Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 442-447  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Effective Parameters in the Green Synthesis of  
Zero-valent Iron Nanoparticles as a Fenton-like  
Catalyst  
1
2
3
Seyedeh-Masoumeh Taghizadeh , Alireza Zare-Hoseinabadi , Aydin Berenjian , Younes  
1
4,1,*  
Ghasemi , and Alireza Ebrahiminezhad  
1
Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical  
Sciences, Shiraz, Iran  
Department of Medical Biotechnology, School of Medicine and Non-Communicable Diseases Research Centre, Fasa University of Medical  
2
Sciences, Fasa, Iran  
3
School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand  
4
Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences,  
Shiraz, Iran  
Received: 03/09/2019  
Accepted: 21/01/2020  
Published: 20/02/2020  
Abstract  
Nowadays, utilization of new and sustainable techniques for the synthesis of INPs are increasing significantly. Common nettle  
(
Urtica dioica) or stinging nettle is an herbaceous perennial flowering plant with a significant reduction potential. Leaf extract of  
this plant can reduce iron ions to zero-valent INPs. Like all chemical and biochemical reactions, reaction conditions have an  
immense effect on the process. In this experiment, impacts of different process parameters such as FeCl concentration, leaf extract  
quantity, reaction temperature, and reaction time on the biosynthesis of INPs were evaluated. FeCl concentration, quantity of the  
3
3
leaf extract, and reaction temperature were identified as effective factors. But, reaction time has not any significant impact. INPs  
were characterized by transmission electron microscope (TEM) Fourier transform infrared (FTIR) spectroscopy, and X-ray  
diffractometer. Particles were spherical and oval in shape and were measured to be 2171 nm with mean particle size of 46 nm.  
TEM illustrated that the zero-valent iron (ZVI) nanoparticles had mostly a spherical shape with 46 nm of mean diameter. The  
particles tend to form irregular clusters with phytochemicals from leaf extract and form macrostructures in the range of 117605  
nm. Prepared nanostructures are a promising catalyst in Fenton reactions and can degrade Methyl orange dye with about 70 percent  
efficiency in 5 h.  
Keywords: Bioreduction; Biosynthesis; Common nettle; Fe nanoparticles; Plant mediated synthesis; Urtica dioica  
Introduction1  
biology and biotechnology (6, 7), ferrofluids (8), and  
1
medicine (9). Hence, production of INPs with varius  
characteristics has attracted great attention (4, 10-12).  
Chemical synthesis is one of the primary techniques for  
synthesis of INPs. Since now chemical approaches has been  
developed significantly and is able to produce pure INPs  
with desirable characteristics. But, these techniques usually  
employ organic solvents and noxious chemicals and also are  
conducted at harsh conditions (13-17).  
Biosynthesis has emerged as a potential sustainable  
alternative for chemical procedures (18-21). Biological  
compounds such as flavonoids, polyphenol, alkaloides,  
carbohydrates, proteins and other biomolecules can act as  
Nanoparticles retained so much attention in various  
fields of sciences and technologies due to thire unique  
physicochemical and biological properties (1, 2). Among all  
nanoparticles, metal nanoparticles are employed in a variety  
of fields such as environmental remediations, bioprocess  
intensification, bioseparation, pharmaceotical sciences, and  
nanomedicine (3). Among these nanoparticles, there has  
been special focus on iron nanoparticles (INPs) due to their  
unique properties such as ease of synthesis and  
functionalization, magnetic behavior, catalytic activity, and  
biocompatibility (4). These nanoparticles are now being  
applied in various fields including bioremediation (5),  
Corresponding author: Alireza Ebrahiminezhad, (a) Department of Pharmaceutical Biotechnology, School of Pharmacy and  
Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; (b) Department of Medical  
Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran. E-  
mail: a_ebrahimi@sums.ac.ir.  
4
42  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 442-447  
green bioreductant for synthesis of metal nanoparticles (22-  
weighed to calculate the concentration of prepared  
nanoparticles.  
2
7). These metabolites can also act as stabilizing agent to  
prevent agglomeration and improve dispersity and reactivity  
of nanoparticles (19, 21, 28, 29). Biosynthesis reactions have  
been conducted by using bioactive compounds from various  
organisms such as microbial cells, algae, and plants (19-21,  
2.4 Characterization of INPs  
Visual appearance and morphological characteristics of  
INPs were investigated by Philips CM 10, TEM, operated at  
high voltage (HT) 100 kV. The INPs was diluted in millipore  
water and dried on a carbon-coated copper grid.  
3
0). But, use of plant extracts for synthesis of INPs have  
considerable advantages over other organisms such as  
cheapness, availability, safety, less recovery steps and  
elimination of elaborate cell culture process (18, 31).  
Recent studies have shown that INPs can be synthesized  
by using extracts of eucalyptus, Castanea sativa, some kinds  
of tea, mulberry, pomegranate, peach, pear, vine, coffee,  
Salvia officinalis, Caricaya papaya, tangerine, sorghum, and  
so many other plants (4). But, like all chemical and  
biochemical reactions, biosynthesis of INPs can be affected  
by reaction conditions (4, 30, 32). So, there is an increasing  
demand for investigations toward recovery of the effective  
factors in the biosynthesis of INPs.  
Urtica dioica, also known as common nettle or stinging  
nettle, is an herbaceous perennial flowering plant in the  
family Urticaceae. U. dioica leaf extract contains various  
phytochemicals such as phenolic and flavonoid compounds,  
and has a long history of application in medicine and  
fooditarian (11, 33). In our previous study we have shown  
that leaf extract of this plant is so bioactive which can reduce  
ferric ion to zero-valent iron nanoparticles (11). In this study,  
3
Figure 1: Effects of FeCl concentration on the formation of INPs  
Particles size distribution was obtained using Image J  
software version 1.47v, an image analysis software  
developed by the NIH. Main functionality of the INPs  
were evaluated by Fourier transform infrared (FTIR)  
spectroscopy using a Bruker, Vertex 70, FTIR spectrometer,  
and the standard KBr pellet method in the range between 400  
the effect of different process parameters such as FeCl  
3
concentration, leaf extract quantity, reaction temperature,  
and reaction time on the biosynthesis of INPs by using  
Urtica dioica leaf extract were evaluated.  
-
1
-1  
cm and 4000 cm . Phase composition and crystallinity of  
INPs were obtained using Siemens D5000 x-ray powder  
diffractometer instrument. X-ray diffraction (XRD) pattern  
of INPs samples were scanned within the 2θ range from 20°  
to 90° and results were evaluated by PANalytical X’Pert  
HighScore software.  
2
Materials and methods  
2
.1 Materials  
3 2  
Ferric chloride (FeCl .6H O, analytical grade), was  
purchased from Merck Chemicals (Darmstadt, Hessen,  
Germany) and used without any further treatment. Dried  
leaves of U. dioica were purchased from a local shop (Fasa,  
Fars, Iran). Millipore water (Millipore Corp., Bedford, MA,  
USA) was used throughout the whole experiment.  
2
.5 Fenton catalytic activity of INPs  
Potential of the prepared nanostructures as a Fenton  
catalyst was evaluated in a dye degradation reaction. The  
experiment was performed at room condition in single-use  
1
0 mL reaction volume (12). In brief, zero-valent iron  
2
.2 Leaf extract preparation  
Dried leaves were washed to remove any impurities and  
nanoparticles (1 mg/mL final concentration in reaction) were  
mixed with Methyl orange dye solution (20 mg/L)  
were dried at room temperature. In order to prepare aqueous  
extract of nettle leaves, deionized water was added to the  
crushed leaves at a ratio of 1:20 (w/v) and boiled under  
reflux for 15 min by using a heater mantel (11). The prepared  
mixture was cooled to room temperature and filtered through  
a Whatman filter paper (Reeve angel, Grade 201). The  
filtrate was centrifuged for 5 min at 2000 rpm to eliminate  
plant microparticles. The obtained clear solution was stored  
in the refrigerator and was used as leaf extract.  
2 2  
containing one per cent H O . The reaction was followed for  
h and rate of dye degradation was calculated against methyl  
6
orange standard curve at 465 nm (Hitachi U-0080D UVvis  
spectrophotometer, Tokyo Japan). A solution of Methyl  
orange and hydrogen peroxide without any nanostructure  
was set as the control.  
3 Results and discussion  
3
.1 Effective factors in the biosynthesis reaction  
2
.3 Effective factors in the biosynthesis reaction  
The effects of iron precursor concentration on the  
The effects of several parameters (i.e. FeCl  
3
biosynthesis of INPs were evaluated from 2.5 mM to 320  
mM ferric chloride and results were shown in Figure 1.  
Increase in the concentration of iron precursor up to 20 mM  
resulted to increase in the amount of prepared INPs. But,  
interestingly, more increase in the iron precursor has shown  
negative effect on the formation of nanoparticles. Similar  
effects were also reported for the green synthesis of silver  
concentration, leaf extract quantity, reaction temperature,  
and reaction time) on the biosynthesis of INPs were  
evaluated by one factor at a time approach. After completion  
of each reaction, the prepared INPs were harvested by  
centrifugation and washed with deionized water. The  
resulting black pellets were oven-dried at 50 °C for 48 h and  
4
43  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 442-447  
nanoparticles (AgNPs). It is shown that high concentrations  
of silver precursor (AgNO ) have an immense negative  
3
effect on the biosynthesis of AgNPs (25, 26).  
process and industrial production. Similar results were also  
reported for biosynthesis of INPs by using Amaranthus  
dubius leaf extract (32).  
Figure 2: Effects of leaf extract quantity on the formation of INPs  
Figure 3: Effects of reaction temperature on the formation of INPs  
Figure 5: TEM image of the biosynthesized INPs and  
corresponding particle size distribution pattern  
It has been shown that at increased temperatures up to  
3
7°C leaf extract has a higher reduction potential for INPs  
biosynthesis. But, increase in the reaction temperature above  
7°C have a negative effect on the formation of INPs (32).  
3
Negative effects of increased temperatures on the  
bioreduction of metallic ions were also reported for Zataria  
multiflora leaf extract, Alcea rosea flower extract and  
Ephedra intermedia stem extract (25, 26, 30). These results  
indicate that increase in the reaction temperature can degrade  
plants antioxidant compounds and decreases amount of the  
reduced nanoparticles (34-37).  
Effect of reaction time on the production of INPs was  
evaluated from 12 h to 48 h. As depicted in Figure 4, increase  
in the reaction time has no effect on the amount of  
synthesized nanoparticles. To provide enough time for  
biological interactions time periods below 12 h are not  
commonly set for biosynthesis reactions (11, 12, 19, 25, 26,  
29, 30). But, there is a report that 90 min is sufficient to  
achieve highest efficiency in production of INPs by using  
Amaranthus dubius leaf extract (32). Reaction times more  
than 48 h usually associated with the waste of time,  
aggregation of nanoparticles, and production of multi-  
Figure 4: Effects of reaction times on the formation of INPs  
The effect of U. dioica leaf extract quantity on the  
production of INPs is shown in Figure 2. The pattern  
revealed that amount of U. dioica leaf extract plays a  
significant role in the production of INPs and increase in the  
leaf extract quantity resulted in more nanoparticle  
production. Increase in the amount of leaf extract is equal to  
increase in the concentrations of bioactive compounds in the  
reaction and therefor more reduction of iron ions. The effect  
of reaction temperature was evaluated from 25°C to 75°C.  
Fortunately, room temperature (25°C) was identified as the  
best temperature for the bioreduction of iron ions (Figure 3).  
This means that bioreduction of iron ions by using U. dioica  
leaf extract is an economic reaction from energy  
consumption point of view which is so critical for scaling up  
4
44  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 442-447  
shaped nanoparticles (38-41).  
extracts (47), Sorghum bran extracts (59), Terminalia  
chebula (60), and Syzygium jambos L. (61).  
3
.2 Characterization of INPs  
TEM micrograph of the INPs is provided in Figure 5.  
3
.3 Fenton catalytic activity of INPs  
Catalytic activity of the prepared nanostructures over 6  
h is presented in Figure 8. More than 60 percent reduction in  
the dye concentration was achieved after 4 h reaction. After  
5
h reaction about 70 percent of Methyl orange was degraded  
and no more significant dye degradation was recorded after  
this time. Similar time dependent degradation pattern was  
also reported for other iron nanostructures which synthesized  
by using green tea leaves extract and leafy branches extract  
of Mediterranean cypress (Cupressus sempervirens) (12,  
6
2).  
Figure 6: FTIR spectrum of the biosynthesized INPs  
Figure 7: XRD pattern of the biosynthesized INPs  
Figure 8: Methyl orange degradation pattern using INPs as Fenton  
catalyst  
Produced nanoparticles were spherical and oval in shape  
and were measured to be 2171 nm with mean particle size  
of 46 nm. INPs with similar particles size distribution were  
also obtained by using Eucalyptus tereticornis, Melaleuca  
nesophila (42), Zataria multiflora (26), pistachio (43), green  
tea (44-46), and eucalyptus (47). TEM investigations  
revealed that prepared particles tend to form irregular  
clusters with phytochemicals from leaf extract and form  
macrostructures in the range of 117605 nm. This finding  
shows the role of plant organic compounds as reducing and  
stabilizing agent in the synthesis of INPs (43, 48).  
4
Conclusions  
U. dioica is a potential plant for biosynthesis of metallic  
nanoparticles. Nettle leaf extract has a significant reduction  
potential which can reduce ferric ions to zero-valent INPs in  
a sustainable, economic, and facile manner. Also, it has  
phytochemicals which can act as biological stabilizer.  
Reaction conditions (i.e. ferric ion concentration, leaf extract  
quantity, and reaction temperature) have a significant impact  
on the bioreduction of INPs. Bioactive compounds in the  
plants are sensitive to increased temperatures and usually  
bioreduction reactions are well done at room temperatures.  
Also, high concentrations of metal precursor can prevent  
formation of nanoparticles. Increase in the plant extract  
quantity resulted in the increase in the formation of  
nanoparticles which is due to increase of bioactive  
compounds in the reaction. About 12 h of reaction time can  
be sufficient for the formation of INPs and biological  
interactions. The particles were efficient as a Fenton-like  
catalyst and can be developed for technical applications in  
future.  
Fourier transformed infrared (FTIR) spectroscopy was  
used as non-destructive way to identify and study the  
interactions of biological compound with INPs (Figure 6)  
-
1
(
49). The broad peak at 3467 cm is corresponding to the O–  
H stretching vibrations (50, 51). The characteristic peak of  
-
1
CO bond and carbonyl group can be seen at 1070 cm and  
-1  
1
636 cm , respectively. These functionalities can be  
corresponding to heterocyclic compounds from proteins and  
unsaturated hydrocarbons (52-54). Absorption peaks from  
-
1
aliphatic CH groups are recorded at about 2800 cm (55,  
6). FeO stretching vibration resulted in two characteristic  
5
-
1
-1  
peaks at about 640 cm and 450 cm . Absence of these  
peaks in the recorded pattern is an indicative feature for zero-  
valent INPs (57, 58).  
Aknowledgment  
This experiment was financially supported by Fasa  
University of Medical Sciences under the grant No. 95095.  
XRD pattern of the synthesized INPs is shown in Figure  
7
. Lack of distinct diffraction peak shows amorphous nature  
Ethical issue  
of prepared nanoparticles. The broad hump peak in the  
region 10-20 of 2θ degrees is corresponding to organic  
compounds on the surface of INPs. Similar results were also  
reported for INPs which synthetized by using eucalyptus leaf  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission,  
manipulation of figures, competing interests and compliance  
4
45  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 442-447  
with policies on research ethics. Authors adhere to  
publication requirements that submitted work is original and  
has not been published elsewhere in any language.  
14. Iida H, Osaka T, Takayanagi K, Nakanishi T. Synthesis of  
Fe  
by controlled hydrolysis.  
007;314(1):274-80.  
O
3 4  
nanoparticles with various sizes and magnetic properties  
J
Colloid Interface Sci.  
2
1
5. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, et al.  
Ultra-large-scale syntheses of monodisperse nanocrystals. Nat  
Mater. 2004;3(12):891-5.  
Competing interests  
The authors declare that there is no conflict of interest  
that would prejudice the impartiality of this scientific work.  
16. Si S, Kotal A, Mandal TK, Giri S, Nakamura H, Kohara T. Size-  
controlled synthesis of magnetite nanoparticles in the presence  
of polyelectrolytes. Chem Mater. 2004;16(18):3489-96.  
Authors’ contribution  
All authors of this study have a complete contribution  
for data collection, data analyses and manuscript writing.  
1
7. Yu WW, Chang E, Sayes CM, Drezek R, Colvin VL. Aqueous  
dispersion of monodisperse magnetic iron oxide nanocrystals  
through phase transfer. Nanotechnol. 2006;17(17):4483-7.  
8. Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik  
AO, Yaminsky IV, et al. Biosynthesis of stable iron oxide  
nanoparticles in aqueous extracts of Hordeum vulgare and  
Rumex acetosa plants. Langmuir. 2014;30(20):5982-8.  
9. Ebrahiminezhad A, Bagheri M, Taghizadeh S, Berenjian A,  
Ghasemi Y. Biomimetic synthesis of silver nanoparticles using  
microalgal secretory carbohydrates as a novel anticancer and  
antimicrobial. Adv Nat Sci. 2016;7.  
0. Kianpour S, Ebrahiminezhad A, Mohkam M, Tamaddon AM,  
Dehshahri A, Heidari R, et al. Physicochemical and biological  
characteristics of the nanostructured polysaccharide‐iron  
hydrogel produced by microorganism Klebsiella oxytoca. J  
Basic Microbiol. 2016;2016(56):13240.  
1. Ebrahiminezhad A, Zare M, Kiyanpour S, Berenjian A,  
Niknezhad SV, Ghasemi Y. Biosynthesis of xanthan gum  
coated iron nanoparticles by using Xanthomonas campestris.  
IET Nanobiotechnol. 2017;151:684-91.  
1
References  
1
.
Mohanty C, Arya G, Verma RS, Sahoo SK.  
Nanobiotechnology: application of nanotechnology in  
therapeutics and diagnosis. Int J Green, Nanotechnol Biomed.  
1
2
2
009;1(1):B24-B38.  
2
.
Ebrahiminezhad A, Varma V, Yang S, Ghasemi Y, Berenjian  
A. Synthesis and application of amine functionalized iron oxide  
nanoparticles on menaquinone-7 fermentation: A step towards  
process intensification. Nanomaterials. 2015;6(1):1-9.  
Amirkhanov RN, Zarytova VF, Zenkova MAJRCR. Inorganic  
nanoparticles as nucleic acid transporters into eukaryotic cells.  
Russ Chem Rev. 2017;86(2):113-27.  
Ebrahiminezhad A, Zare-Hoseinabadi A, Sarmah AK,  
Taghizadeh S, Ghasemi Y, Berenjian A. Plant-Mediated  
Synthesis and Applications of Iron Nanoparticles. Mol  
Biotechnol. 2017:1-15.  
3
4
.
.
2
2
2. Mystrioti C, Xanthopoulou T, Tsakiridis P, Papassiopi N,  
Xenidis A. Comparative evaluation of five plant extracts and  
juices for nanoiron synthesis and application for hexavalent  
chromium reduction. Sci Total Environ. 2016;539:105-13.  
3. Xie J, Lee JY, Wang DI, Ting YP. Silver nanoplates: from  
biological to biomimetic synthesis. ACS nano. 2007;1(5):429-  
5
6
.
.
Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, et al.  
Use of iron oxide nanomaterials in wastewater treatment: a  
review. Sci Total Environ. 2012;424:1-10.  
Ranmadugala D, Ebrahiminezhad A, Manley-Harris M,  
Ghasemi Y, Berenjian A. Iron oxide nanoparticles in modern  
microbiology and biotechnology. Crit Rev Microbiol.  
2
2
2
3
9.  
2
017;43(4):493-507  
4. Ebrahiminezhad A, Berenjian A, Ghasemi Y. Template free  
synthesis of natural carbohydrates functionalised fluorescent  
silver nanoclusters. IET Nanobiotechnol. 2016;2016:1-4.  
5. Ebrahiminezhad A, Taghizadeh S, Berenjian A, Heidaryan  
Naeini F, Ghasemi Y. Green Synthesis of Silver Nanoparticles  
Capped with Natural Carbohydrates Using Ephedra intermedia.  
Nanosci Nanotechnol Asia. 2016;6:1-9.  
6. Ebrahiminezhad A, Taghizadeh S, Berenjiand A, Rahi A,  
Ghasemi Y. Synthesis and characterization of silver  
nanoparticles with natural carbohydrate capping using Zataria  
multiflora. Adv Mater Lett. 2016;7(6):122-7.  
7. Cruz D, Falé PL, Mourato A, Vaz PD, Luisa Serralheiro M,  
Lino ARL. Preparation and physicochemical characterization of  
Ag nanoparticles biosynthesized by Lippia citriodora (Lemon  
Verbena). Colloids Surf B. 2010;81(1):67-73.  
8. Machado S, Pacheco JG, Nouws HP, Albergaria JT, Delerue-  
Matos C. Characterization of green zero-valent iron  
nanoparticles produced with tree leaf extracts. Sci Total  
Environ. 2015;533:76-81.  
7
8
.
.
Ebrahiminezhad A, Varma V, Yang S, Berenjian A. Magnetic  
immobilization of Bacillus subtilis natto cells for menaquinone-  
7
8
fermentation. Appl Microbiol Biotechnol. 2016;100(1):173-  
0.  
Bautista M, Bomati-Miguel O, Zhao X, Morales M, Gonzalez-  
Carreno T, de Alejo RP, et al. Comparative study of ferrofluids  
based on dextran-coated iron oxide and metal nanoparticles for  
contrast agents in magnetic resonance imaging. Nanotechnol.  
2
2
2
2
3
3
2
004;15(4):S154-S9.  
9
1
.
Singh R, Nalwa HS. Medical applications of nanoparticles in  
biological imaging, cell labeling, antimicrobial agents, and  
anticancer nanodrugs. J Biomed Nanotechnol. 2011;7(4):489-  
5
03.  
0. Gholami A, Rasoul-amini S, Ebrahiminezhad A, Seradj SH,  
Ghasemi Y. Lipoamino acid coated superparamagnetic iron  
oxide nanoparticles concentration and time dependently  
enhanced growth of human hepatocarcinoma cell line (Hep-  
G2). J Nanomater. 2015;2015.  
1
1
1
1. Ebrahiminezhad A, Zare-Hoseinabadi A, Berenjian A, Ghasemi  
Y. Green synthesis and characterization of zero-valent iron  
nanoparticles using stinging nettle (Urtica dioica) leaf extract.  
Green Proc Synth. 2017;6(5).  
2. Ebrahiminezhad A, Taghizadeh S, Ghasemi Y, Berenjian A.  
Green synthesized nanoclusters of ultra-small zero valent iron  
nanoparticles as a novel dye removing material. Sci Total  
Environ. 2017;15(621):1527-32.  
9. Ebrahiminezhad A, Taghizadeh S, Ghasemi Y. Green synthesis  
of silver nanoparticles using Mediterranean Cypress (Cupressus  
sempervirens) leaf extract. Am  
017;13(1):1-6.  
J Biochem Biotechnol.  
2
0. Ebrahiminezhad A, Barzegar Y, Ghasemi Y, Berenjian A.  
Green synthesis and characterization of silver nanoparticles  
using Alcea rosea flower extract as a new generation of  
antimicrobials. Chem Ind Chem Eng Q. 2016;2016:31-7.  
1. Nagajyothi P, Pandurangan M, Kim DH, Sreekanth T, Shim  
JJJoCS. Green synthesis of iron oxide nanoparticles and their  
catalytic and in vitro anticancer activities. J Cluster Sci.  
3. Ranmadugala D, Ebrahiminezhad A, Manley-Harris M,  
Ghasemi  
Y,  
Berenjian  
A.  
Impact  
of  
3–  
aminopropyltriethoxysilane-coated iron oxide nanoparticles on  
menaquinone-7 production using B. subtilis. Nanomaterials.  
2
017;28(1):245-57.  
2
017;7(11).  
4
46  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 442-447  
3
2. Harshiny M, Iswarya CN, Matheswaran M. Biogenic synthesis  
of iron nanoparticles using Amaranthus dubius leaf extract as a  
reducing agent. Powder Technol. 2015;286:744-9.  
3. Joshi BC, Mukhija M, Kalia AN. Pharmacognostical review of  
Urtica dioica L. Int J Green Pharm. 2014;8(4):201-9.  
4. Lowry OH, Passonneau JV, Rock MK. The stability of pyridine  
nucleotides. J biol Chem. 1961;236(10):2756-9.  
5. Pucci F, Rooman MJCoisb. Physical and molecular bases of  
protein thermal stability and cold adaptation. Curr Opin Struct  
Biol. 2017;42:117-28.  
6. Argos P, Rossmann MG, Grau UM, Zuber H, Frank G,  
Tratschin JDJB. Thermal stability and protein structure.  
Biochem. 1979;18(25):5698-703.  
hollow silica microspheres using a novel biological template.  
Colloids Surf B. 2014;118:249-53.  
52. Weng X, Huang L, Chen Z, Megharaj M, Naidu R. Synthesis of  
iron-based nanoparticles by green tea extract and their  
degradation of malachite. Ind Crops Prod. 2013;51:342-7.  
53. Sangeetha G, Rajeshwari S, Venckatesh RJMRB. Green  
synthesis of zinc oxide nanoparticles by aloe barbadensis miller  
leaf extract: Structure and optical properties. Mater Res Bull.  
2011;46(12):2560-6.  
54. Fazlzadeh M, Rahmani K, Zarei A, Abdoallahzadeh H, Nasiri  
F, Khosravi RJAPT. A novel green synthesis of zero valent iron  
nanoparticles (NZVI) using three plant extracts and their  
efficient application for removal of Cr (VI) from aqueous  
solutions. Adv Powder Technol. 2017;28(1):122-30.  
3
3
3
3
3
3
7. Daniel RM, Cowan DAJC, CMLS MLS. Biomolecular stability  
and life at high temperatures. Cell Mol Life Sci CLMS.  
55. Ebrahimi N, Rasoul-Amini S, Ebrahiminezhad A, Ghasemi Y,  
Gholami A, Seradj H. Comparative Study on Characteristics  
2
000;57(2):250-64.  
8. Wuithschick M, Birnbaum A, Witte S, Sztucki M, Vainio U,  
Pinna N, et al. Turkevich in new robes: key questions answered  
for the most common gold nanoparticle synthesis. ACS nano.  
and  
Cytotoxicity  
of  
Bifunctional  
Magnetic-Silver  
Nanostructures: Synthesized Using Three Different Reducing  
Agents. Acta Metall Sin. 2016;29(4):326-34.  
2
015;9(7):7052-71.  
56. Ebrahiminezhad A, Davaran S, Rasoul-Amini S, Barar J,  
Moghadam M, Ghasemi Y. Synthesis, characterization and  
anti-Listeria monocytogenes effect of amino acid coated  
magnetite nanoparticles. Curr Nanosci. 2012;8(6):868-74.  
57. Ebrahiminezhad A, Rasoul-Amini S, Davaran S, Barar J,  
Ghasemi Y. Impacts of iron oxide nanoparticles on the invasion  
power of Listeria monocytogenes. Curr Nanosci.  
2014;10(3):382-8.  
3
4
9. Upadhyay LSB, Verma NJAL. Recent developments and  
applications in plant-extract mediated synthesis of silver  
nanoparticles. Anal Lett. 2015;48(17):2676-92.  
0. Murphy RJ, Pristinski D, Migler K, Douglas JF, Prabhu  
VMJTJocp. Dynamic light scattering investigations of  
nanoparticle aggregation following a light-induced pH jump. J  
Chem Phys. 2010;132(19).  
4
4
1. Tao AR, Habas S, Yang PJs. Shape control of colloidal metal  
nanocrystals. Small. 2008;4(3):310-25.  
2. Wang Z, Fang C, Megharaj M. Characterization of iron–  
polyphenol nanoparticles synthesized by three plant extracts  
and their fenton oxidation of azo dye. ACS Sustainable Chem  
Eng. 2014;2(4):1022-5.  
3. Soliemanzadeh A, Fekri M, Bakhtiary S, Mehrizi MH.  
Biosynthesis of iron nanoparticles and their application in  
removing phosphorus from aqueous solutions. Chem Ecol.  
58. Ebrahimi N, Rasoul-Amini S, Niazi A, Erfani N, Moghadam A,  
Ebrahiminezhad A, et al. Cytotoxic and Apoptotic Effects of  
Three Types of Silver-Iron Oxide Binary Hybrid Nanoparticles.  
Curr Pharm Biotechnol. 2016;17(12):1049-57.  
59. Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM,  
Collins JB, et al. Biosynthesis of iron and silver nanoparticles  
at room temperature using aqueous sorghum bran extracts.  
Langmuir. 2011;27(1):264-71.  
60. Kumar KM, Mandal BK, Kumar KS, Reddy PS, Sreedhar B.  
Biobased green method to synthesise palladium and iron  
nanoparticles using Terminalia chebula aqueous extract.  
Spectrochim Acta Mol Biomol Spectrosc. 2013;102:128-33.  
61. Xiao Z, Yuan M, Yang B, Liu Z, Huang J, Sun D. Plant-  
mediated synthesis of highly active iron nanoparticles for Cr  
(VI) removal: Investigation of the leading biomolecules.  
Chemosphere. 2016;150:357-64.  
62. Shahwan T, Sirriah SA, Nairat M, Boyacı E, Eroğlu AE, Scott  
TB, et al. Green synthesis of iron nanoparticles and their  
application as a Fenton-like catalyst for the degradation of  
aqueous cationic and anionic dyes. Chem Eng J.  
2011;172(1):258-66.  
4
4
4
4
2
016;32(3):286-300.  
4. Markova Z, Novak P, Kaslik J, Plachtova P, Brazdova M,  
Jancula D, et al. Iron (II, III)polyphenol complex nanoparticles  
derived from green tea with remarkable ecotoxicological  
impact. ACS Sustainable Chem Eng. 2014;2(7):1674-80.  
5. Wang T, Lin J, Chen Z, Megharaj M, Naidu R. Green  
synthesized iron nanoparticles by green tea and eucalyptus  
leaves extracts used for removal of nitrate in aqueous solution.  
J Clean Prod. 2014;83:413-9.  
6. Shahwan T, Abu Sirriah S, Nairat M, Boyacı E, Eroğlu AE,  
Scott TB, et al. Green synthesis of iron nanoparticles and their  
application as a Fenton-like catalyst for the degradation of  
aqueous cationic and anionic dyes. Chem Eng J.  
2
011;172(1):258-66.  
4
4
7. Wang T, Jin X, Chen Z, Megharaj M, Naidu R. Green synthesis  
of Fe nanoparticles using eucalyptus leaf extracts for treatment  
of eutrophic wastewater. Sci Total Environ. 2014;466:210-3.  
8. Kumar B, Smita K, Cumbal L, Debut A, Galeas S, Guerrero  
VH. Phytosynthesis and photocatalytic activity of magnetite  
3 4  
(Fe O ) nanoparticles using the Andean blackberry leaf. Mater  
Chem Phys. 2016;179:310-5.  
4
5
9. Radu G-L, Truica G-I, Penu R, Moroeanu V, Litescu  
SCJUSBBC, Science M. Use of the Fourier transform infrared  
spectroscopy in characterization of specific samples. UPB Sci  
Bull, Series B. 2012;74(4):137-48.  
0. Oliveira RN, Mancini MC, Oliveira FCSd, Passos TM, Quilty  
B, Thiré RMdSM, et al. FTIR analysis and quantification of  
phenols and flavonoids of five commercially available plants  
extracts used in wound healing. Matéria (Rio de Janeiro).  
2
016;21(3):767-79.  
5
1. Ebrahiminezhad A, Najafipour S, Kouhpayeh A, Berenjian A,  
Rasoul-Amini S, Ghasemi Y. Facile fabrication of uniform  
4
47