Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 403-409  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Energy Consumption, Energy Price, Energy Intensity  
Environmental Degradation, and Economic Growth  
Nexus in African OPEC Countries: Evidence from  
Simultaneous Equations Models  
1
1
1
1
Umar Muhammad Dabachi , Suraya Mahmood , Ali Umar Ahmad *, Suraya Ismail , Ibrahim  
1
1
1
2
Sambo Farouq , Aminu Hassan Jakada , Umar Aliyu Mustapha , Ahmad Tijjani Abdullahi ,  
1
1
Abubakar Atiku Muhammad , Kamalu Kabiru  
1
Faculty of Business and Management, University Sultan Zainal Abidin (UNISZA), Terengaennu Malaysia  
2
Faculty of Social Management Science, Department of Economics, Bayero University Kano, Kano Nigeria  
Received: 12/12/2019 Accepted: 20/01/2020 Published: 20/02/2020  
Abstract  
This paper investigated the causal relationships among environmental degradation, energy consumption, energy price, energy intensity,  
and economic growth using simultaneous-equations models with panel data of OPEC African countries from 1970 through 2018. The study  
used second-generation techniques to analyse the stationarity and co-integration relationship among the variables. The empirical results of  
the research showed that there exists a bidirectional causal relationship between energy consumption and economic growth; and energy prices  
and economic growth; and environmental degradation and economic growth. Moreover, the result revealed a unidirectional causal  
relationship running from economic growth to energy intensity. Nevertheless, the findings show a unidirectional causality from energy  
consumption to energy intensity with no effect of feedback, and there exists a bidirectional causal relationship between energy prices and  
energy intensity; between environmental degradation and energy intensity; and between environmental degradation and energy prices for all  
OPEC African countries. The study recommended that energy policies should identify the dissimilarities in the causal linkages between  
economic growth and energy consumption to retain sustainable energy consumption in OPEC African countries.  
Keywords: Energy Consumption, Economic Growth, Energy Intensity, Energy Price, Simultaneous-Equations Models  
Introduction1  
for reform in the energy growth axis, however, will influence a  
1
country's optimal energy policy. Energy saving in the  
manufacturing, farming, retail, and housing industries may be a  
priority if it helps to reduce energy bills, products and services  
costs, and greenhouse gas emissions. Energy-Saving strategies  
will lead to a better allocation of resources by moving labour and  
capital from the sector of energy to a more productive sector.  
Nonetheless, if a country's output is heavily dependent on oil,  
energy conservation policies will restrict economic growth.  
Policymakers, therefore, need to learn the causal relationship  
between energy consumption economic growth. Four theories  
have embodied the causal relationship between energy  
consumption and economic growth (7), (3). The demand theory  
suggests that energy usage explicitly and as a supplement to  
labour and capital has an essential impact on the cycle of  
economic growth (2). If one-way causality is identified between  
energy usage and economic growth, the theory of growth is  
For a decade, Africa had undergone a steady growth with at  
an average 5 percent annual increase in GDP following many  
global crises. There are seven out of the world's ten fastest-  
growing economies in Africa. This fast growth results in higher  
interest accrued to Africa and turns its image from a region of  
civil wars, chaos, and poverty into a region of optimism and trade  
and prosperity. In this study, we believe that one major issue  
associated with this explosive growth involves energy and  
contributes to the research by exploring the significance of energy  
concerning Africa's economic growth. In reality, energy usage  
promotes economic chances, lowers travel costs, and upgrades the  
industrial sector contributing to urban transformation (21).  
Energy has indeed been strongly linked to economic growth  
because energy is an essential input in the cumulative output  
process. Therefore, the relationship between economic growth  
and energy policy is generally considered to be close. The scope  
1
Correspondent Author: Ali Umar Ahmad, Faculty of Business  
and Management, University Sultan Zainal Abidin (UNISZA),  
Terengaennu Malaysia. Email: aliumaraha@unisza.edu.my.  
4
03  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 403-409  
supported. In this case, the energy dependency on the economic  
performance of the relevant country is so strong that fluctuations  
in the supply of energy would adversely affect economic growth.  
Throughout the context of the growth hypothesis, the policies of  
energy-saving can adversely affect economic growth. Well into  
the situation of the growth model, so as a universality relationship  
between power and capital has been believed, the impact of  
technological innovations on energy efficiency can be so strong  
in the long run that it leads to a decline in the energy reliance of  
the productive process as capital usage increases.  
emissions of carbon dioxide lead to about 2 over 3 of global  
emissions CO . The overall amount of carbon emission due to the  
2
energy sector keeps rising as the global economy grows.  
Nevertheless, it challenges the quest for environmental protection  
and viable economic growth, which is given as crucial to the  
globe's long-term ambitions for economic and social development  
as a whole. Such developments eventually lead to different  
arguments about the importance of the rise in energy  
consumption, especially from non-renewable origins to  
developing nations ' growth. When part of climate change  
mitigation and environmental pollution strategies, initiatives also  
call for the replacement of non-renewable energy sources with  
renewable energy. Empirical research of the interaction among  
environmental degradation and economic growth in developing  
economies is therefore crucial to their short and long-run energy  
policies.  
2
Literature Review  
The 1971 fall of the Bretton Woods system and the 1973 first  
oil shocks threatened some of the conventional macroeconomic  
structures, such as the distribution process. Nonetheless, a global  
recession preceded the sudden increase in oil prices due to the oil  
embargo concerning the Organization of Petroleum Exporting  
Countries (OPEC). Several ground-breaking studies were  
conducted during this period (5, 6, 9, 16 and 22) to investigate the  
correlation between oil price shocks and economic activity to test  
whether the reported depression (the 1970s) was due to the 1973  
oil shock. (18) is the most influential paper in this field; he argued  
that oil price increases were at least partially responsible for every  
post-second world war US recession except the one in 1960.  
The above-mentioned ground-breaking experiments were  
linked to the US economy in contrast to (18). These studies have  
identified a relationship between US economic growth and oil  
price movement. After these studies, a large number of studies  
were conducted in various areas. Therefore, this study examined  
the causal relationships among energy price, energy intensity,  
energy consumption, and economic growth using simultaneous-  
equations models with panel data of OPEC African countries.  
However, (17) investigated the causality relationship between  
trade openness, economic growth, and energy consumption. A  
panel data analysis of Asian countries was used, with the  
application of panel VECM, FMOLS, and DOLS. The inference  
was drawn about the co-integration between economic growth,  
trade openness, and energy consumption. While the FMOLS and  
DOLS estimation analysis reveal a positive relationship between  
energy consumption and income growth, energy consumption and  
trade openness, whereas an inverse relationship between energy  
consumption and energy prices is observed. Similarly, to examine  
the effects of Trade Openness, Energy Consumption and  
Economic Growth Relationship in Iran. (14) applied Bayer and  
Hanck co-integration test, Vector Error Correction Model. The  
findings of this study show the presence of co-integration  
Likewise, (6) relate energy consumption, carbon dioxide  
emissions, and economic growth using the South African  
economy. The study of (5) combined co-integration approach,  
(20) bounds test and Kripfganz and Schneider causality test. The  
result indicated that a one-way causality existed from energy use  
to economic growth, which validates the energy-led growth  
hypothesis. Consequently, (23) found the relationship between  
electricity use, real gross domestic product per capita, and carbon  
emission in Zimbabwe. The study applied Zivot-Andrews, Maki  
co-integration, DOLS, and Toda-Yamamoto causality test. There  
exists a long-run positive relationship between electricity  
consumption and real growth domestic product per capita, also a  
one-way causality existed and running from electricity  
consumption to the growth.  
3 Acknowledgment Econometric Methodology  
and Results  
3
.1 Data and Descriptive Statistics  
The study used yearly that covers the period of 19702018.  
Gross Domestic Product growth as a proxy for Economic growth,  
Energy Prices were calculated as a ration of Energy Consumption  
(kg of oil equivalent per capita), Energy Intensity (MJ/$2011 PPP  
GDP), and environmental degredation (CO emission per capita  
2
metric ton) were collected from World Bank (2019) world  
development indicators and Average annual West Texas  
Intermediate (WTI) crude oil price (in U.S. dollars per barrel) and  
Consumer Price Index (1) was collected from OECD (2019)  
database. The trade openness, hibernation, foreign direct  
investment, and financial development are the control variables in  
this study and were sourced from World Bank (2019) world  
development indicators. This study used the Solow development  
model, which was first demonstrated by Mankiw, (17) on the eve  
of Islam's (1995) in the panel data study. Consider the Cobb-  
Douglas growth model as follow:  
Where, is the output, is the capital is the labour force;  
meanwhile, are (7), (14), (16), and (17), Hence, the current study  
extends the equation (1) above by including energy consumption,  
energy prices, and energy intensity, the following functional  
form:  
amongst the variables. The causality result showed  
a
unidirectional relationship in the short run from energy  
consumption to trade openness. Meanwhile, the long-run  
relationship test showed the bidirectional causality between  
economic growth and energy consumption, and between  
openness and energy usage, also a unidirectional causality from  
openness to economic growth was recorded.  
Seeing as how the developed countries have experienced rapid  
industrialization, economic development, and growth as a result  
of heavy energy use for industrial and other economic activities,  
it all seems and indicates that developing countries will employ  
the same development models. As per the United Nations (3). Oil,  
coal, and gas has driven the industrialization of the country but  
푖푡  
1−푏  
푖푡 푖푡  
푖푡  
= 푊 (퐾 퐿 )  
(ꢀ)  
Where,  is the output,  is the capital  is the labour force;  
푖푡  
have also made  
a tremendous contribution to economic  
meanwhile,  Are (17), (19), (24), and (4). Hence, the current  
development and social well-fare. As such, power-related  
4
04  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 403-409  
study extends the equation (1) above by including energy  
consumption, energy prices, and energy intensity, the following  
functional form:  
distribution is assumed to be normally distributed. Also, if the  
Skewness Coefficient is in a surfeit of unity, it is measured  
relatively excessive, and a low (high) Kurtosis value reveals  
excessive platykurtic (extreme leptokurtic). This showed that the  
frequency distributions are not normal. The results of the  
correlation matrix show that economic growth decrease along  
with the energy prices and energy intensity, while energy  
consumption, however, increases economic growth in the African  
OPEC economies.  
퐿푁푅퐺퐷푃 = 푓(퐿푁퐸퐶 , 퐿푁퐸푃 , 퐿푁퐸퐼 , 퐿푁퐶푂2 )  
(2)  
푖푡  
푖푡  
푖푡  
푖푡  
This study will transform all the variables into natural  
logarithms to capture their elasticity value and set them free from  
the problem of heteroscedasticity. The functional relationship  
between energy consumption, energy prices, energy intensity, and  
economic growth can be represented as follows:  
3.2 Testing slope homogeneity Testing the cross-sectional  
dependency/ Second Generation Panel Unit Root Test  
퐿푁푅퐺퐷푃 = 휃 + 휗 퐿푁퐸퐶 + 휗 퐿푁퐸푃 + 휗 퐿푁퐸퐼  
The second issue in data analysis for the panel is determining  
whether the slope parameters are heterogeneous or not. A robust  
null hypothesis is a causality from one variable to another by  
imposing the joint restriction on the whole panel (Granger, 2003).  
Besides, the parameter homogeneity assumption is not capable of  
capturing heterogeneity due to specific characteristics of the  
region (Breitung, 2005). Also, after the slope of homogeneity is  
the relationship dependency test. Cross-section dependency must  
be tested once proceeding for further steps. Otherwise, outcomes  
may be bias and contradictory (Breusch and Pagan, 1980;  
Pesaran, 2004). Therefore, the presence of cross-section  
dependence in the series and the equation of co-integration should  
be checked before further studies.  
0
1
푖푡  
푖푡  
3
푖푡  
+
3 퐿푁퐶푂2 + 휀푡  
(ꢂ)  
Where 퐿푁푅퐺퐷 indicated the natural logarithms of real  
gross domestic product, 퐿푁퐸퐶 indicated the natural logarithms  
of Energy Consumption, 퐿푁퐸푃 indicated the natural logarithms  
푖푡  
of Energy Prices, 퐿푁퐸퐼 indicated the natural logarithms of  
Energy Intensity, 퐿푁퐶푂2 indicated the natural logarithms of  
envronmental degradation, and is the error term with the  
presumption that it has a normal distribution with zero mean and  
predictable variance. The following tables, 1, represented the  
descriptive and correlation analysis of the variables. The results  
showed that the values of Kurtosis and Skewness show a lack of  
symmetric in the distribution. In general, if the values of Kurtosis  
and Skewness are 0 and three, respectively, the observed  
Table 1: Descriptive and Correlation Analysis  
LNGDP  
1.425  
LNEU  
6.766  
0.682  
0.242  
2.161  
LNEP  
1.733  
1.628  
4.741  
25.46  
LNEI  
1.465  
0.444  
0.293  
2.527  
LNCO2  
19.07  
LNFD  
2.525  
0.728  
-0.093  
2.810  
LNPOP  
0.986  
LNTOP  
3.733  
LNFDI  
4.342  
0.481  
-0.321  
2.658  
Mean  
Std. Dev.  
1.056  
2.260  
0.365  
0.585  
Skewness -0.220  
-0.913  
3.709  
-0.992  
5.534  
-0.421  
4.158  
Kurtosis  
LNGDP  
5.356  
1.000  
LNEU  
LNEP  
LNEI  
0.045  
0.398)  
1.000  
(
-0.171*  
0.001)  
-0.177*  
(0.001)  
1.000  
(
-0.101  
0.061)  
0.078  
(0.146)  
0.018  
(0.729)  
1.000  
(
LNCO2  
LNFD  
LNPOP  
0.045  
0.403)  
0.109**  
(0.044)  
-0.140*  
(0.009)  
0.078  
(0.148)  
1.000  
(
-0.143*  
0.008)  
0.135**  
(0.012)  
-0.082  
(0.128)  
-0.001  
(0.982)  
-0.413*  
(0.000)  
1.000  
(
-0.145*  
0.007)  
-0.258*  
(0.000)  
0.164*  
(0.002)  
-0.036  
(0.503)  
-0.159**  
(0.003)  
-0.128**  
(0.018)  
1.000  
(
LNTOP  
LNFDI  
0.230*  
0.000)  
0.445*  
0.000)  
(0.145*)  
(0.007)  
0.144630  
0.0073  
-0.308*  
(0.000)  
-0.219*  
(0.000)  
-0.223*  
(0.000)  
-0.332*  
(0.000)  
0.172*  
(0.001)  
0.218*  
(0.000)  
0.007  
-0.063  
1.000  
(
(0.892)  
0.388*  
(0.000)  
(0.243)  
-0.346*  
(0.000)  
-0.222*  
(0.000)  
1.000  
(
4
05  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 403-409  
The presence of cross-sectional dependence between  
countries is tested through the (6) LM test when the time  
dimension exceeds the cross-sectional dimension. (24) has  
improved this test if the time dimension is smaller than the cross-  
section dimension, and the time dimension is larger than the  
cross-section continuum. If the average group is zero, this test is  
biased, but the average individual is distinct from zero. In the last  
step to know the stationarities' property of the variables, the panel  
unit root test must be taken.  
There are two groups of panel unit root tests developed in the  
literature. The first group includes first-generation unit root tests  
that ignore cross-sectional dependence, while the second group  
contains second-generation unit root tests that allow for cross-  
sectional dependence (8) and (18). There are various methods for  
the panel unit root test. This study chooses two-second generation  
panel unit root tests such as CIPS test, and CADF test. The table  
below showed the results of each test. As can be seen from Table  
for more than one cointegration vector, but (10) assumes only one  
cointegrating vector. (14) consider testing for cointegration under  
the assumption that: for …., N the null hypothesis is for …N  
against the alternative hypothesis that for a non-vanishing fraction  
of cross-section members. This test statistic is parallel to that of  
(20) and is known by a cantered and scaled version of the cross-  
sectional average of the individual trace statistics. Denotes the  
trace statistic for the null hypothesis of a k-dimensional  
cointegrating space for the unit where the superscript s indicates  
the specification of the deterministic components. Using the  
central limit theorem in the cross-sectional dimension and the  
appropriate mean and variance correction factors imply that under  
the null hypothesis:  
푁 ∑ ꢅ퐿푅 ꢃ ⁄ ꢄ ꢆ 퐸(퐿푅 ꢃ ⁄ ꢄꢇ  
푘  
푘  
푖ꢉ1 푖  
퐿퐿퐿 ꢃ ⁄ ꢄ =  
→ 푁(ꢊ, ꢀ)  
(4)  
푘  
푉푎푟 ꢅ퐿푅 ꢃ ⁄ ꢄꢇ  
2
below, since the probability values of series and co-integration  
equations are smaller than 0.05, H0 hypotheses are firmly  
rejected, and it has been decided that there is cross-sectional  
dependency among these countries. This revealed a significant  
change in the series in one of the countries also affects the others.  
Therefore, while the decision-makers in these countries set  
their policies, they should take into consideration to policies of  
the other countries and the other external factors. Furthermore,  
since cross-section dependency determined, while choosing the  
unit root and co-integration tests method, this situation should be  
taken into account. Therefore, panel unit root tests and co-  
integration analysis considering the cross-section dependency  
have also been used. Results in Table 2 showed that series are  
non-stationary at levels but become stationary at first differences;  
they are said to the of the first order, I(1). In this case, it has been  
concluded that the existence of a co-integration relationship  
between these series can be tested since series under consideration  
are integrated of the same order.  
In the serial limit  → ∞ tailed by  → ∞. 퐸(퐿푅  ꢄ) and  
(( ) )) denote mean and variance of the asymptotic trace  
statistics respectively found from  
a stochastic simulation  
(
Johansen, 1995). For  → ∞ the expressions 퐸(퐿푅  ꢄ) and  
(( ) )) converge to the limit of the expected value and  
variance of the trace statistic, respectively, equivalent to the case  
v deliberated. For each country in the panel, the null hypothesis,  
푟 = ꢊ, is tested using the observed trace statistic. If the null  
hypothesis experienced, then the null hypothesis,  = ꢀ, is tested.  
This serial testing technique ends when the null hypothesis,  =  
 is not rejected, which determines the rank evaluation of r. For  
determining the panel trace test, the statistic 퐿푅  ꢄ, as noted in  
Eq. (4), is obtained by standardising the average of the N  
countries' trace statistics. If cointegration is present, the procedure  
allows one to test whether the cointegrating vector is  
homogeneous across countries.  
3
.3 Larsson et al. (2001) Cointegration Test  
This method employs this study to estimate the cointegration  
between the variables. The (14) method is equivalents Johansen's  
(
(
1988) methodology within a panel error correction model  
VECM) framework. It has some advantages over the residual-  
based test cointegration, such as(6) (9). The (14) procedure allows  
Table 2: Cross-sectional Dependency Test, Testing of Slope Homogeneity and Second Generation Panel Unit Root Test  
Variables  
LNGDP  
LNEC  
LNEP  
LNEI  
LNCO2  
Test of Homogeneity  
LM  
CD  
CIPS Level  
-1.710  
-2.156  
-0,460  
-1.046  
CIPS First Difference  
-6.183*  
CADF Level  
-2.035  
CADF First Difference  
-5.816*  
11.1*  
5.91*  
-2.93*  
7.19*  
8.10*  
-6.183*  
-3.887*  
-5.685*  
-5.333*  
-1.874  
-1.985  
-1.459  
-2.131  
-5.100*  
-8.343*  
-4.174*  
-6.211*  
-0.013  
39.51*  
LM adj*  
LM CD*  
9.546*  
6.876*  
4
06  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 403-409  
Table 3: Larsson’s Heterogeneous Panel Cointegration  
Countries  
ALGERIA  
ANGOLA  
CONGO  
GABON  
GUINEA  
LIBYA  
NIGERIA  
LR_NT  
LR_TEST  
E(Z_k)  
r=0  
P values  
0.021  
0.000  
0.131  
0.385  
0.011  
0.000  
0.019  
-
r=1  
26.03  
19.78  
24.48  
16.77  
20.43  
44.51*  
18.25  
24.32  
4.98  
P values  
0.127  
0.438  
0.180  
0.656  
0.393  
0.000  
0.547  
-
r=2  
10.51  
4.99  
P values  
0.243  
0.809  
0.387  
0.718  
0.919  
0.008  
0.686  
-
r=3  
P values  
0.352  
0.681  
0.803  
0.498  
0.420  
0.171  
0.660  
-
51.57*  
78.79*  
43.05  
0.863  
0.169  
0.061  
0.458  
0.650  
1.869  
0.193  
0.609  
-0.939  
1.137  
2.212  
7.000  
8.770  
5.808  
3.788  
20.25*  
6.078  
8.601  
2.064  
6.068  
10.54  
7.000  
36.21  
54.09**  
95.09*  
52.20**  
58.72*  
12.19  
27.73  
45.264  
7.000  
-
-
-
-
-
-
-
-
-
-
-
-
14.96  
24.73  
7.000  
Var(Z_k)  
N
The results from the (14) cointegration test for African OPEC  
countries were reported in Table 3 above. Since the test follows a  
standard normal distribution, its 1%, 5%, and 10% critical values  
are 58.72. The results suggested one cointegrating vector between  
energy consumption, energy prices, energy intensity, and  
economic growth at the 5% level of significance. Compared with  
the Pedroni tests, (14) co-integration test provide stronger  
evidence of cointegration. Therefore, the panel rank (LR) test  
results reject the null hypothesis of no cointegration among the  
variables. Given the presence of panel cointegration with one  
cointegrating vector, the null hypothesis of a similar co-  
integrating vector is tested. A panel of Table 3 revealed that the  
null of homogeneous cointegrating vectors is rejected as the test  
statistic, 58.72, exceeds the critical value of 43.964. Hence, the  
LLL (2001) panel test for co-integration indicates an average  
rank, r=0, between energy consumption, energy prices, energy  
intensity, and economic growth. Therefore, this result is  
suggesting that the determinants understudy contributed to the  
development of African OPEC economies. This result is  
consistent with the previous studies of (16).  
퐿푁퐸 = 휃 + 휗 퐿푁퐺퐷푃 + 휗 퐿푁퐸퐶  
0
1
푖푡  
푖푡  
+ 휗 퐿푁퐸푃 +휗 퐿푁퐹퐷퐼  
3
푖푡  
3
푖푡  
+ 휀푡  
(7)  
(8)  
퐿푁퐶푂2푡  
= 휃 + 휗 퐿푁퐺퐷푃 + 휗 퐿푁퐸퐶 + 휗 퐿푁퐸푃 +휗 퐿푁퐸퐼  
0
1
푖푡  
푖푡  
3
푖푡  
푖푡  
+ 휀푡  
The simultaneous causality results in Table 4 below revealed  
bidirectional running from energy consumption to economic  
growth, energy prices to economic growth, from environmental  
degradation to economic growth,. Also, the result showed a  
unidirectional causal relationship running from energy intensity  
to economic growth, and from energy consumption to  
environmental degradtion. Furthermore, the finding indicated that  
energy prices and energy intensity, environmental degradtion and  
energy intensity, environmental degradtion and energy price have  
a bi-direction causal relationship. However, there is no causal  
relationship between energy consumption and energy intensity.  
The findings supported the energy-led growth hypothesis and in  
line with (5) and (15).  
3
.4 Simultaneous Equations Causality Test  
11) developed the non-causality test in heterogeneous panel  
4
Conclusion and Policy Implications  
The present study investigates the five-way linkages between  
(
data models with fixed coefficients. In the structure of a linear  
autoregressive data generating procedure, the augmentation of  
standard causality tests to panel data suggests testing cross-  
sectional linear restriction on the coefficients of the model. The  
utilisation of cross-sectional data may broaden the data set on  
causality from an offered variable to another. The Simultaneous  
Equation Causality Test Estimates are:  
energy consumption, energy prices, energy intensity,  
environmental degradtion, and economic growth using the Cobb–  
Douglas production function. While the literature on the causality  
links between emissions-energy-growth has increased over the  
last few years, no study examines this interrelationship via the  
simultaneous equation models. The objective of the present study  
is to fill this research gap by examining the above interaction for  
7
African OPEC countries over the period 1970-2018. Our results  
퐿푁푅퐺퐷 = 휃 + 휗 퐿푁퐸퐶 + 휗 퐿푁퐸푃  
0
1
푖푡  
푖푡  
suggest that energy consumption and energy prices enhance  
economic growth. This shows a bi-directional effect. Thereby  
rejecting the neo-classical assumption that energy is neutral for  
growth. This pattern is similar to the findings of Oh and (19), (7),  
(17), and (2).  
Thus, we conclude that energy is a determinant factor of the  
GDP growth in these countries, and, therefore, a high level of  
economic growth leads to a high level of energy demand and vice  
versa. As such, it is essential to take into account their possible  
adverse effects on economic growth in establishing energy  
conservation policies.  
+
휗 퐿푁퐸퐼 +휗 퐿푁푈푅퐵 + 휗 퐿푁퐶푂2  
3
푖푡  
푖푡  
5
푖푡  
+
푖푡  
(4)  
(ꢎ)  
(6)  
푖푡 = 휃 + 휗 퐿푁퐺퐷푃 + 휗 퐿푁퐸푃  
푖푡  
0
1
푖푡  
+
+
휗 퐿푁퐸퐼 +휗 퐿푁푇푂푃  
푖푡  
3
푖푡  
푖푡  
푖푡 = 휃 + 휗 퐿푁퐺퐷푃 + 휗 퐿푁퐸퐶 + 휗 퐿푁퐸퐼  
0
1
푖푡  
푖푡  
3
푖푡  
+
+
3퐷  
푖푡  
푖푡  
4
07  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 403-409  
Table 4: Simultaneous Equations Causality Results  
LNEC ꢆ/→ LNGDP LNEC ←/ꢆ LNGDP  
Z-Statistics  
P-value  
-3.42*  
0.001  
4.50*  
0.000  
LNEP ꢆ/→ LNGDP  
LNEP ←/ꢆ LNGDP  
Z-Statistics  
P-value  
3.81*  
0.000  
-3.91*  
0.000  
LNEI ꢆ/→ LNGDP  
LNEI ←/ꢆ LNGDP  
Z-Statistics  
P-value  
1.47  
0.142  
3.19*  
0.000  
LNEC ꢆ/→ LNEP  
LNEC ←/ꢆ LNEP  
Z-Statistics  
P-value  
3.45*  
0.000  
3.292*  
0.000  
LNEC ꢆ/→ LNEI  
LNEC ←/ꢆ LNEI  
Z-Statistics  
P-value  
0.490  
0.624  
3.88*  
0.000  
LNEI ꢆ/→ LNEP  
LNEI ←/ꢆ LNEP  
Z-Statistics  
P-value  
3.59*  
0.000  
2.01**  
0.044  
LNCO  
-6.54*  
0.000  
2
ꢆ/→ LNGDP  
LNCO  
7.11*  
0.000  
LNCO  
2
5.98*  
0.000  
2
←/ꢆ LNGDP  
←/ꢆ LNEC  
ꢆ/→ LNEP  
Z-Statistics  
P-value  
LNCO  
2
ꢆ/→ LNEC  
Z-Statistics  
P-value  
-0.33*  
0.743  
LNCO  
2
ꢆ/→ LNEP  
LNCO  
4.78*  
0.000  
2
Z-Statistics  
P-value  
-7.76*  
0.000  
LNCO  
2
ꢆ/→ LNEI  
LNCO  
7.64*  
0.000  
2
ꢆ/→ LNEI  
Z-Statistics  
P-value  
-5.15*  
0.000  
Our empirical results also show that there is a unidirectional  
causal relationship from energy consumption to energy intensity  
without feedback. This implies that due to the expansion of  
production, the countries are consuming more energy, which puts  
pressure on the environment leading to more emissions. Hence, it  
is essential to apply some sorts of pollution control actions to the  
whole panel regarding energy consumption.  
The policies with which to tackle environmental pollutants  
require the identification of some priorities to reduce the initial  
costs and efficiency of investments. Reducing energy demand,  
increasing both energy supply investment and energy efficiency  
can be initiated with no damaging impact on the African OPEC’s  
economic growth and therefore reduce emissions. At the same  
time, efforts must be made to encourage industries to adopt new  
technologies to minimise pollution. Finally, given the generous  
subsidies for energy in the exporting countries, relatively there is  
more scope for more drastic energy conservation measures with  
not much effects on economic growth in these countries. Indeed,  
it is unlikely that the elimination of energy price distortions  
restrains economic growth in the oil-exporting countries.  
However, subsidy reform should for in a reform program that  
engenders broad support and yields widespread benefits.  
It is found that bidirectional causality between economic  
growth and energy intensity emissions implies that degradation of  
the environment has a causal impact on economic growth, and a  
persistent decline in environmental quality may exert a negative  
externality to the economy through affecting human health, and  
thereby it may reduce productivity in the long run. The main  
policy implications emerging from our study are: First, these  
countries need to embrace more energy conservation policies to  
reduce energy intensity emissions and consider strict  
environmental and energy policies. The research and investment  
in clean energy should be an integral part of the process of  
controlling carbon dioxide emissions and find sources of energy  
to oil alternatives. These countries can use solar energy as a  
substitute for oil. Thus, implementing energy and environmental  
policies and also reconsidering strict energy policies can control  
carbon dioxide emissions. As a result, our environment will be  
free from pollution, and millions of peoples can protect  
themselves from the effects of natural disasters. Second, high  
economic growth gives rise to environmental degrading, but the  
reduction in economic growth will increase unemployment.  
References  
1
Ali, M., & Aittokallio, T. (2019). Machine learning and feature  
selection for drug response prediction in precision oncology  
applications. Biophysical Reviews, 11(1), 31-39.  
2
3
4
Apergis, N., & Payne, J. E. (2009). CO2 emissions, energy usage, and  
output in Central America. Energy Policy, 37(8), 3282-3286.  
Apergis, N., & Payne, J. E. (2010). Renewable energy consumption  
and growth in Eurasia. Energy Economics, 32(6), 1392-1397.  
Apergis, N., Payne, J. E., Menyah, K., & Wolde-Rufael, Y. (2010).  
On the causal dynamics between emissions, nuclear energy,  
renewable  
energy,  
and  
economic  
growth.  
Ecological  
Economics, 69(11), 2255-2260.  
4
08  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 403-409  
5
6
Bayer, C., & Hanck, C. (2013). Combining non‐co-integration  
tests. Journal of Time Series Analysis, 34(1), 83-95.  
Bekun, F. V., Emir, F., & Sarkodie, S. A. (2019). Another look at the  
relationship between energy consumption, carbon dioxide emissions,  
and economic growth in South Africa. Science of the Total  
Environment, 655, 759-765.  
7
Brown, M. B. (2019). Africa's choices: after thirty years of the World  
Bank. Routledge.  
Burbidge, J., & Harrison, A. (1984). Testing for the effects of oil-  
price rises using vector autoregressions. International Economic  
Review, 459-484.  
9
1
Darby, M. R. (1982). The price of oil and world inflation and  
recession. The American Economic Review, 72(4), 738-751.  
Gisser, M., & Goodwin, T. H. (1986). Crude oil and the  
macroeconomy: Tests of some popular notions: Note. Journal of  
Money, Credit and Banking, 18(1), 95-103.  
Granger, C. W. (1969). Investigating causal relations by econometric  
models and cross-spectral methods. Econometrical: Journal of the  
Econometric Society, 424-438.  
Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma,  
P., Banerjee, S., & McKeown, N. (2010, April). Elastic-tree: Saving  
energy in data centre networks. In Nadi (Vol. 10, pp. 249-264).  
Johansen, S. (1988). Statistical analysis of co-integration  
vectors. Journal of economic dynamics and control, 12(2-3), 231-  
0
1
2
3
4
5
6
7
8
1
1
1
1
1
1
1
1
2
54.  
Larsson, T. B. (2001). Biodiversity evaluation tools for European  
forests. Criteria and Indicators for Sustainable Forest Management  
at the Forest Management Unit Level, 75.  
Mankiw, N. G., Romer, D., & Weil, D. N. (1992). A contribution to  
the empirics of economic growth. The quarterly journal of  
economics, 107(2), 407-437.  
Mork, K. A. (1989). Oil and the macroeconomy when prices go up  
and down: an extension of Hamilton's results. Journal of Political  
Economy, 97(3), 740-744.  
Nasreen, S., & Anwar, S. (2014). A causal relationship between trade  
openness, economic growth, and energy consumption: A panel data  
analysis of Asian countries. Energy Policy, 69, 82-91.  
Parsa, H., & Sajjadi, S. Z. (2017). Exploring the trade openness,  
energy consumption, and economic growth relationship in Iran by  
Bayer and Hanck combined co-integration and causality  
analysis. Iranian Economic Review, 21(4), 829-845.  
1
2
2
9
0
1
Pedroni, P. (1999). Critical values for co-integration tests in  
heterogeneous panels with multiple regressors. Oxford Bulletin of  
Economics and Statistics, 61(S1), 653-670.  
Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing  
approaches to the analysis of level relationships. Journal of applied  
econometrics, 16(3), 289-326.  
Poveda, A. C., & Martinez, C. I. P. (2011). Trends in economic  
growth, poverty, and energy in Colombia: long-run and short-run  
effects. Energy Systems, 2(3-4), 281-298.  
2
2
2
3
Rasche, R. H., & Tatom, J. A. (1977). Energy resources and potential  
GNP. Federal Reserve Bank of St. Louis Review, (Jun), 10-24.  
Samu, R., Bekun, F. V., & Fahrioglu, M. (2019). Electricity  
consumption and economic growth nexus in Zimbabwe revisited:  
fresh evidence from Maki co-integration. International Journal of  
Green Energy, 16(7), 540-550.  
2
2
4
5
Schajowicz, F., Ubios, A. M., Araujo, E. S., & Cabrini, R. L. (1985).  
Virus-like intranuclear inclusions in giant cell tumour of  
bone. Clinical Orthopedics and related research, (201), 247-250.  
Shahbaz, M., Zeshan, M., & Afza, T. (2012). Is energy consumption  
adequate to spur economic growth in Pakistan? New evidence from  
bounds test to level relationships and Granger causality  
tests. Economic Modelling, 29(6), 2310-2319.  
2
6
Zhou, P., & Ang, B. W. (2008). Linear programming models for  
measuring economy-wide energy efficiency performance. Energy  
Policy, 36(8), 2911-2916.  
4
09