  
(geospatial data) and big data analytics (nonspatial data). To this end, 59 factors and available datasets were classified into six  
categories: ecology, economic, environment, organisation, social, and technology. These factors were derived from existing studies  
and then validated in a focus group discussion with 54 government agencies involved disaster risk management in Selangor State,  
Malaysia. The final output of this paper is Big Data Analytics Model for Disaster Risk Reduction, which will be useful to all  
stakeholders related to disaster risk management and disaster risk reduction initiatives.  
Keywords: Disaster risk management; Disaster risk reduction; Big data analytics; Selangor state  
Introduction1  
supports and plan for achieving DRR identified goals, but  
1
these two terms are used interchangeably and have some  
overlap that provides very similar meaning in practice.  
In this modern age, decision-makers have started to  
focus on applying enormous data to their decision-making  
processes. Enormous data, which is also referred to as Big  
Data, is a huge dataset that is high in volume, variety, and  
velocity; in this regard, a challenging issue is how to manage  
it using traditional techniques and tools[3]. Thus, to satisfy  
these managing requirements and extract the value and  
knowledge from huge datasets that are growing every  
second, a modern solution need to be developed. In addition,  
solution provided might be beneficial to decision-makers for  
their valuable insights into such diverse and rapidly  
changing data (involving structured, semi-structures, and  
unstructured data) ranging from daily transactions to  
customer interactions and social network data. Big data  
analytics can help to produce the value of big data that later  
can be harvested [4].  
Disaster is an event that occurs around the globe; as a  
key challenge, it contributes to serious disruptions to human  
life, economy, and sustainable development. Several factors  
have most significant contribution to disaster: hazard  
inherent from the nature, the extent to which people and their  
belongings are exposed to it, vulnerability of affected human  
and assets, and their ability to minimize or manage with the  
possible harm[1]. Briefly, disaster definition reflects the  
losses and the ability to cope with the impact. The United  
Nations International Strategy for Disaster Reduction  
(UNISDR) referred disaster as a serious disruption towards  
the society or a functional community, involving economic  
or environmental impacts and also loss of human life and  
properties, which is beyond the ability of the affected  
community and society to survive using its own supplies and  
resources [2].  
Disaster Risk Reduction (DRR) is clearly accepted as the  
development and implementation of policies, strategies, and  
practices to reduce vulnerabilities and disaster risks across  
society. Often used in the same context, the term 'Disaster  
Risk Management' (DRM) refers to a systematic approach to  
identifying, assessing, and reducing risks of any disaster.  
DRM is known to be more focused on implementing  
No doubt that good governance and fast decision making  
process influence the impact of disaster to community as  
suggested by previous studies by Sukowati and Nelwan [5]  
and Waheed and Ali [6]. In addition, the ability of big data  
in visualising, analysing, and predicting disasters has been  
Corresponding author: Nur Azaliah Abu Bakar, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia,  
4100 Kuala Lumpur, Malaysia. E-mail: azaliah@utm.my.  
5
4
81  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 418-41ꢀ  
focused on much work done by researchers to help to  
manage disasters [7, 8]. Furthermore, big data analytics  
provide a value that is able to support crisis management and  
enhance humanitarian operations. However, the challenges  
with the big data are how to manage regarding issues such as  
data mining (storing, interlinking, and processing), which is  
due to the characteristics of the volume and velocity of the  
data itself [9, 10]. In addition, disaster-related data consist  
of both spatial and nonspatial data, which makes the data  
analysis process more complex [8, 11]. From the recent  
studies, there is still a gap in integrating the big data analytics  
with DRR practices. Such integration would help to reduce  
complexity in traditional data management mechanisms and  
enable new kind of disaster preparedness and prevention  
services. Therefore, the aim of this paper is to formulate a  
big data analytics model applicable to disaster risk reduction.  
preparedness. DRR must be incorporated to ensure that the  
goals of sustainable development can be achieved. Another  
initiative from the United Nations called Sustainable  
Development Goals (SDGs) was also introduced (SDGs,  
2018; SDSN, 2015). The achievement of the stated SDGs  
requires major transformation in the ecosystem of major  
areas such as urban planning, energy use, healthcare,  
educational system, land use, and technologies deployment.  
Yet, few challenges have arisen when incorporating the  
SDGs 2030 perspective into budget planning, audits,  
procurement policies, human resource management,  
regulations, and related public policy needed.  
2.1 Big Data Role in Disaster Risk Reduction  
Emerging technology in big data is known as innovative  
technology that provides new ways to extract value from the  
tsunami of available information. The interpretation of big  
data may differ in the defined concept and term as there is  
no commonly-accepted definition for the Big Data term. In  
the context of big data for DRR, data must be diverse in  
Variety, high in Velocity, and huge in Volume, which is  
known as the 3Vs big data model [15]. Researchers have  
extended the Vs up to 9Vs, adding terms like Visualization,  
Veracity, Value, and Viability.  
A data-driven solution in reducing disaster risks have  
long been recognized for their cross-cutting linkage among  
key stakeholders such as scientists, policymakers,  
emergency responders, and practitioners, and their major  
influential role. This is explained well through the reviews  
done by Arslan, Roxin [10] and Akter and Wamba [16].  
There are a growing number of studies of Big Data Analytics  
2
Related Work  
In 2015, the United Nations Office for Disaster Risk  
Reduction (UNISDR) reported that globally, disasters  
contributed to over 1.3 trillion USD economic losses over a  
1
0-year period [2]. More importantly, 144 million people  
were displaced, over 1.4 million injured, and roughly 23  
million left homeless. Asia, as home to 60% of the world’s  
population, is considered one of the largest disaster-prone  
areas.  
Based on the international disaster database  
OFDA/CRED 1990-2015, Malaysia has reported an average  
annual loss of more than 1.3 billion USD from multi-hazards  
disasters [12].  
In Malaysia, the December 2014 floods in East Coast  
Peninsular affected the life of more than half a million people  
and inflicted damages up to RM 2.85 billion on public  
infrastructure [13]. In June 2015, the Sabah earthquake, with  
more than 200 aftershocks, caused 18 human casualties,  
tormenting the local community in the Borneo’s most  
popular tourist area and its UNESCO World Heritage sites.  
While in the Cameron Highlands, Malaysia, the 2013-2014  
disasters caused direct socioeconomic impacts, with tourism  
numbers falling 20%. These impacts remind us there is still  
much to be done to strengthen the nation’s resilience to  
disasters and sustainable development.  
(
BDA) in the area of disaster, among them are Zobel and  
Khansa [17] in characterizing multi-event disaster resilience;  
Emmanouil and Nikolaos [18] on how big data analytics is  
utilized in prevention, preparedness, response, and recovery  
in crisis and disaster management; Papadopoulos,  
Gunasekaran [19] on big data role for disaster resilience; and  
Masood, So [20] focusing on BDA for supply chain during  
disaster. In Malaysia, Abdullah, Ibrahim [12] proposed a  
Big Data Analytics Framework for Natural Disaster  
Management in their studies.  
One of the most important benefits of applying BDA to  
DRR is that value of information resulting from the analysis  
of Big Data can assist to do advanced prediction of disaster  
or, at least, minimize the disaster-induced risks affecting the  
ecosystem [18]. Researchers found that the use of big data  
in disaster analysis results in disaster preparedness with  
suggested proactive deployment of required resources for  
coping with an impeding type of disaster in disaster  
management [12, 18]. The application of real time big data  
analysis is able to alert the risk administration or person  
involved in the area about the need for most urgent attention  
together with directive approach of recovery procedure  
including coordination of volunteer and related logistics  
needed during the event of disaster [21].  
No doubt, DRM is crucial in reducing the impacts and  
losses due to unexpected disasters.  
DRM involves  
conceptual practices together with an organized strategy to  
deal and mitigate the risks through a systematic approach to  
understanding, analysing, monitoring, predicting, and  
managing the factors and the occurrences of disaster. In  
general, disaster management consists of the combination of  
many interrelated processes of continual, dynamic  
management, and plan for responding to emergency events  
14]. Disaster management may not be able to eliminate the  
risk; however, it is able to give prediction for early warning,  
which can help to minimize the threats towards humanity.  
[
2
.1 Disaster Risk Reduction  
Establishing an effective DRR is a global challenge. It  
has become an essential factor in promoting big data  
analytics towards the capabilities of strengthening and  
improving the area of DRR to save lives, prevent and reduce  
losses, and strengthen the resilience of cities [9].  
Application of big data technology requires involvement of  
To reduce the damage caused by a natural disaster, an  
initiative by the United Nations called Disaster Risk  
Reduction (DRR) was introduced. The aim is to minimize  
the affected damage caused by natural hazards through an  
ethic of prevention[2]. DRR includes disciplines like  
disaster management, disaster mitigation, and disaster  
4
82  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 418-41ꢀ  
different parties, which needs having experts from various  
backgrounds such as environmental science, social science,  
statistics, meteorology, and computer science. Identifying  
the different sets of data of different types of disaster from  
various agencies and the ability to integrate it has become  
one of the key challenges in this field. This integration may  
be able to provide valuable insight for the policymakers,  
civil society organisations, research centres, business, and  
related stakeholders to make informed decisions.  
agencies involved in DRM/DRR. The aim of FGD was to  
verify the DRR dimension and key elements and to confirm  
the related datasets of each key elements.  
During FGD, all participants were given a set of  
questionnaire and interview questions to validate the  
proposed dimensions and key elements. Meanwhile for the  
datasets information, a guided interview session was  
conducted during the FGD. The results obtained from the  
FGD session confirmed all the 6 dimensions, 15 key  
elements, and the identification of new 60 datasets.  
3
Methodology  
The study started with a review of DRM and DRR  
4 Results and Discussion  
models proposed already in literature with aim of identifying  
the dimensions and key elements of disaster. This study  
analysed four models and proposed six dimensions, which  
are ecology, economic, environment, organisation, social,  
and technology. There are also 15 key elements identified  
related to these dimensions. Then, it was followed by a focus  
group discussion (FGD) with Selangor State Disaster  
Management Unit (SDMU) and 54 Malaysian government  
This section presents the results and discussion in regard  
to the topic of the research that started by the review of the  
existing models, and followed by the discussion on FGD  
results.  
Table 1: Comparison of Disaster Management frameworks and models  
Code Model Name  
Dimensions  
Theory  
Key elements  
Disaster emergency management  
Technology,  
Organisation,  
Technology  
Organisation  
Social  
Training  
 Leadership experience  
 Community/social vulnerability  
 Information system management  
M1  
Social, Economy  
TOSE)  
TOSE  
(
Economy  
Framework [22]  
Economic process and activity  
Population and  
 The functionality of population and demographics  
 Community/Social vulnerability  
 Cultural values  
 The ability of the ecological system to return to or near  
its pre-event state  
 Disaster emergency management  
 Information system management  
 Facilities (housing, commercial facilities, and cultural  
facilities)  
 Lifeline (food supply, health care, utilities,  
transportation, and communication networks)  
 Economic process and activity  
 Community and social support  
 Resource allocation  
Demographics (Social)  
Environmental/Ecosystem  
Services (Environment)  
Organized Governmental  
Services (Organisation)  
Physical Infrastructure  
(Technical)  
Lifestyle and Community  
Competence (Social)  
Economic Development  
The PEOPLES  
Framework [23]  
M2  
N/A  
(
Economic)  
Social-Cultural Capital  
Social)  
(
Infrastructure environment  
Economic process and activity  
Community and social support  
Training  
Leadership experience  
Disaster Press &  
Release Model  
Social  
Economy  
Political  
Community/social vulnerability  
The functionality of population and demographics  
Facilities (housing, commercial facilities, and cultural  
facilities)  
M3  
Crunch Model  
[
24]  
Political influence  
Resource allocation  
Disaster emergency management  
Social  
 The functionality of population and demographics  
 Community/social vulnerability  
 Disaster emergency management  
 Political influence  
Complex  
adaptive system  
Complex  
Adaptive  
System (CAS)  
theory  
Economic  
Political,  
Physical,  
Ecological  
M4  
(
[
CAS) theory  
25]  
 Economic process and activity  
4
83  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 418-41ꢀ  
4
.1 Review of Existing Related Models  
Current literature comprises a limited number of models  
of the FGD participants from 54 agencies. Table 3 presents  
the list of datasets categorized by the dimensions determined  
earlier.  
designed by different researchers working in relevant field  
of study. A review of literature was done searching with five  
keywords: disaster risk reduction’, ‘disaster management’,  
4.3 BDA DRR Model Formulation  
disaster risk management’, ‘big data’, and ‘big data  
The next step is the formulation of BDA for the DRR  
model. The dimensions, key elements, and datasets were  
verified through the FGD sessions. The underpinning theory  
for this model is Technology, Organisation, Social,  
Environment, Economic, and Ecology (TOSEEE) suggested  
by Vugrin [22]. The chosen model has been previously used  
in disaster resilience measurement, and this study extended  
its scope into DRR context. The model dimension is  
originated from TOSEEE, while the key components and  
datasets are derived from the study scope, which is DRR in  
Selangor State, Malaysia. Figure 1 shows the completed  
model of this study. To validate the model, all FGD  
respondents were given a set of questionnaires to rank the  
importance and relevancy of the dimensions, key elements,  
and datasets. A total of 57 respondents participated during  
the session. In the survey, each respondent was asked to  
select their answers based on review score from 1 to 5, which  
represent: Respondent Score (RS) 1: Very Low Importance,  
RS 2: Low Importance, RS 3: Medium Importance, RS 4:  
High Importance, and RS 5: Very High Importance.  
analytics’. Based on extensive review and analysis of the  
relevant literature, four related models were found, as  
follow:  
M1: Technology, Organisation, Social, Economy (TOSE)  
Framework (Vugrin et al., 2010) [22]  
M2: The PEOPLES Framework (Renschler et al., 2010) [23]  
M3: Disaster Press & Release Model (Hai & Smyth, 2012)  
[24]  
M4: Complex Adaptive System (CAS) theory (Coetzee, Van  
Niekerk, & Raju, 2016) [25]  
Table 1 highlights the findings of recent studies, which  
consist of dimensions (how the study view the DRM/DRR  
solution), the theory used in the study, and key elements  
(what are the associated factors/items). Based  
on  
the  
comparison of the models and the theories and frameworks  
presented, two gaps were identified. Firstly, each model,  
framework, and theory has a different dimension in  
measuring DRM and DRR. Secondly, the key elements  
extracted from all models have no consistency. Therefore,  
this study captures all the identified key elements and  
dimensions that contribute to DRR and expands them by  
identifying the related datasets in order to formulate the big  
data analytics solution. Table 2 presents the proposed BDA  
in DRR dimensions and key elements.  
ECOLOGY  
[EY1-EY3]  
TECHNOLOGY  
TY1-TY2]  
ECONOMIC  
[EC1-EC4]  
[
BIG DATA  
ANALYTICS  
MODEL FOR  
DISASTER RISK  
REDUCTION  
Table 2: The identified dimensions and key elements for  
Big Data Analytics in Disaster Risk Reduction  
Category  
Key Element(s)  
Technology  
Information system management  
SOCIAL  
SL1-SL4]  
ENVIRONMENT  
[ET1-ET9]  
[
Organisation Disaster emergency management  
Training  
Leadership experience  
Facilities (housing, commercial facilities, and  
ORGANISATION  
[ON1-ON6]  
cultural facilities)  
Lifeline (food supply, health care, utilities,  
transportation, and communication networks)  
Political influence  
Figure 1: Big Data Analytics Model for Disaster Risk Reduction  
Social  
Community/social vulnerability  
The functionality of population and  
demographics  
It was found out that all key elements and datasets were  
rated as important; with value starting from 0.80. Based on  
the mean scores of all six dimensions, Organisation has  
received the highest score and first ranking with the average  
RII score of 0.895; thus, it was considered as the most  
important component in this model. Meanwhile the second  
most important component was Social with the RII score of  
Cultural values  
Community and social support  
The ability of the ecological system to return  
to or near its pre-event state  
Economic process and activity  
Resource allocation  
Ecology  
Economic  
0
.882. Both Technology and Ecology components received  
a score in-between range of mean value RII 0.87. The lowest  
mean RII score was for Environment (RII=0.853) and  
Economic (RII=0.837). The summary of all six dimensions  
ranking, components, and influence for the big data model is  
presented in Table 4.  
Infrastructure environment  
4
.2 Focus Group Discussion Results  
Findings from FGD resulted in 59 datasets related to  
DRM/DRR. These findings are results of the consolidation  
4
84  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 418-41ꢀ  
Table 3: The identified datasets for Big Data Analytics in Disaster Risk Reduction  
Dimension  
Ecology  
Dataset code  
Dataset Description  
EY-1  
1.  
Ecological system to return to or near its pre-event state  
Ecology  
Ecology  
EY-2  
EY-3  
2.  
3.  
Relocation and Evacuation centre  
Zoning Map  
Economic  
Economic  
EC-1  
EC-2  
4.  
5.  
Infrastructure Asset Value (Building, etc.)  
Land Production Value  
Economic  
Economic  
EC-3  
EC-4  
ET-1  
6.  
7.  
8.  
Land Use (Economic process and activity)  
Resource allocation for Disaster Risk Management Activity  
Aerial imagery  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
Environment  
ET-2  
ET-3  
ET-4  
ET-5  
ET-6  
ET-7  
ET-8  
ET-9  
9.  
Air pollution index  
Bathymetry  
10.  
11.  
12.  
13.  
14.  
15.  
16.  
17.  
18.  
19.  
20.  
21.  
22.  
23.  
24.  
25.  
26.  
27.  
28.  
29.  
30.  
31.  
32.  
33.  
34.  
35.  
36.  
37.  
38.  
39.  
40.  
41.  
42.  
43.  
44.  
Coordinates of Rainfall (RF) & Water Level (WL) Stations  
Cross Section Data  
Dam and water supply monitoring  
Flood Extent Map due to sea level rise  
Flood Extent Map for river  
Flood Hazard Map  
Flood protection measures  
ET-10  
ET-11  
ET-12  
ET-13  
ET-14  
ET-15  
ET-16  
ET-17  
ET-18  
ET-19  
ET-20  
ET-21  
ET-22  
ET-23  
ET-24  
ET-25  
ET-26  
ET-27  
ET-28  
ET-29  
ET-30  
ET-31  
ET-32  
ET-33  
ET-34  
ET-35  
ET-36  
ET-37  
Flood, river level, and rainfall monitoring  
High and low tide forecasting  
Historical Flood Report  
Historical records of hazard events  
Hydrological gauge data  
Inundation Map  
Mean wind & max wind in 3 areas: KLIA, Subang, and Petaling  
Meteorological gauge data  
Nearshore tsunami wave height  
Peta Bahaya dan Risiko Cerun (PBRC)  
Radar & Weather Monitoring  
Rainfall (RF) Data daily  
Rainfall at Dam Data  
Regional haze and hotspots  
Report of Port Klang Sea Level Rise Research  
River Basin Map in Shapefiles  
Road access  
Satellite Flood Monitoring  
Satellite image of hazard location (hazard map)  
Slope data  
Soil Type  
Storm surge gauge data  
Stream Flow Data  
Topography Map (LiDAR, IFSAR)  
Water Level (WL) Data daily  
Watershed boundaries  
Wind rose summary at KLIA, Subang, and Petaling  
Disaster emergency management (management of disaster preparedness, response,  
4
5.  
Organisation  
Organisation  
ON-1  
ON-2  
mitigation, and recovery process)  
6. Disaster Management Leadership Experience (the disaster management experience and  
skill obtained by the organisation’s leaders/top management)  
4
Organisation  
Organisation  
ON-3  
ON-4  
47.  
48.  
Disaster Management Training (training in disaster management)  
Facilities organisation (housing, commercial facilities, and cultural facilities)  
Lifeline cycle (food supply, health care, utilities, transportation, and communication  
4
9.  
networks)  
0.  
Organisation  
Organisation  
ON-5  
ON-6  
5
Political influence (Trust in politicians and satisfaction with the Government in  
managing the disaster)  
Social  
Social  
Social  
Social  
Technology  
Technology  
Technology  
Technology  
Technology  
SL-1  
SL-2  
SL-3  
SL-4  
TY-1  
TY-2  
TY-3  
TY-4  
TY-5  
51.  
52.  
53.  
54.  
55.  
56.  
57.  
58.  
59.  
Community and social support (citizen trust, cooperation)  
Community and social risk acceptance (citizen level of risk resilience)  
Disaster Relocation and Evacuation Centre  
Population and demographics of the disaster area  
Tech Technology Capacity (durability, the efficiency of machine processing)  
Technology Infrastructure (no machines, specifications, storage)  
Big Data Analytics Solution for Disaster Management  
Disaster Management Metamodel and Metadata  
Disaster Management, Knowledge Management, and Data Exchange Platform  
4
85  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 418-41ꢀ  
Table 4: Mean value and ranking of dimension in big data  
analytics model for disaster risk reduction  
References  
1
.
Mayner L, Arbon P. Defining disaster: The need for  
harmonisation of terminology. Australasian Journal of Disaster  
Key  
Average of Relative  
Ranking  
Component  
Importance Index (0 ≤ RII 1)  
&
Trauma Studies. 2015;19.  
Organisation  
Social  
Technology  
Ecology  
Environment  
Economic  
0.895  
0.882  
0.876  
0.874  
0.853  
0.837  
1
2
3
4
5
6
2. UNISDR U, editor Sendai framework for disaster risk reduction  
20152030. Proceedings of the 3rd United Nations World  
Conference on DRR, Sendai, Japan; 2015.  
3. Vassakis K, Petrakis E, Kopanakis I. Big data analytics:  
applications, prospects and challenges. Mobile Big Data:  
Springer; 2018. p. 3-20.  
4
.
Pappas IO, Mikalef P, Giannakos MN, Krogstie J, Lekakos G.  
Big data and business analytics ecosystems: paving the way  
towards digital transformation and sustainable societies.  
Springer; 2018.  
5
Conclusion  
The study successfully described the formulation of  
BDA for DRR model within the scope of Selangor State,  
Malaysia. From an extensive literature analysis and an FGD  
session with all the relevant agencies that responded with the  
DRM/DRR, it is believed that this model is able to assist  
further work in development of data analytics solution. The  
model covers almost all angles of disaster-related aspects  
such as ecology, economic, environment, organization,  
social, and technology. It also goes in-depth by identifying  
the related datasets both in spatial and nonspatial form. The  
next step will be the evaluation of the model functionality in  
the disaster-related case study environment. Apart from the  
aim to formulate a big data analytics model for DRR, this  
discovery also will be useful in developing strategies and  
plans for DRR for Selangor State and the agencies itself.  
Enormous growth of data has the ability and potential to  
improve understanding of the historical information to shape  
a better-informed future in the context of visualising the  
story, identifying related cost incurred, together with new  
connections and opportunities for DRR. The incorporation  
of Big Data into DRR contributes to a more sustainably  
developed society, economy, and nation.  
5. Sukowati P, Nelwan V. Role of the Regional Bureaucracy of  
East Java Province in Natural Disaster Management Policy  
Integrative Based on Community. Journal of Environmental  
Treatment Techniques. 2019;7(4):730-6.  
6
.
Waheed AB, Ali A. Disaster Response and Potentials of Social  
Capital. Journal of Environmental Treatment Techniques.  
2
017;5(4):114-7.  
7
.
Sarvari PA, Nozari M, Khadraoui D. The Potential of Data  
Analytics in Disaster Management. Industrial Engineering in  
the Big Data Era: Springer; 2019. p. 335-48.  
8. Cumbane SP, Gidófalvi G. Review of Big Data and Processing  
Frameworks for Disaster Response Applications. ISPRS  
International Journal of Geo-Information. 2019;8(9):387.  
9
.
Boakye J, Gardoni P, Murphy C. Using opportunities in big data  
analytics to more accurately predict societal consequences of  
natural disasters. Civil Engineering and Environmental  
Systems. 2019:1-15.  
10. Arslan M, Roxin A-M, Cruz C, Ginhac D, editors. A Review on  
Applications of Big Data for Disaster Management. 2017 13th  
International Conference on Signal-Image Technology  
Internet-Based Systems (SITIS); 2017: IEEE.  
&
1
1. Li W, Song M, Zhou B, Cao K, Gao S. Performance  
improvement techniques for geospatial web services in a  
cyberinfrastructure environmentA case study with a disaster  
management portal. Computers, Environment and Urban  
Systems. 2015;54:314-25.  
Acknowledgement  
Hereby, we declare a highest appreciation to the  
Selangor State Disaster Management Unit and all Malaysian  
Public Sector agencies that involved in this research. The  
authors also thank following reviewers to review this article.  
The research is financially supported by Universiti  
Teknologi Malaysia under Q.K130000.3556.06G26.  
12. Abdullah MF, Ibrahim M, Zulkifli H, editors. Big Data  
Analytics Framework for Natural Disaster Management in  
Malaysia. International Conference on Internet of Things, Big  
Data and Security; 2017: SCITEPRESS.  
1
1
1
3. Reba M, Roslan N, Syafiuddin A, Hashim M, editors.  
Evaluation of empirical radar rainfall model during the massive  
flood in Malaysia. 2016 IEEE International Geoscience and  
Remote Sensing Symposium (IGARSS); 2016: IEEE.  
4. Usman A, editor Integrated disaster risk management in Indian  
environment: Prediction, prevention and preparedness. 2017  
IEEE Global Humanitarian Technology Conference (GHTC);  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
2
017: IEEE.  
(avoidance of guest authorship), dual submission,  
5. Fernández A, Carmona CJ, del Jesus MJ, Herrera F. A view on  
fuzzy systems for big data: progress and opportunities.  
International Journal of Computational Intelligence Systems.  
2016;9(sup1):69-80.  
manipulation of figures, competing interests and compliance  
with policies on research ethics. Authors adhere to  
publication requirements that submitted work is original and  
has not been published elsewhere in any language.  
1
1
6. Akter S, Wamba SF. Big data and disaster management: a  
systematic review and agenda for future research. Annals of  
Operations Research. 2017:1-21.  
7. Zobel CW, Khansa L. Characterizing multi-event disaster  
resilience. Computers & Operations Research. 2014;42:83-94.  
Competing interests  
The authors declare that there is no conflict of interest  
that would prejudice the impartiality of this scientific work.  
18. Emmanouil D, Nikolaos D, editors. Big data analytics in  
prevention, preparedness, response and recovery in crisis and  
disaster management. The 18th International Conference on  
Circuits, Systems, Communications and Computers (CSCC  
Authors’ contribution  
All authors of this study have a complete contribution  
for data collection, data analyses and manuscript writing  
2
015), Recent Advances in Computer Engineering Series; 2015.  
4
86  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 418-41ꢀ  
1
9. Papadopoulos T, Gunasekaran A, Dubey R, Altay N, Childe SJ,  
Fosso-Wamba S. The role of Big Data in explaining disaster  
resilience in supply chains for sustainability. Journal of Cleaner  
Production. 2017;142:1108-18.  
2
2
0. Masood T, So E, McFarlane D, editors. Disaster Management  
OperationsBig Data Analytics to Resilient Supply Networks.  
Proceedings of the 24th EurOMA Conference; 2017.  
1. Shah SA, Seker DZ, Rathore MM, Hameed S, Yahia SB,  
Draheim D. Towards Disaster Resilient Smart Cities: Can  
Internet of Things and Big Data Analytics Be the Game  
Changers? IEEE Access. 2019;7:91885-903.  
2
2
2. Vugrin ED, Warren DE, Ehlen MA, Camphouse RC. A  
framework for assessing the resilience of infrastructure and  
economic systems.  
Sustainable and resilient critical  
infrastructure systems: Springer; 2010. p. 77-116.  
3. Renschler CS, Frazier AE, Arendt LA, Cimellaro GP, Reinhorn  
AM, Bruneau M. A framework for defining and measuring  
resilience at the community scale: The PEOPLES resilience  
framework: MCEER Buffalo; 2010.  
2
2
4. Smyth I, Hai VM. The disaster crunch model: guidelines for a  
gendered approach. 2012.  
5. Coetzee C, Van Niekerk D, Raju E. Disaster resilience and  
complex adaptive systems theory: Finding common grounds for  
risk reduction. Disaster Prevention and Management.  
2
016;25(2):196-211.  
4
87