Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 310-313  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Biotreatment of Point-Sourced Effluent  
Discharged into Aquatic Ecosystems in Yenagoa  
Metropolis, Nigeria  
1
2
1
Tariwari C. N Angaye* , Egbegi Ekiemo Mathew and Youkparigha, F. Okponanabofa  
1
Department of Biological Sciences, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria  
Department of Ports Management, Nigerian Maritime University, Okerenkoko, Delta State, Nigeria  
2
Received: 23/11/2019  
Accepted: 09/12/2019  
Published: 20/02/2020  
Abstract  
River systems have become vital resources that conserve and sustain aquatic biodiversity. No aquatic ecosystem is pristine and  
preserved from anthropogenic agents, especially point-sourced effluent and urban runoff. Prior to the bioassay, untreated point-  
source effluent was analysed for some physicochemical and heavy metal parameters. The biotreatment involved the use of ripe and  
unripe plantain peels for a period of 4 weeks, at an interval of 1 week. Results showed significant (P<0.01) improvement in  
physicochemical parameters and heavy metal concentrations of the effluent after 4 weeks of treatment. Comparatively, the ripe  
plantain treatment had more efficacy than the unripe treatment (P<0.01).  
Keywords: Biotreatment, Effluent, Aquatic ecosystem, Heavy metals  
1
quality as well as the coastal sediment [8]. Aquatic  
1
Introduction  
ecosystems are vital resources that sustain biodiversity due  
to the numerous and diverse species. Point-source effluent  
contains toxin, when untreated and discharged into that  
adversely affects water quality and aquatic life. Therefore,  
this research is concern with the biotreatment of point-  
sourced effluent using ripe and unripe plantain peel.  
Sequel to the fact that water and river systems sustain  
biodiversity, they have become essential and inevitable  
components of the over-all ecosystem. Due to the ubiquitous  
applications of water, its quality is infringed upon by  
anthropogenic or lithogenic agents. It was documented in  
literature that about 70% of the Niger Delta is occupied with  
water, but access to quality water still remains a ravaging  
problem [1, 2]. While over 300 million lack access to quality  
water in over ten African countries, it was reported that  
another 1.0 - 1.2 billion persons still suffer water shortage  
globally [1].  
The effects of point-source effluents on aquatic  
ecosystems cannot be overemphasized. They constitute  
threat to aquatic biota, due to compromised water quality.  
The toxicants originating from point-sourced effluent  
includes heavy metals [3], polycyclic aromatic hydrocarbons  
2 Materials and Methods  
2.1 Samples Collection  
One litre of effluent being discharged through piping  
into a creeklet was collected from a point source in Yenagoa,  
Bayelsa state, Nigeria. The ripe and unripe plantain peels  
were collected from roadside roasted-plantain (popularly  
known as Bole) vendor. The peels were separated and  
chopped into tiny bits for the bioassay.  
[4, 5], and radioactive elements [5, 6]. Some toxic industrial  
2.2 Analysis of water samples  
effluents may arise from anthropogenic activities involving  
the production of fertilizers, cement, pulp and paper, food  
processing, pharmaceuticals, metal, textile, chemical,  
petroleum, lubricant plants.  
Some studies have been documented on aquatic pollution,  
their sources and adverse effects on aquatic biota. Coastal  
waters bodies are subjected to anthropogenic pressure from  
sewage and industrial effluents thereby affecting the water  
The effluent was analysed for in-situ physicochemical  
parameters like; pH, Total Dissolved Solids (TDS),  
Dissolved Oxygen using portable field meter (DO-700)  
following standard protocols [9]. Biochemical Oxygen  
Demand (BOD5) was analysed in the laboratory using  
Winkler’s method. Heavy metals were analysed using the  
Perkin Elmer 5100 PC AA Model of Flame Atomic  
Absorption Spectrophotometer Spectrometer (FAAS).  
Corresponding author: Tariwari C. N Angaye, Department  
of Biological Sciences, Niger Delta University, Wilberforce  
Island, Bayelsa State, Nigeria.  
310  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 310-313  
Table 1: Result of physicochemical parameters of effluent before and after biotreatment with plantain peels  
Treatment  
Week  
pH  
DO  
BOD  
COD  
(
mg/l)  
(mg/l)  
(mg/l)  
Before Treatment  
1
2
3
4
1
2
3
4
1
2
3
4
4.22±0.16a  
4.66±0.09b  
4.70±0.09b  
4.77±0.06b  
5.24±0.04d  
5.73±0.03f  
6.48±0.03g  
6.57±0.05h  
5.93±0.04e  
5.94±0.03f  
6.58±0.02h  
6.80±0.07i  
3.07±0.02a  
3.57±0.17b  
3.59±0.18b  
3.97±0.02c  
4.10±0.10d  
4.31±0.11d  
4.42±0.05e  
4.88±0.40e  
4.40±0.06c  
4.54±0.03e  
4.59±0.02e  
4.96±0.06f  
1.44±0.31a  
1.44±0.31a  
1.44±0.31a  
2.11±0.11c  
1.36±0.12a  
1.10±0.06a  
2.09±0.05c  
2.37±0.16c  
1.38±0.04a  
1.53±0.11b  
2.21±0.18c  
2.42±0.30c  
2.22±0.31a  
2.62±0.31a  
2.64±0.31a  
2.69±0.11c  
2.31±0.12a  
2.31±0.06a  
3.54±0.05c  
3.55±0.16c  
2.59±0.04a  
2.75±0.11c  
3.33±0.18c  
3.58±0.30c  
After Treatment with Unripe  
Peels  
After Treatment with Ripe  
Peels  
Table 2: Result of Heavy metal parameters of effluent before and after biotreatment with plantain peels  
Treatment  
Before Treatment  
Week  
Cadmium  
ND  
Copper  
Mercury  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
Lead  
Iron  
1
2
3
4
1
2
3
4
1
2
3
4
1.84±0.26i  
1.68±0.08h  
1.46±0.02g  
1.44±0.17g  
1.27±0.17f  
1.18±0.04ef  
1.04±0.03e  
0.82±0.11d  
0.71±0.10bc  
0.62±0.16b  
0.59±0.06b  
0.35±0.14a  
1.71±5.71g  
1.38±0.09f  
1.18±0.13ef  
1.11±0.13e  
1.04±0.23e  
1.01±0.17e  
0.87±0.14d  
0.58±0.32c  
0.27±0.35b  
0.11±0.13a  
0.10±0.05a  
0.09±0.10a  
15.44±0.12i  
11.44±0.11i  
10.81±0.11h  
10.08±0.11h  
8.98±0.26g  
6.96±0.05f  
4.32±0.15e  
1.55±0.36d  
0.96±0.55c  
0.59±0.23b  
0.39±0.08a  
0.36±0.04a  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
Unripe Peels  
Ripe Peels  
ND  
ND  
ND  
311  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 310-313  
2
.3 Experimental Design  
Ten grams of triplicate samples plantain peels were  
after the unripe peel treatment levels of copper in the effluent  
significantly (<0.05) reduced to 1.27 mg/l, 1.18 mg/l, 1.04  
mg/l, and 0.83 mg/l in weeks 1, 2, 3 and 4 respectively (Table  
2).  
weighed using weighing balance and distinctly macerated in  
Litres of the collected effluent sample. The results were  
4
monitored for the aforementioned parameters weekly for a  
period of one month.  
Mercury was not detected in the effluent before and after  
treatment (Table 2). The bioassay for lead indicated that the  
levels of lead before treatment were 1.71 mg/l in week 1,  
1.38 mg/l in week 2, 1.18 mg/l in week 3 and 1.11 mg/l in  
week 4 (Table 2). Treatment with unripe peels showed that  
the lead levels were significantly (p<0.05) reduced to 1.11  
mg/l in week 1, 1.04 mg/l in week 2, 1.01 mg/l in week 3 and  
0.87 mg/l in week 4 (Table 2).  
Results on iron levels showed that before treatment iron  
level was 15.44 mg/l in week 1, 11.44 mg/l in week 2, 10.81  
mg/l in week 3 and 10.08 mg/l in week 4 (Table 2). After  
treatment with the unripe peels, levels of iron reduced  
significantly to 8.98 mg/l in week 1, 6.96 mg/l in week 2,  
2
.4 Statistical analysis  
All emerging data were subjected to statistical analysis  
using Version 20 of SPSS, One Way Analysis of variance  
ANOVA) was utilized for mean separation, while Duncan  
(
multiple range statistic was used to establish the significance  
of the observed differences at P=0.05.  
3
Results and Discussion  
Results of the physicochemical quality of the effluent  
before and after treatment are presented in Table 1. Before  
treatment, results on pH level from weeks 1 - 4 was; 4.22  
1.32 mg/l in week 3, and 1.55 mg/l in week 4 (Table 2).  
Furthermore, the bioassay treatment with ripe peels was  
most active in reducing iron levels to 0.96 mg/l in week 1,  
(
week 1), 4.66 (week 2), 4.70 (week 3), and 4.77 in week 4.  
The treatment with the unripe plantain peel demonstrated  
significant (P<0.05) improvement in pH level in week 1  
0.59 mg/l in week 2, 0.39 mg/l in week 3, and 0.36 mg/l in  
week 4. In summary, it was observed that treatment  
improved water quality with respect to the analysed  
parameters as the weeks progressed. However, it was  
observed that the ripe plantain peels treatment was more  
effective than the unripe plantain peels treatment.  
Effective treatment of polluted water samples with parts  
of plantain have been documented in literature in a previous  
study. Acidic and high iron containing water was treated  
with the leaves, stem and trunk of plantain by Ohimain et al.,  
(
5.24), week 2 (5.73), week 3 (6.48) and week 4 (6.57).  
Furthermore, the ripe peel bioassay was the most effective  
treatment which improved the pH levels of 5.93, 5.94, 6.58  
and 6.80 in weeks 1, 2, 3 and 4 respectively (Table 1).  
The Dissolved oxygen level of the effluent before  
treatment was reported as 3.07 mg/l in week 1, 3.57 mg/l in  
week 2, 3.59 in week 3 and 3.97 mg/l in week 4. After  
treatment with the unripe plantain peels, DO level of the  
effluent improved significantly (p<0.05) to 4.10 mg/l in  
week 1, 4.31 mg/l in week 2, 4.42 mg/l in week 3 and 4.88  
mg/l in week 4. The unripe plantain peel was the most  
effective with improved DO levels to 4.40 mg/l in week 1,  
[
10]. After 4 weeks of treatment, acidic pH levels reduced  
from 4.15 mg/l  6.48 mg/l for leaf treatment, 4.15 mg/l –  
.85 mg/l for bract treatment, and 4.15 mg/l  7.88 mg/l, for  
6
the leaves treatment. In the same study effective iron  
treatment was reported for the leaves (8.62 mg/l 1.05 mg/l),  
bracts (8.62 mg/l  2.12 mg/l), and trunk (8.62 mg/l  0.11  
mg/l).  
In another study, the unripe peels of plantain were  
reported to have reduced iron concentration from 11.44 mg/l  
to 9.98mg/l in week 1, 7.96mg/l in week 2, 4.92mg/l in week  
4.54 mg/l in week 2, 4.59 mg/l in week 3, and 4.96 mg/l in  
week 4 (Table 1).  
The Biochemical oxygen demand (BOD) of the effluent  
before treatment was 1.44 mg/l, 1.44 mg/l, 1.44 mg/l and  
2
.11 mg/l in weeks 1, 2, 3 and 4 respectively. However,  
treatment with unripe plantain peels showed improvement to  
.10 mg/l (week 1), 4.31 mg/l (week 2), 4.42 mg/l (week 3),  
4
3, and 1.55mg/l in week 4 [11]. For the ripe plantain peel  
and 4.88 mg/l in week 4. Furthermore, the unripe plantain  
peel treatment had more efficacy with BOD levels of 1.38  
mg/l in week 1, 1.53 mg/l in week 2, 2.21 mg/l in week 3 and  
treatment results were reported as; 7.96 mg/l (week 1), 6.39  
mg/l (week 2), 3.08 mg/l in week 3, and 0.86 mg/l in week 4  
[11]. In the same study, they reported that the pH treatment  
2.42 mg/l in week 4.  
for unripe peels was; 5.34 in week 1, 5.83 in week 2, 6.34 in  
week 3, and 6.56 in week 4. Meanwhile, the ripe peel was  
Prior to the biotreatment the concentrations of chemical  
oxygen demand of the effluent was 2.22 mg/l in week 1, 2.62  
mg/l in week 2, 2.64 mg/l in week 3 and 2.69 mg/l in week  
5
4
.53 in week 1, 5.59 week 2, 6.55 in week 3 and 6.70 in week  
. The mechanism of treatment is yet to be unravelled.  
4. Treatment with the unripe plantain peels improved COD  
Although biosorption by the plant and presence of  
phytochemicals are suspected mechanism.  
levels to 2.31 mg/l in week 1, 2.54 mg/l in week 2, 2.55 mg/l  
in week 3 and 2.75 mg/l in week 4. There was more  
improvement in the COD level of the effluent when unripe  
peel was applied with values of 2.59 mg/l in week 1, 2.75  
mg/l in week 2, 3.33 mg/l in week 3 and 3.58 mg/l in week  
3
Conclusions  
The persistent and anthropogenic discharged of point-  
4
(Table 1).  
sourced untreated effluent into aquatic ecosystem is a  
regrettable and unfortunate action. In this research treatment  
was applied to point source effluent using unripe and ripe  
peels of plantain. Fortunately, the biotreatment of the water  
with ripe and unripe plantain peels resulted to significant  
(p<0.05), improvement of all physicochemical properties  
assessed. Similarly, the treatemts were able to reduce heavy  
metal concentration significantly (p<0.05). based on the  
The result of heavy metal concentrations before and after  
treatment is presented in Table 2. Prior to treatment, the level  
of cadmium was below detection limit and remained so after  
the applied treatments were concluded (Table 2). Results on  
the levels of copper before treatment were 1.84, 1.68, 1.46  
and 1.44 mg/l in weeks 1, 2, 3 and 4 respectively. However,  
312  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 310-313  
outcome of this research we therefore recommend the further  
development and application of plantain for the biotreatment  
of toxic effluent.  
Motorman-JINSR Nigeria, OSMERT  
NigeriaTrainer-GBMC, MLC, SEEMP,  
Sweden.  
Dr. Youkparigha, F.O. is a Science Teacher  
and Environmentalist that has taught  
biology for over 20 years. He holds B.Sc  
References  
1
2
3
4
5
Ohimain, E. 1., & Angaye, T. C. N. (2014). Iron levels, other  
selected physicochemical and microbiological Properties of  
earthen and concrete catfish ponds in central Niger Delta. Int.  
Jour. of Biol. & Biomed Sci., 3(5), 041 - 043.  
(Education) in Biology from the University  
of Port Harcourt, MPHIL in Environmental  
Management from the Rivers State  
University and a Ph.D from the Niger Delta  
Ohimain, E. 1., Angaye, T. C. N., & Okiongbo, K. (2014a)  
Removal of Iron, Coliforms and Acidity from Ground Water  
Obtained from Shallow Aquifer Using Trickling Filter Method.  
Jour of Envt. Sci. & Engr., 2, 549 - 555.  
Rooker, J. R., Simms, J. R., Wells, R. J. D., Holt, S. A., Holt,  
G. J., Graves, J. E., & Furey, N. B. (2012). Distribution and  
Habitat Associations of Billfish and Swordfish Larvae across  
Mesoscale Features in the Gulf of Mexico. Plos One, 7.  
Ansari, Z. A., Desilva, C., & Badesab, S. (2012). Total  
Petroleum Hydrocarbon in the Tissues of Some Commercially  
Important Fishes of the Bay of Bengal. Marine Pollution  
Bulletin, 64, 2564-2568.  
University,  
with  
spetialization  
in  
Phytotaxonomy and Ethnobotany. He is  
currently a lecturer and married to his  
sweetie, Justina with 3 great children –  
Fulness, Blosom and Victory.  
Jensen, L. K., Honkanen, J. O., Jaeger, I., & Carroll, J. (2012).  
Bioaccumulation of phenanthrene and benzo a pyrene in  
Calanus finmarchicus. Ecotoxicology and Environmental  
Safety, 78, 225-231.  
6
7
Zalewska, T. (2012). Seasonal changes of Cs-137 in Benthic  
Plants from the Southern Baltic Sea. Journal of Radioanalytical  
and Nuclear Chemistry, 292, 211-218.  
Khan, M. F., & Wesley, S. G. (2012) Radionuclide Monitoring  
in Molluscs Inhabiting Intertidal Region Near a Nuclear  
Installation, Gulf of Mannar, India. Marine Pollution Bulletin,  
6
4, 436-444.  
8
9
1
Rashid, K., Hoque, S., & Akter, S. (2015). Pollution in the Bay  
of Bengal: Impact on Marine Ecosystem. Open Journal of  
Marine Science, 5, 55-63.  
Association of Official Analytical Chemists (AOAC),  
―Official methods of analysis‖. 16th edition. Arlington, V. A.  
USA. 1995.  
0
1
Ohimain, E. I., Angaye, T. C.N., & Oduah, A. A. (2008).  
Biotreatment of acidic and high iron containing groundwater for  
aquaculture using plantain (Musa paradisiaca) tissues.  
International Journal of Engineering Science and Innovative  
Technology, 3(5), 121 126.  
Seiyaboh, E. I., Angaye, T. C. N., & Ogidi, O. (2017). The  
biotreatment of high iron containing water for aquaculture using  
ripe and unripe peels of plantain. MOJ Toxicol. 3(5), 110‒113.  
1
Author Profile  
Dr. T.C.N Angaye hails from Bayelsa  
State, Nigeria. He is Scholar,  
Enviromentalist and Researcher with over  
0 Publications in Local and International  
a
8
Journals. He obtained his B.Sc, M.Sc &  
Ph.D degrees from the Niger Delta  
University, Bayelsa State, Nigeria where he  
is currently a Lecturer.  
Mr. Egbegi E. M. was born in 1981 at  
Ebedebiri, Bayelsa State. He is  
a
researcher, Maritime Inspector and a trainer  
in the Maritime field, presently teaching at  
the Nigerian Maritime University,  
Okerenkoko, warri, Delta State Nigeria. He  
has an M.Sc. From the renowned World  
Maritime University, Malmo, Sweden.  
B.Sc. From Niger Delta university,  
Nigeria,Diploma-Esberge,  
Denmark,  
313