Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 488-496  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Green Synthesis and High Efficacy Method for  
Reduced Graphene Oxide by Zataria Multiflora  
Extract  
1
2
1
Behrang Sabayan , Nooredin Goudarzian *, Mohammad Hossein Moslemin , Razieh  
Mohebat 1  
1
Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran  
2
Chemistry Department, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran  
Received: 14/12/2019  
Accepted: 27/01/2020  
Published: 20/02/2020  
Abstract  
There are many different methods for producing nanoparticles, but the use of plants due to the low cost and environmentally friendly  
nature of nanoparticle synthesis is very much considered. The biological synthesis of reduced graphene oxide by extracts of Zataria  
multiflora cultivar is reported in this work. In this study, Zataria multiflora extract was used as a reducing agent for the production of  
nano-graphene oxide in high yield and avoids the use of toxic and environmentally hazardous reducing agents commonly used in the  
reduction processes of GO. The reduced graphene oxide and optimization of reaction conditions were monitored by UV and analyzed  
for determination of size and morphology of reduced graphene oxide with Transmission Electron Microscopy (TEM), Raman spectra,  
Fourier Transform-infrared spectroscopy and X-ray diffraction devices (XRD) respectively.  
Keyword: Green synthesis, Zataria multiflora, Reduced graphene oxide, Graphene oxide  
hardness, and mechanical quality, high electrical and warm  
1
Introduction1  
conductivity, adaptability and attraction. Along these lines,  
numerous utilizations will be made, incorporating applications  
in nanoelectronic, sun oriented cells, vitality stockpiling  
gadgets, for example, batteries and supercapacitors. Graphene  
and graphene oxide have high conductivity and are extremely  
reasonable for use in circuits and electronic devices. While  
graphene oxide has been introduced as the primary component  
in all materials discussed thus far, nanocomposites of graphene  
oxide use these sheets as a minor filler component fixed within  
either a polymer or an inorganic matrix. Delivery their high  
oxygen content, graphene oxide layers are the carbon analogs,  
whose nanocomposites with polymers have been completely  
investigated for a broad range of applications (6, 19). In  
contrary, the huge surface to volume ratio of graphene oxide,  
in addition to its high ability to dispersion in both water and  
non-aqueous solvents and its broad spectrum of reactive  
surface-bound functional groups, discourages aggregation,  
make it easy for processing in solution and promoting gross  
interaction between fillers and polymers. A diversity of  
graphene oxide-based nanocomposites has been manufactured  
as thin films, although they are usually reduced to graphene for  
conductivity surveys.  
Graphene and graphene oxide have enormous potential for  
broad category of biomedical, catalytic and optical  
a
applications, electronic, bioimaging, etc. due to their excellent  
characteristics and their biocompatibility (1-6). Thus, there is a  
growing need to develop the processes which are not harmful  
to the environment of the graphene synthesis that does not use  
toxic chemicals. Recent articles on the reduction of graphene  
oxide discuss the substitution of natural reducing agents for  
toxic hydrazine48and biologically reduction of graphene  
oxide by microorganisms and leaves, seed or peels of a plant  
extract have been suggested as possible eco-friendly  
alternatives to chemical and physical methods (7-11).  
The reduction of graphene oxide under specific conditions  
(temperature and pressure) are costly and tedious and have  
potential dangers for the earth, thus it’s required to have  
minimal effort, non-dangerous and non-lethal strategies. One  
of the strategies to produce reduced graphene oxide is the green  
reduction, which is noticeable and has expanded nowdays (12-  
1
5). Graphite oxide was first created in 1860, in view of known  
techniques for Hummer and Hoffman. It is a blend of carbon,  
hydrogen and oxygen molecules. Graphite oxide is extremely  
hydrophilic and comprises a layered structure of graphene  
oxide sheets. The most widely recognized technique for the  
preparation of graphite oxide is to utilize at least one-  
concentrated acid within the strong oxidizers. Brody utilized  
this strategy in 1859 (16-18). Researchers trust that graphene  
oxide is a standout amongst the toughest materials at any point  
known, because of its C-C bond strengths. Graphene oxide has  
specific properties, for example, nanometric size, high  
The most common path toward bulk quantities of reduced  
graphene Oxide starts with the conversion of graphite to  
graphene Oxide [GO]. The first procedures for the synthesis of  
GO were done many years ago by Brodie (20), Staudenmeier  
(21) and Hummers et al. (16) and persist with only minor  
changes. The degree of graphite oxidation, as quantified by the  
carbon to oxygen atomic ratio, is dependent on the synthetic  
Corresponding author: Nooredin Goudarzian, Chemistry  
Department, College of Sciences, Shiraz Branch, Islamic Azad  
University, Shiraz, Iran. E-mail: ngoudarzian@iaushiraz.ac.ir.  
488  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 488-496  
method as well as the reaction procedure (22-24). The  
Staudenmaier method 20 usually produces the most oxidized  
GO, although the oxidation of graphite to GO breaks up the  
sp2-hybridized unity of the stacked graphene layers, generating  
errors that manifest as clear notches in the stack (18, 25) and  
become more the distance between adjacent sheets (23, 24).  
This increased spacing is different depending on the amount of  
water interacted within the Stacked-sheet structure (25, 26) and  
reduces sheets interaction, so helping the delamination of GO  
to individual graphene oxide sheets by exposure to low-power  
sonication through the water. At a little basic pH, negatively  
charged, hydrophilic oxygenated functional groups on the  
graphene oxide surface can settle down dispersions of these  
layers in water-based media (18, 27). Within shortly of being  
available in bulk quantities, graphene oxide, reduced graphene  
oxide, and graphene have become highly practical, inexpensive  
building blocks for the creation of several advanced  
carbonaceous materials, with applications to be restricted only  
by the imagination. For example, it is not difficult to imagine  
the internalization of different additives into thin layer  
composites of graphene and graphene oxide to create excellent  
material compositions.  
Thus, polymers have already been put together to graphene  
papers and films, either in nanoparticle form (9, 28, 29), or by  
in situ electro polymerization (1, 18, 22) for stabilizing  
mechanically and to facilitate processing. The development of  
ways to completely exfoliate graphite powder, in a wide range  
of solvents (30, 31), and the without the presence of reducing  
or stabilizing agents, will be essential to the generation of high-  
quality graphene materials. Improved synthesis and processing  
of graphene oxide and graphene being these highly versatile  
materials can be achieved by more researchers and engineers,  
so ensuring the quick development of many new materials with  
amazing properties. For instance, monodisperse colloidal  
solutions of single graphene sheets and few-layer graphene  
piles have recently been separated from bulk graphene  
nanosheet dispersions via density gradient ultracentrifugation  
interest in the world as the most successful carbon allotrope for  
the growth of next-generation carbon-based materials. On the  
other hand, the number of papers that explain graphene and its  
related materials (41, 42) has eminently exponentially from  
2004 isolation of single graphene by use of mechanical  
exfoliation3,42. Graphene can be made from different graphite  
derivatives (43), bulk number of completely exfoliated  
graphene-like sheets are commonly driven by the reduction of  
graphene oxide distribution or powders. Graphene has attracted  
significant interest in the scientific community has the most  
promising carbon allotrope for the development of next-  
generation carbon-based materials. Indeed, the number of peer-  
reviewed articles that discuss graphene and its associated  
materials (41, 42).  
Zataria multiflora as a reducing agentZataria multiflora is a  
kind of thyme. Zataria multiflora is the main type of local  
Thymus in Iran. It is situated in Shiraz (Mount Sivand,  
mountains neglecting the Maharlou Lake, between the  
backwoods, among Jahrom and Mansurabad, near Tarom  
Darab), Zataria multiflora is contained around 40% thymol, the  
primary successful fixing with a specific end goal to restore  
coriander and thyme because of the extravagance of this  
substance is the best decision for biological recovery (43-45).  
There are mixes, for example, bicyclic acid, propionic acid,  
acrylic acid, unpredictable lalalum, and germabol. Mixes of the  
plant incorporate lanthanide acetic acid derivation, coumarin,  
flavonoids, and phytosterols. Studies have demonstrated that  
the blend of green graphene oxide reduced by the utilization of  
Zataria multiflorais remove is less known in the present  
examination. The amalgamation of green-graphene oxide from  
Zataria multiflora species was considered (43).  
2
Materials and methods  
2
.1 Preparation of Graphene oxide powder  
Graphene oxide prepared by oxidation of regular graphite  
powder by Modified Hummers techniqu (1, 16, 23). In the  
ordinary strategy for preparation 5 gr graphite and 5 gr of  
(1, 32) and used to make thin films that have lower sheet  
NaNO  
3
2 4  
(sodium nitrate) were added to 200 ml of H SO (in Ice  
was added to this  
resistance than those made from bulk graphene dispersions.  
The third frontier for later development hides in the production  
of huge surface graphene thin films for use in electronic and  
energy usage. However, to produce the highly conductive and  
translucent monolayers necessary for these purposes, new  
methods for large-area thin-film preparation must be mixed  
with advances in the synthesis of large quantity, spitless  
graphene sheets, as discussed in the next paragraph. As  
graphene can also be a template for catalytic nanoparticles (33,  
and water) and bit by bit 30 gr of KMnO  
4
blend and amid this procedure, temperature kept on 30°C (since  
the response is exothermic). The reaction mixture at that point  
mixed for 18 hours at room temperature with the goal that thick  
glue is shaped. The glue at that point filled 400 ml of distilled  
water and following 20 minutes another 1 liter of distilled water  
added to the blend. 30 ml of 30% H  
the reaction mixture drop insightful to reduce the abundance  
KMnO . The arrangement transformed into light dark-colored  
in the wake of including H . The solution was expelled in a  
2 2  
O arrangement added to  
4
3
5), having high procedures and turnover, the production of  
2
O
2
catalytic thin films would afford large surface area  
heterogeneous catalysts for utilization in fuel units. In another  
application, graphene drop cast from a dispersion has recently  
been utilized as a thin support film for TEM images to prepare  
unmatched atomic resolution (36). With such decent  
applications in one's head, the development of new graphene  
oxide and graphene-based materials will lead to many future  
developments in science and technology (1, 37). While  
graphene particles can be detached from reduced slightly  
dissolve of graphene oxide, thermal exfoliation prepares an  
alternative way for its preparation directly from GO and  
circumvents the usage solvents (1, 18, 25).  
This method involves the speedily heating of GO, which  
gets complete delaminated via the evolution of carbon dioxide  
as surface hydroxyl and epoxy groups decompose (1, 23). With  
its fully joined together, firm 2D structure, graphene has both  
electrical and thermal ability to conduct (38, 39) and  
mechanical possessions (40) that are superior to those of other  
carbon allotropes. So, graphene has attracted significant  
decanter and centrifuged and after that washed out with  
distilled water to achieve the pH of 7 and afterward dried under  
vacuum for 24 hours to frame GO powder (15-18).  
2
.2 Preparation of Zataria multiflora leaf extracts  
Leaves of the Zataria multiflora plant gathered from  
different regions of Shiraz, Fars, Iran, washed independently  
with water at that point dried for 7 days at room temperature45.  
The plant leaf separates set up by the expansion of 10 g of  
altogether washed and finely grounded leaves (utilizing a  
residential blender) to 200 ml of deionized (DI) water in a 500  
ml Erlenmeyer flask. The mixture boiled for 60 min before  
sifted under encompassing conditions. The concentrates put  
away at 4 °C and utilized inside seven days (37-46).  
2
..3 Reduction of graphene oxide  
In an ordinary methodology for the reduction of graphene  
oxide, 50 mL of Zataria multiflora leaf extract added to 200 mL  
of a homogeneous scattering of graphene oxide (1 mg/mL). In  
489  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 488-496  
the wake of energetically shaking and sonicated for 20 minutes,  
the mixture warmed in an oil shower at 98 °C under reflux for  
concentration of the Zataria multiflora extracts expanded to  
25%. Thus, 20% of Zataria multiflora extracts utilized for  
2
4 hrs. The subsequent dark scattering centrifuged at 15,000  
future tests. Figure 2 demonstrates the adjustment in  
rpm for 60 min. The pellet then washed three times with DI  
water to evacuate the undesirable materials. Finally, the  
lessened graphene oxide (RGO) dried at 70 °C for 24 hrs (46,  
absorbance at 600 nm for the reaction between 20% Zataria  
multiflora extracts and 0.5 mg/mL of graphene oxide at three  
distinct temperatures (25, 30, 45, 60, 75 and 96 °C). As the  
temperature expanded from 25 to 96 °C, the level of reduction  
likewise expanded of course (53). Both the reaction rate and  
4
7).  
o
values of final absorbance were much higher at 96 C than those  
at 25, 30, 45, 60 were and 75 °C.  
3
Results and Discussion  
Optimization of reaction conditions for the reduction of  
graphene oxide an unmistakable change in the shade of the  
suspension on reduction can be an undeniable sign of the  
reaction (48-50). The chemical reduction of the yellow-dark  
colored colloidal suspension more often than not results in a  
dark accelerate, which likely outcomes from an expansion in  
the hydrophobicity of the graphene oxide sheets caused by a  
decline in polar functionality on the surface of the sheets (49-  
3
.1 Infrared spectra  
Graphite powder utilized to make graphene oxide, which  
acquired from Merck Inc. The aftereffects of the graphite  
infrared spectroscopy test are watched, the graphite contains no  
carbonyl and epoxide group, and the adsorption in the locale of  
around 3422 cm-1 is identified with the hydroxyl group of the  
atom water consumed by graphite (3, 13, 17) (Figure 3).  
Graphene oxide arranged by changed Hummer strategy at  
that point refined. The FT-IR spectroscopy of graphene oxide  
demonstrated an absorption frequency of 1720 cm-1relative to  
the tensile vibrations of the carbonyl group (C = O) and  
additionally strong absorption in the 3421 cm-1 of the hydroxyl  
group, (OH) 1384 cm group of the flexural vibrations of the  
hydroxyl group (OH) and absorption in the 1031 cm-1 locale  
of the epoxide tensile frequencies (Figure 4). Likewise, the  
pinnacle contained in 1621 cm is identified with the functional  
groups (C = C) staying on graphene plates, which have not  
experienced any progressions amid the oxidation procedure (3,  
5
1). Consequently, the reduction of graphene oxide on  
introduction to Zataria multiflora extricates checked by an  
adjustment in shading and an expansion in absorbance at 600  
nm (optimized after scan) and furthermore it tends to be  
observed by optical thickness estimation at 600 nm (4, 9, 53,  
6
0). Serial dilution checked the straight connection between  
-
1
absorbance at 600 nm (52) and the concentration of graphene  
suspension. We examined the impact of Zataria multiflora  
concentrates of various fixations on the reduction of graphene  
oxide. Figure 1 demonstrates the adjustment in absorbance at  
-
1
6
00 nm with time, for the response between various  
concentrations of Zataria multiflora extracts (5, 10, 15, 20, 25  
and 30 % v/v) and 0.5 mg/mL of the graphene oxide suspension  
at 96 °C for 30 hrs.  
1
1, 13, 17). . At that point, the concentrate of the leaf extract  
of Zataria multiflora was added to arranged GO, refluxed then  
sonicated, and at the last stage, the suspension was centrifuged  
and the RGO dark shaded washed with water twice and went  
away in the stove.  
The level of reduction seen to increment with  
a
concentration of the Zataria multiflora removes from 5% to  
2
0%. No further increment in absorbance discovered when the  
Zataria multiflora extracts 5% V/V  
Zataria multiflora extracts 15% V/V  
Zataria multiflora extracts 25% V/V  
6
Zataria multiflora extracts 10% V/V  
Zataria multiflora extracts 20% V/V  
5
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
35  
Time(hours)  
Figure 1: Effect of the concentration of Zataria multiflora extracts on the reduction of graphene oxide (0.5 mg/mL) at 96 °C  
490  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 488-496  
2
6
5 centigrade degree  
0 centigrade degree  
30 centigrade degree  
75 centigrade degree  
45 centigrade degree  
96 centigrade degree  
6
5
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
35  
Time(hours)  
Figure 2: Effect of reaction temperature on the reduction of graphene oxide (0.5 mg/mL) using 20 % v/v Zataria multiflora extracts  
Figure 3: Infrared spectra of graphite  
The examination of the FT-IR spectra in GO and RGO  
demonstrates that in GO there is a tensile vibration of C = O in  
the estimations of 3350 cm-1 and 1100 cm-1 (Figure 5), so it  
tends to be presumed that amid the recovery procedure  
(planning of RGO), the current oxygen species on the surface  
of graphene sheets, the concentrate of Zataria multiflora plant  
has been decreased and graphene oxide has been reduced to  
graphene (3, 1113, 21, 54).  
-
1
cm-1 of 1720 cm , yet in RGO the ductile vibration of C = O  
-
1
isn't so serious and moved to 1797 cm , and also, the power of  
-
1
-1  
the vibration retention of OH in 3421 cm and 1384 cm which  
at RGO diminished fundamentally after reduction and achieved  
491  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 488-496  
Figure 4: Infrared spectra of graphene oxide  
Figure 5: Infra-red spectra of reduced graphene oxide  
3
.2 XRD analysis  
The X-ray beam diffraction test utilized to check the  
structure of graphene oxide, graphene, and oxidized graphene.  
As appeared in figure 7, X-rays beam diffraction (XRD) for  
graphene oxide demonstrates a strong peak at 2θ = 10.5, which  
shows the nearness of oxygen-containing functional groups in  
void spaces between graphene oxide plates. As found in Figure  
6
, the graphene X-ray beam diffraction example of this peak  
has been exchanged to the range 2θ = 13 and speaks to the  
graphene cover after the way toward recovering and emptying  
water particles and oxygen bunches from the spaces between  
the layers of graphene oxide (11, 12, 54).  
Figure 6: XRD spectra of reduced graphene oxide and graphene oxide  
492  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 488-496  
3
.3 Raman study  
Raman scattering is a valuable device to portray graphite and  
multilayer structure, after the reduction of GO, the 2D band is  
extraordinary, which proposed about stacking of graphene  
layers. As GO has diverse kinds of functional groups that may  
avoid stacking of graphene layers yet after reduction because  
of an abatement of such functional groups a couple of graphene  
layers are stacking and framed multilayer RGO (54).  
graphene materials as this dissipating emphatically relies upon  
the electronic structure. Raman range of GO was observed to  
be altogether changed after the reduction (Figures 7 and 8). In  
the spectra of GO and RGO, two crucial vibration bands were  
-
1
seen in the scope of 12501750 cm . The G vibration mode,  
inferable from the first-order scattering of E2 g phonons by sp2  
carbon of GO and RGO were discovered 1592 and 1587 cm-1  
separately, while the D vibration band acquired from a  
breathing method of j-point photons of A1g symmetry of GO  
and RGO showed up at 1350 and 1345 cm-1 separately. .After  
the reduction of GO, the force proportion of the D band to the  
G band (ID/IG) was expanded essentially. As D band emerges  
due to the sp2 carbon group, the higher power of D band  
proposed the nearness of more detached graphene space in  
RGO in contrast with GO and expulsion of oxygen moieties  
from the former. Notably, the two-phonon (2D) Raman  
dissipating of graphene-based materials is an important band to  
separate the monolayer graphene from a twofold layer/multi-  
layer graphene as it is profoundly discerning to stacking of  
graphene layers. For the most part, a Lorentzian peak for the  
3.4 Transmission Electron Microscopy (TEM) analysis  
Figure 9 shows TEM images of the RGO sheet reduced  
with Zataria multiflora leaf extract. The appearance of  
transparent and silky sheets of RGO in TEM images verifies its  
stability under a high-energy electron bar. The high-resolution  
TEM images are utilized to get to the number of layers in  
numerous areas. The edges of the suspended graphene films  
tend to crease back, permitting the cross-sectional perspective  
of the films. The collapse of a couple of layers at the edges of  
the films shows up as a couple of dim lines, individually. The  
arrangement of a few layers RGO is unmistakably obvious. It  
has likewise been discovered that the forces of all the  
diffraction spots are not equivalent and sharp enough.  
Additionally, the diffraction spots are related to some uncertain  
spots. Every one of these perceptions additionally supporting  
the development of a few layers RGO (3, 13, 17, 21, 54).  
2
2
D band of the multi-layer graphene sheets seen at 2700 and  
900 cm-1 (11, 12, 54). This demonstrates RGO has a  
Figure 7: Raman spectra of GO  
Figure 8: Raman spectra of RGO  
493  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 488-496  
Figure 9: TEM images at 200 nm magnifications, showing the formation of few layer of reduced graphene oxide  
4
Conclusion  
Ethical issue  
We demonstrated that the studied phyto extracts have  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
tremendous potential to be used as reducing agents for the  
reduction of GO with an environmentally benign synthetic  
protocol. Graphene oxide was prepared from graphite powder  
using a modified Hummers’ method followed by ultra-  
sonication. The optimized reaction condition for the reduction  
of graphene oxide was determined to be a reaction time of 20  
hours and a temperature of 96 C using 20% v/v of Zataria  
multiflora extracts. We showed that the considered phyto  
extracts can possibly be utilized as diminishing operators for  
the reduction of GO with an ecological amiable engineered  
convention. Graphene oxide was set up from graphite powder  
utilizing an altered Hummers' strategy trailed by ultra-  
sonication. The upgraded response conditions for the reduction  
of graphene oxide was resolved to be a reaction time of 20  
hours and a temperature of 96 °C utilizing 20% v/v of Zataria  
multiflora extracts. The most imperative favorable  
circumstances of the phytochemicals are their wealth in nature,  
cost-viability, and simple item segregation after reduction as  
they extricated from non-palatable or squander plant items. The  
estimations of particular capacitance, high electrical  
conductivity, and high carbon to oxygen proportion of the  
phyto extract RGO are adequate. In this way, this green strategy  
can be utilized for vast scale generation of RGO. An eco-  
accommodating and naturally considerate reduction framework  
by utilizing Zataria multiflora removes as a biocatalyst for the  
reduction of graphene oxide is portrayed. The reduction was  
done in a watery medium at an alternate temperature. TEM  
uncovers the development of few-layer of reduced graphene  
oxide. FTIR and X-ray examination give proof to the end of  
labile oxygen usefulness from the surface of GO. De-  
oxygenation and the development of deformities in the RGOs  
have been affirmed by Raman spectroscopy. The primary  
points of interest of this system over the conventional synthetic  
reduction are the cost-adequacy, ecologically agreeable  
methodology, and basic item confinement process. This  
ecologically amicable reduction of graphene oxide can possibly  
be utilized in different fields, for example, biomedical  
applications.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
References  
1
2
.
.
Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of  
graphene. Chemical reviews. 2010;110(1):132-45.  
Guo C, Book-Newell B, Irudayaraj J. Protein-directed reduction of  
graphene oxide and intracellular imaging. Chemical  
Communications. 2011;47(47):12658-60.  
3. Mousavi SM, Hashemi SA, Arjmand M, Amani AM, Sharif F,  
Jahandideh S. Octadecyl amine functionalized Graphene oxide  
towards hydrophobic chemical resistant epoxy Nanocomposites.  
ChemistrySelect. 2018;3(25):7200-7.  
4
.
Mousavi SM, Hashemi SA, Zarei M, Bahrani S, Savardashtaki A,  
Esmaeili H, et al. Data on cytotoxic and antibacterial activity of  
synthesized Fe3O4 nanoparticles using Malva sylvestris. Data in  
brief. 2020;28:104929.  
5. Mousavi SM, Zarei M, Hashemi SA, Babapoor A, Amani AM. A  
conceptual review of rhodanine: current applications of antiviral  
drugs, anticancer and antimicrobial activities. Artificial cells,  
nanomedicine, and biotechnology. 2019;47(1):1132-48.  
6
.
Wu J, Pisula W, Müllen K. Graphenes as potential material for  
electronics. Chemical reviews. 2007;107(3):718-47.  
7
.
Mhamane D, Ramadan W, Fawzy M, Rana A, Dubey M, Rode C,  
et al. From graphite oxide to highly water dispersible  
functionalized graphene by single step plant extract-induced  
deoxygenation. Green Chemistry. 2011;13(8):1990-6.  
8
.
.
Akhavan O, Kalaee M, Alavi Z, Ghiasi S, Esfandiar A. Increasing  
the antioxidant activity of green tea polyphenols in the presence of  
iron for the reduction of graphene oxide. Carbon.  
Acknowledgements  
The authors are thankful to the Research Council of Islamic  
Azad University, Yazd Branch and the Iran Nanotechnology  
Initiative Council for their support of this work.  
2
012;50(8):3015-25.  
9
1
1
Thakur S, Karak N. Green reduction of graphene oxide by aqueous  
phytoextracts. Carbon. 2012;50(14):5331-9.  
0. Lee G, Kim BS. Biological reduction of graphene oxide using plant  
leaf extracts. Biotechnology progress. 2014;30(2):463-9.  
1. Mousavi SM, Hashemi SA, Jahandideh S, Baseri S, Zarei M,  
494  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 488-496  
Azadi S. Modification of phenol novolac epoxy resin and  
unsaturated polyester using sasobit and silica nanoparticles.  
Polymers from Renewable Resources. 2017;8(3):117-32.  
32. Green AA, Hersam MC. Solution phase production of graphene  
with controlled thickness via density differentiation. Nano letters.  
2009;9(12):4031-6.  
1
1
2. Compton OC, Nguyen ST. Graphene oxide, highly reduced  
graphene oxide, and graphene: versatile building blocks for  
carbon‐based materials. small. 2010;6(6):711-23.  
3. Mousavi S, Hashemi S, Zarei M, Amani A, Babapoor A.  
Nanosensors for Chemical and Biological and Medical  
Applications. Med Chem (Los Angeles). 2018;8(8):2161-  
33. Williams G, Seger B, Kamat PV. TiO2-graphene nanocomposites.  
UV-assisted photocatalytic reduction of graphene oxide. ACS  
nano. 2008;2(7):1487-91.  
34. Seger B, Kamat PV. Electrocatalytically active graphene-platinum  
nanocomposites. Role of 2-D carbon support in PEM fuel cells.  
The Journal of Physical Chemistry C. 2009;113(19):7990-5.  
35. Yang H, Shan C, Li F, Han D, Zhang Q, Niu L. Covalent  
functionalization of polydisperse chemically-converted graphene  
sheets with amine-terminated ionic liquid. Chemical  
Communications. 2009(26):3880-2.  
36. Lee Z, Jeon K-J, Dato A, Erni R, Richardson TJ, Frenklach M, et  
al. Direct imaging of soft− hard interfaces enabled by graphene.  
Nano letters. 2009;9(9):3365-9.  
37. Tkachev S, Buslaeva EY, Naumkin A, Kotova S, Laure I, Gubin  
S. Reduced graphene oxide. Inorganic Materials. 2012;48(8):796-  
802.  
0
444.1000515.  
1
1
4. Mousavi S, Zarei M, Hashemi S. Polydopamine for Biomedical  
Application and Drug Delivery System. Med Chem(Los Angeles).  
2
018;8:218-29.  
5. Mousavi SM, Hashemi SA, Ghasemi Y, Amani AM, Babapoor A,  
Arjmand O. Applications of graphene oxide in case of  
nanomedicines and nanocarriers for biomolecules: review study.  
Drug metabolism reviews. 2019;51(1):12-41.  
6. Hummers Jr WS, Offeman RE. Preparation of graphitic oxide.  
Journal of the american chemical society. 1958;80(6):1339-.  
7. Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide  
revisited. The Journal of Physical Chemistry B.  
1
1
38. Ghosh d, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL,  
Balandin AA, et al. Extremely high thermal conductivity of  
graphene: Prospects for thermal management applications in  
1
998;102(23):4477-82.  
1
1
8. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of  
graphene oxide. Chemical society reviews. 2010;39(1):228-40.  
9. Regueira R, Suckeveriene RY, Brook I, Mechrez G, Tchoudakov  
R, Narkis M. Investigation of the Electro-Mechanical Behavior of  
Hybrid Polyaniline/Graphene Nanocomposites Fabricated by  
Dynamic Interfacial Inverse Emulsion Polymerization. Graphene.  
nanoelectronic  
2008;92(15):151911.  
39. Orlita M, Faugeras C, Plochocka P, Neugebauer P, Martinez G,  
Maude DK, et al. Approaching the Dirac point in high-mobility  
multilayer epitaxial graphene. Physical review letters.  
2008;101(26):267601.  
circuits.  
Applied  
Physics  
Letters.  
2
015;4(01):7.  
40. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic  
properties and intrinsic strength of monolayer graphene. science.  
2008;321(5887):385-8.  
41. Li D, Kaner RB. Graphene-based materials. Science.  
2008;320(5880):1170-1.  
2
2
0. Saldin VI, Tsvetnikov AK. Composites on Base of the  
Ultradispersed Polytetrafluoroethylene and Graphite Oxide  
Intercalated Compounds. Journal of Materials Science and  
Chemical Engineering. 2015;3(12):12.  
1. Miller TA, Rosenblatt DH, Dacre JC, Pearson J, Kulkarni RK,  
Welch JL, et al. Problem Definition Studies on Potential  
Environmental Pollutants. 4. Physical, Chemical, Toxicological,  
and Biological Properties of Benzene; Toluene; Xylenes; and para-  
Chlorophenyl Methyl Sulfide, Sulfoxide, and Sulfone. Army  
Medical Bioengineering Research and Development Lab Fort  
Detrick MD; 1976.  
2. Schubert U, Hüsing N, Lorenz A. Hybrid inorganic-organic  
materials by sol-gel processing of organofunctional metal  
alkoxides. Chemistry of materials. 1995;7(11):2010-27.  
42. Geim AK. Graphene: status and prospects. science.  
2009;324(5934):1530-4.  
43. Letchamo W, Xu H, Gosselin A. Photosynthetic potential of  
Thymus vulgaris selections under two light regimes and three soil  
water levels. Scientia horticulturae. 1995;62(1-2):89-101.  
44. Raeisi M, Hashemi M, Aminzare M, Afshari A, Zeinali T, Jannat  
B. An investigation of the effect of Zataria multiflora Boiss and  
Mentha piperita essential oils to improve the chemical stability of  
minced meat. Veterinary world. 2018;11(12):1656.  
45. Shayeganmehr A, Vasfi Marandi M, Karimi V, Barin A,  
Ghalyanchilangeroudi A. Zataria multiflora essential oil reduces  
replication rate of avian influenza virus (H9N2 subtype) in  
challenged broiler chicks. British poultry science. 2018;59(4):389-  
95.  
2
2
3. Luo L, Peng T, Yuan M, Sun H, Dai S, Wang L. Preparation of  
graphite oxide containing different oxygen-containing functional  
groups and the study of ammonia gas sensitivity. Sensors.  
2
018;18(11):3745.  
2
4. Tech JET. Investigating the Activity of Antioxidants Activities  
Content in Apiaceae and to Study Antimicrobial and Insecticidal  
Activity of Antioxidant by using SPME Fiber Assembly  
Carboxen/Polydimethylsiloxane (CAR/PDMS). Journal of  
Environmental Treatment Techniques. 2020;8(1):214-24.  
5. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M,  
Adamson DH, et al. Functionalized single graphene sheets derived  
from splitting graphite oxide. The Journal of Physical Chemistry  
B. 2006;110(17):8535-9.  
6. Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I.  
Graphite oxide: chemical reduction to graphite and surface  
modification with primary aliphatic amines and amino acids.  
Langmuir. 2003;19(15):6050-5.  
7. Bissessur R, Scully SF. Intercalation of solid polymer electrolytes  
into graphite oxide. Solid State Ionics. 2007;178(11-12):877-82.  
8. Cote LJ, Kim F, Huang J. Langmuir− Blodgett assembly of  
graphite oxide single layers. Journal of the American Chemical  
Society. 2009;131(3):1043-9.  
9. Roy I, Rana D, Sarkar G, Bhattacharyya A, Saha NR, Mondal S,  
et al. Physical and electrochemical characterization of reduced  
graphene oxide/silver nanocomposites synthesized by adopting a  
green approach. RSC Advances. 2015;5(32):25357-64.  
0. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, et al.  
High-yield production of graphene by liquid-phase exfoliation of  
graphite. Nature nanotechnology. 2008;3(9):563.  
46. Wang Y, Shi Z, Yin J. Facile synthesis of soluble graphene via a  
green reduction of graphene oxide in tea solution and its  
biocomposites. ACS applied materials  
2011;3(4):1127-33.  
&
interfaces.  
47. Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, et al.  
Deoxygenation of exfoliated graphite oxide under alkaline  
conditions: a green route to graphene preparation. Advanced  
Materials. 2008;20(23):4490-3.  
48. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes  
A, Jia Y, et al. Synthesis of graphene-based nanosheets via  
chemical reduction of exfoliated graphite oxide. carbon.  
2007;45(7):1558-65.  
49. Park S, Ruoff RS. Chemical methods for the production of  
graphenes. Nature nanotechnology. 2009;4(4):217.  
50. Pei S, Cheng H-M. The reduction of graphene oxide. Carbon.  
2012;50(9):3210-28.  
2
2
2
2
51. Dreyer DR, Murali S, Zhu Y, Ruoff RS, Bielawski CW. Reduction  
of graphite oxide using alcohols. Journal of Materials Chemistry.  
2011;21(10):3443-7.  
2
52. Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. The  
use of  
a glucose-reduced graphene oxide suspension for  
photothermal cancer therapy. Journal of Materials Chemistry.  
2012;22(27):13773-81.  
3
3
53. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. A green  
approach for the reduction of graphene oxide by wild carrot root.  
Carbon. 2012;50(3):914-21.  
54. Mousavi SM, Hashemi SA, Amani AM, Saed H, Jahandideh S,  
Mojoudi F. Polyethylene terephthalate/acryl butadiene styrene  
1. Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK.  
Liquid‐phase exfoliation of graphite towards solubilized  
graphenes. small. 2009;5(16):1841-5.  
495  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 488-496  
copolymer incorporated with oak shell, potassium sorbate and egg  
shell nanoparticles for food packaging applications: control of  
bacteria growth, physical and mechanical properties. Polymers  
from Renewable Resources. 2017;8(4):177-96.  
496