Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 284-290  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Green Synthesis and Characterization of  
Biocompatible Silver Nanoparticles using Stachys  
lavandulifolia Vahl. Extract and Their  
Antimicrobial Performance Study  
1
2 †  
3
Abbas Zakeri Bazmandeh , Arash Rezaei , Hamid Reza Ghaderi Jafarbigloo , Amir  
7
4
5
6
Mohammad Akbari Javar , Ali Hassanzadeh , Armin Amirian , Mohamad Hadi Niakan ,  
Hossein Hosseini Nave8 and Mohsen Mehrabi *  
,9*  
10  
1
Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences,  
Shiraz, Iran  
2
Department of laboratory Sciences,School of Medicine,Kerman University of Medical Sciences,Kerman,Iran  
3
Department of Basic Science, Payame Noor University, Iran  
4
Department of Mathematics, faculty of Mathematics, Farhangian University, Kerman, Iran  
5
Department of Tissue Engineering and Applied cell Sciences, Tehran University of Medical Sciences, Tehran, Iran  
6
Thoracic and Vascular Surgery Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran  
7
Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran  
Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran  
Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran  
8
9
10  
Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran  
Received: 22/09/2019 Accepted: 07/12/2019 Published: 20/02/2020  
Abstract  
Green synthesis of nanoparticles has received extensive attention in the field of nanomedicine as a simple, environment-friendly  
and cost-effective alternative in comparison with other physical and chemical methods. Silver nanoparticles (AgNPs) are playing  
an important role in the field of nanomedicine and nanotechnology due to their unique and controllable characteristics. In this  
research, a biosynthesis approach was used for synthesis of silver nanoparticles (AgNPs). Biosynthesis was carried out by Stachys  
+
0
lavandulifolia Vahl. extract as green reducing agent for conversion of Ag to Ag . The first visible sign of the synthesis of AgNPs  
was the change in color of solution from yellowish to reddish brown. The preparation of AgNPs was performed using several  
techniques such as, UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission  
electron microscopy (TEM), and dynamic light scattering (DLS). Finally, synthesized AgNPs were evaluated for their antimicrobial  
activity against four standard bacterial strains using microbroth dilution method. Results of TEM image showed spherical  
nanoparticles with high crystalline and monodispersity which is very important in medicinal applications. Additionally, DLS  
analysis demonstrated the ultra-fine size of AgNPs with average size of 164.8 nm. FTIR indicated the role of different functional  
groups (carboxyl, amine and hydroxyl) in the formation of Silver nanoparticles. A negative zeta potential value of -17.3 mV  
determined the stability of the silver nanoparticles. AgNPs showed good antimicrobial activity against both gram-positive and  
gram-negative bacteria, with MICs of 4 to 16 μg mL. In conclusion, the results imply that the synthesized nanoparticles using green  
nanotechnology could be an ideal strategy to combat multi-drug-resistant pathogenic bacteria.  
Keywords: Stachys lavandulifolia Vahl; Silver nanoparticle; Green synthesis; Antimicrobial performance  
1
Introduction  
1Resistance to commonly available antimicrobial agents  
2). Serious infections caused by resistant bacteria such as  
methicillin-resistant Staphylococcus aureus and  
Enterobacteriaceae (3, 4). Nanotechnology has opened a  
by pathogenic bacteria has been rising at an alarming rate  
and has become a serious global problem for healthcare (1,  
*
Corresponding authors: (a) Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman,  
Iran. E-mail: Hosseini.nave@gmail.com. (b) Mohsen Mehrabi, Department of Medical Nanotechnology, School of Medicine, Shahroud University  
of Medical Sciences, Shahroud. Iran.  
These authors contributed equally to this article.  
2
84  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 284-290  
wide field for the synthesis of new and noble materials for a  
variety of applications, especially medical and  
pharmaceutical use the term nanoparticle typically refers to  
a particle with a size ranging from 1 to 100 nm (5). The  
antibacterial activity of nanoparticles is due to their high  
surface area to volume ratio, thereby enabling significant  
interactions with microbial cell membranes. Silver  
nanoparticles (AgNPs) has attracted more attention than  
other metal nanoparticles due to exceptional properties such  
as surface plasmonic resonance (SPR) and stability, which  
can be used as catalyst, sensor, anti-angiogenic, anticancer,  
and especially antibacterial agent (5-8). As mentioned, the  
exceptional properties of nanoparticles depend on their size  
and morphology which are determined by the synthesis  
method. The methods for the synthesis of nanoparticles are  
mainly grouped into two categories: the physical and  
chemical approaches. Although these methods are popular,  
they cause considerable environmental and economic issues.  
Thus, there is an apparent need for an alternative approach  
for the synthesis of nanoparticles. The “biological method”  
was developed as a simple approach as an alternative to  
physical and chemical methods. Green synthesis method  
provides several advantages over chemical methods as it is  
eco-friendly, simple, rapid, safe, clean and cost effective.  
These features are important in medical applications. A vast  
number of biological resources including plants, algae,  
fungi, yeast, and bacteria has been studied so far for the  
synthesis of nanoparticles (9). The plant-mediated synthesis  
of AgNPs can be advantageous compared with other  
biological processes as it is relatively fast, does not require  
the process of maintaining specific media and aseptic  
environments (10).  
The formation of AgNPs was monitored using UVvis  
spectrometer in the range of 250600 nm. Fourier transform  
infrared (FTIR) analysis was recorded in the range between  
4000 to 400 cm−1 to investigate the functional groups  
involved in the synthesis of silver nanoparticles. The  
structural characterization and crystalline nature of AgNPs  
were analyzed by X-ray diffraction (XRD). The XRD  
pattern was recorded using a Holland Philips X-ray powder  
diffractometer using Cu K radiation (λ= 0.1542 nm) in the  
2θ range of 5°–80°, with operating voltage of 40 kV at a 20  
mA current strength. The morphology and average size of  
AgNPs were analyzed by transmission electron microscopy  
(TEM). The sample for TEM was prepared by ultrasonic  
dispersion of the AgNPs in ethanol. Finally, the size  
distribution  
of  
nanoparticles  
was  
characterized  
through dynamic light scattering (DLS).  
2.5 Antibacterial performance tests  
The minimal inhibitory concentration (MIC) of the  
AgNPs was determined by micro-broth dilution method  
using Mueller Hinton broth. Briefly, concentrations with a  
starting range of 1024 μg/ml to 2 μg/ml of the AgNPs was  
prepared in the wells of a 96-well plate, and bacterial  
inoculum with an adjusted bacterial concentration of  
6
1.5×10 colony-forming units/ml (CFU/ml) was added to  
this 2-fold dilution series. The plate was incubated at 37°C  
for 24 hours. Antimicrobial activity was determined against  
four reference strains including two Gram-negative bacteria  
[Escherichia coli (ATCC 25922) and Pseudomonas  
aeruginosa (ATCC 27852)] and two Gram-positive bacteria  
[Staphylococcus aureus (ATCC 25923) and Enterococcus  
faecalis (ATCC 29212)]. The ciprofloxacin was used as the  
positive control for anti-bacterial screening. The lowest  
concentration of AgNPs that was able to completely inhibit  
the bacterial growth was considered as the MIC value. The  
MIC experiments were performed in triplicate against each  
bacterial strain to confirm the value of MIC for each tested  
bacterium.  
In this work, Stachys lavandulifolia Vahl.  
(Family  
Lamiaceae) was applied for synthesis of AgNPs as reducer,  
surfactant and capping agent. This plant was distributed in  
different regions of Asia and Europe. Stachys lavandulifolia  
Vahl. has been widely used in traditional medicine for  
treatment of various diseases (11). In this study, green  
synthesis of AgNPs was done using leaf extracts of Stachys  
lavandulifolia Vahl. The prepared nanoparticles were  
characterized using several methods such as XRD, UV-vis  
along with FTIR spectroscopy, TEM and DLS analysis to  
confirm the formation of nanoparticles. After approval of the  
structure and purity of AgNPs, antibacterial activity of this  
nanoparticles was studied on Gram-positive and Gram-  
negative bacteria.  
3
Result and discussion  
In this research, the AgNPs were synthesized by green  
synthesis method, using Stachys lavandulifolia Vahl. extract  
as both reducer and stabilizer agent. The formation of  
AgNPs was studied using both visual observation of the  
3
color and UVvisible spectral analysis. The AgNO solution  
is colorless (Figure 1a) and there is no absorption peak in the  
UV-Vis spectrum (Figure 1d). On the other hand, the color  
of Stachys lavandulifolia Vahl. extract was yellow (Figure  
1b) and had a weak peak in UV-vis spectrum, that can be  
attributed to π→π* transitions of aromatic rings. The color  
2
Materials and methods  
2
.1 Material  
3
In this study silver nitrate (AgNO ) was  
2
.3 Synthesis of AgNPs with Stachys lavandulifolia Vahl.  
3
of solution was changed to brown when the AgNO was  
Extract  
For synthesis of AgNPs, 20 mL of different  
concentrations (5%-20%) of fresh Stachys lavandulifolia  
Vahl. extract was added into 5ml of AgNO solution  
0.1mM) at room temperature for the reduction of Ag+ ions.  
The color change of the solution from yellow to reddish  
brown indicated that the silver nanoparticles were  
synthesized.  
added to yellow extract (Figure 1c). This change in color  
visually indicates the formation of silver Nanoparticles.  
Additionally, UV-vis spectroscopy of the colloidal AgNPs  
in Figure 1d demonstrates a strong peak in 440 nm due to  
surface plasmon resonance (SPR) of silver nanoparticles  
formed. Both change of color and SPR band in UV-vis  
3
(
+
0
spectra show conversion of Ag in AgNO  
3
solution to Ag  
and completion of reduction reaction.  
With the objective of finding various functional groups  
involved in the synthesis of silver nanoparticles FTIR  
analysis was performed. The FTIR spectrum of  
2
.4 Characterization  
2
85  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 284-290  
biosynthesised AgNPs showed absorption bands at 3432,  
2
band at 3,374 cm indicated stretching of the NH bond of  
amino groups or presence of attached hydroxyl (OH) group  
because of the existence of surface adsorbed alcohols  
XRD shows four important peaks at 2θ˚= 38.65, 44.60, 64.85  
and 77.47 . This result represents silver crystal formation  
which, respectively, corresponds to 111, 200, 220 and 311.  
These planes and phase of the Ag nanoparticle are in  
agreement with the reference file with JCPD= 01-1167.  
Additionally, there are two unassigned peaks at 2θ˚= 28 and  
46 denoted by (•) in Figure. 3 which are thought to be related  
to crystalline and amorphous organic phases. Hence, the  
result of XRD pattern approved the successful synthesis of  
pure silver nanoparticles usage plant extract as the capping  
agent and surfactant in mild condition. The XRD peaks  
revealed that AgNPs formed using Stachys lavandulifolia  
Vahl. extract were crystalline and spherical in shape.The  
average nanosize was calculated by applying Debye–  
Scherrer formula D = K l/β cosθ which was found to be 36.69  
nm (14).  
1  
073, 1626, 1636, and 634 cm (Figure 2). The absorption  
-1  
(carbohydrates etc.) and phenols (polyphenols). According  
to the result of FTIR analysis, C-H stretching of the methyl  
-
1
group can be observed at 2073 cm region. The strong peak  
-
1
at 1636 cm is related to C=O stretching vibrations of  
aldehydes, ketones and carboxylic acids (5). Several  
investigations have reported that functional groups such as  
alcohol, phenol, and amines act as the capping agent for  
AgNPs which increases the stability of the nanoparticles (12,  
-1  
1
3). Finally, the band at 634 cm is related to several  
aromatic amines. The XRD profile of AgNPs synthesized  
using the leaf extract of Stachys lavandulifolia Vahl. is  
depicted in Figure. 3. The result demonstrated the face-  
centered cubic (FCC) for silver crystallites. The diagram of  
Figure 1: Color of (a) AgNO  
3
3
solution; (b) Stachys lavandulifolia Vahl. extract; (c) AgNPs suspension and (d) UV-vis spectroscopy of AgNO ,  
Stachys lavandulifolia Vahl. extract, and Ag NPs.  
2
86  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 284-290  
Figure 2: FTIR spectroscopy of green silver nanoparticles  
Figure 3: XRD pattern of biosynthesized AgNPs using Stachys lavandulifolia Vahl. extract  
The morphology and size of green synthesized AgNPs  
and crystallinity, without any aggregation. Based on the  
theory for crystal nucleation and growth, various types of  
organic compounds have basically a role in formation of  
crystalline nanoparticle as the capping agent. The  
polyphenol compounds can control the formation and  
growth of the primary core of AgNps in overall reaction  
which was clearly illustrated in scheme 1. Besides, the  
were studied by TEM. The size and shape of the synthesized  
silver nanoparticles significantly affect their antimicrobial  
activity. TEM images of the synthesised AgNPs are shown  
in Figure 4. TEM images confirm the formation of spherical  
Ag nanoparticles (Figure 4a). According to Figure 4b,  
spherical nanoparticles have high monodispersity  
2
87  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 284-290  
particle size of nanoparticles was estimated about 150 nm,  
and it was fine and suitable for medical applications.  
Size distribution and average size of nanoparticles was  
measured using histogram of DLS analysis in Figure 5a. The  
measured average size is 164.8 nm which shows the  
monodispersity of particles in green strategy for synthesis of  
nanomaterials. Also, this size distribution is in agreement  
with the SPR peak in UV-vis spectroscopy. This definite size  
is matched with TEM image and confirms antimicrobial  
activity of AgNPs.  
Moreover, zeta potential was performed to study the  
dispersion surface charge of AgNPs, which was covered  
with bio-molecular of the plant extract and that caused the  
nanoparticles stable in colloidal solution. According to the  
result in Figure 5b zeta potential diagram shows a negative  
charge with a value of -17.3 mV and this value leads to  
stability of nanoparticle and prevents the aggregation and  
agglomeration of silver nanoparticles and is also in  
agreement and comparable to the former studies (15, 16).  
In order to evaluate the antibacterial activity of the silver  
nanoparticles synthesized using Stachys lavandulifolia Vahl.  
extract, we employed microbroth dilution method. For the  
bacterial strains E. faecalis 29212, S. aureus 25923, P.  
aeruginosa 27853 and E. coli 25922, the MIC values of  
silver nanoparticles were 8, 8, 4 and 4 μg mL, respectively.  
The antibacterial activity of AgNPs has been well  
documented in previous studies (14). However, the  
comparison of the results of antimicrobial studies is difficult  
as there is no standard method for the determination of  
antibacterial activity of AgNPs and different methods have  
been used by the researchers. In this study, AgNPs exhibited  
excellent antibacterial activity against both gram-positive  
and gram-negative bacteria, but the gram-negative bacteria  
were more sensitive to the nanoparticles than the gram-  
positive bacteria. These results are consistent with those of  
other studies, which also showed that Gram-positive strains  
exhibited greater resistance against nanoparticles in  
comparison with Gram-negative ones. This may be due to  
the difference in their cell wall structure. The Gram-positive  
bacterial cell wall consists of a thick peptidoglycan layer,  
while Gram-negative bacteria have thin peptidoglycan layer  
which allows easier penetration of AgNPs into the cell wall  
of Gram-negative bacteria (14, 17).  
As the results showed, the synthesized AgNPs indicated  
a strong inhibition effect on several types of gram-positive  
and gram-negative bacteria with penetration in the bacteria  
cell due to the small size and high ratio of the surface per  
volume which leads to wide application of silver  
nanoparticles in the production of various antibacterial  
products.  
Figure 4: TEM image of synthesized AgNPs a) high-magnification; and b) low magnification  
2
88  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 284-290  
Figure 5: (a) DLS and (b) zeta potential of synthesized AgNPs using Stachys lavandulifolia Vahl. extract  
Modifying Enzymes and Molecular Analysis of the Coagulase  
Gene in Clinical Isolates of Methicillin-Resistant and  
Methicillin-Susceptible Staphylococcus aureus. Microbial  
Drug Resistance. 2019;25(1):47-53.  
Nave HH, Mansouri S, Sadeghi A, Moradi M. Molecular  
diagnosis and anti-microbial resistance patterns among Shigella  
spp. isolated from patients with diarrhea. Gastroenterology and  
hepatology from bed to bench. 2016;9(3):205.  
Kouhbanani MAJ, Beheshtkhoo N, Fotoohiardakani G,  
Hosseini-Nave H, Taghizadeh S, Amani AM. Green Synthesis  
and Characterization of Spherical Structure Silver  
Nanoparticles Using Wheatgrass Extract. Journal of  
Environmental Treatment Techniques. 2019;7(1):142-9.  
Lohrasbi S, Kouhbanani MAJ, Beheshtkhoo N, Ghasemi Y,  
Amani AM, Taghizadeh S. Green Synthesis of Iron  
Nanoparticles Using Plantago major Leaf Extract and Their  
Application as a Catalyst for the Decolorization of Azo Dye.  
BioNanoScience. 2019;9(2):317-22.  
Singh A, Jain D, Upadhyay M, Khandelwal N, Verma H. Green  
synthesis of silver nanoparticles using Argemone mexicana leaf  
extract and evaluation of their antimicrobial activities. Dig J  
Nanomater Bios. 2010;5(2):483-9.  
Saxena A, Tripathi R, Zafar F, Singh P. Green synthesis of  
silver nanoparticles using aqueous solution of Ficus  
benghalensis leaf extract and characterization of their  
antibacterial activity. Materials letters. 2012;67(1):91-4.  
Beheshtkhoo N, Kouhbanani MAJ, Savardashtaki A, Amani  
AM, Taghizadeh S. Green synthesis of iron oxide nanoparticles  
by aqueous leaf extract of Daphne mezereum as a novel dye  
removing material. Applied Physics A. 2018;124(5):363.  
4
Conclusion  
Silver nanoparticles were successfully synthesized using  
green approach by Stachys lavandulifolia Vahl. extract as  
non-toxic and green reducing agent. After this, nanoparticles  
were characterized using various methods, for example  
FTIR, XRD, Uv-vis spectroscopy, TEM and DLS; this  
analysis approved the successful synthesis of nanoparticles  
with high purity. Therefore, XRD pattern demonstrated the  
crystalline cubic phase and also spherical shape and  
morphology was observed in TEM image with the estimated  
size about 32 nm in diameter. Moreover, DLS showed a very  
fine size of AgNPs 164.8 nm in diameter which is in  
agreement with SPR properties of AgNPs in Uv-vis  
spectroscopy. All analyses together showed the fundamental  
role of the plant extract as the capping agent and surfactant  
4
5
.
.
6
.
0
to control the size of AgNPs and also as the stabilizer of Ag  
7
8
9
.
.
.
in colloidal solution. The biosynthesized nanoparticles also  
exhibited a high antibacterial activity against the tested  
strains. Therefore, this method is very safe, simple, eco-  
friendly and cost-effect for synthesis of biocompatible  
AgNPs in a large scale for medical application.  
Acknowledgments  
This research was financially supported by “Kerman  
University of Medical Sciences”. The authors thank  
Department of Microbiology and Virology of the School of  
Medicine of Kerman University of Medical Sciences for  
financial support.  
10. Mo Y-y, Tang Y-k, Wang S-y, Lin J-m, Zhang H-b, Luo D-y.  
Green synthesis of silver nanoparticles using eucalyptus leaf  
extract. Materials Letters. 2015;144:165-7.  
1
1. Khademi-Azandehi P, Moghaddam J. Green synthesis,  
characterization and physiological stability of gold  
nanoparticles from Stachys lavandulifolia Vahl extract.  
Particuology. 2015;19:22-6.  
2. Kouhbanani MAJ, Beheshtkhoo N, Taghizadeh S, Amani AM,  
Alimardani V. One-step green synthesis and characterization of  
iron oxide nanoparticles using aqueous leaf extract of Teucrium  
polium and their catalytic application in dye degradation.  
Advances in Natural Sciences: Nanoscience and  
Nanotechnology. 2019;10(1):015007.  
References  
1
.
Khatami M, Pourseyedi S, Khatami M, Hamidi H, Zaeifi M,  
Soltani L. Synthesis of silver nanoparticles using seed exudates  
of Sinapis arvensis as a novel bioresource, and evaluation of  
their antifungal activity. Bioresources and Bioprocessing.  
1
2
015;2(1):19.  
2
.
Kiaei S, Moradi M, Hosseini-Nave H, Ziasistani M, Kalantar-  
Neyestanaki D. Endemic dissemination of different sequence  
types of carbapenem-resistant Klebsiella pneumoniae strains  
harboring blaNDM and 16S rRNA methylase genes in Kerman  
hospitals, Iran, from 2015 to 2017. Infection and drug  
resistance. 2019;12:45.  
1
3. Kouhbanani MAJ, Beheshtkhoo N, Amani AM, Taghizadeh S,  
Beigi V, Bazmandeh AZ, et al. Green synthesis of iron oxide  
nanoparticles using Artemisia vulgaris leaf extract and their  
application as a heterogeneous Fenton-like catalyst for the  
3
.
Seyedi-Marghaki F, Kalantar-Neyestanaki D, Saffari F,  
Hosseini-Nave H, Moradi M. Distribution of Aminoglycoside-  
2
89  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 284-290  
degradation of methyl orange. Materials Research Express.  
2
018;5(11):115013.  
1
4. Kouhbanani MAJ, Beheshtkhoo N, Nasirmoghadas P,  
Yazdanpanah S, Zomorodianc K, Taghizadeh S, et al. Green  
Synthesis of Spherical Silver Nanoparticles Using Ducrosia  
Anethifolia Aqueous Extract and Its Antibacterial Activity.  
Journal  
of  
Environmental  
Treatment  
Techniques.  
2
019;7(3):461-6.  
1
1
1
5. Ebrahiminezhad A, Taghizadeh S, Ghasemi Y. Green synthesis  
of silver nanoparticles using Mediterranean Cypress (Cupressus  
sempervirens) leaf extract. American Journal of Biochemistry  
and Biotechnology. 2017.  
6. Manosalva N, Tortella G, Diez MC, Schalchli H, Seabra AB,  
Durán N, et al. Green synthesis of silver nanoparticles: effect of  
synthesis reaction parameters on antimicrobial activity. World  
Journal of Microbiology and Biotechnology. 2019;35(6):88.  
7. Wypij M, Czarnecka J, Świecimska M, Dahm H, Rai M,  
Golinska P. Synthesis, characterization and evaluation of  
antimicrobial and cytotoxic activities of biogenic silver  
nanoparticles synthesized from Streptomyces xinghaiensis OF1  
strain. World Journal of Microbiology and Biotechnology.  
2
018;34(2):23.  
2
90