Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 214-224  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Investigating the Activity of Antioxidants  
Activities Content in Apiaceae and to Study  
Antimicrobial and Insecticidal Activity of  
Antioxidant by using SPME Fiber Assembly  
Carboxen/Polydimethylsiloxane (CAR/PDMS)  
1
1
1*  
2
Seyyed Mojtaba Mousavi , Seyyed Alireza Hashemi , Hossein Esmaeili , Najmeh parvin ,  
1
3
,
Fathemeh Mojoudi , MohammadAli Fateh , Hamed Fateh , Aziz babapoor Sargol  
1
1
Mazraedoost , Maryam Zarei  
1
Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical  
Sciences, Shiraz, Iran  
2
Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran  
3
Department of Chemical Engineering University of Mohaghegh Ardabili (UMA) Ardabil, Iran  
Department of Environment, Faculty of Natural Resources, College of Agriculture & Natural Resources,  
University of Tehran, Karaj, Iran  
Abstract  
In present study, the antioxidant content in Apiaceae was investigated by two new methods such as hydraulic distillation  
HD) and HS-SPME, and the composition of final product was recognized using gas chromatography and mass spectroscopy. So,  
(
in this research, the anti-oxidation property of the essence was examined. For this purpose, the antioxidant activity of Apiaceae  
and its stability was inspected in different concentrations (250, 500, 750 and 1000 ppm) using differential scanning calorimetry  
with oleic acid. The results showed the similarity between HD and HS-SPME, but the percentages of the compositions were  
different. Besides, the frequency of oxides of essence oils in HS-SPME method was higher than HD method. The experiments  
performed on the antioxidants activity of the herb, and the results showed that increasing the essence concentration prevents the  
oxidation of the oils.  
Keywords: Antioxidants, Gas Chromatography, Mass spectroscopy, Scanning calorimetry, Apiaceae  
1
significant herb in traditional medical profession, which has  
1
Introduction  
been used as a treating medicine in many diseases, and  
several laboratorial studies have proved such treating  
property. Prangos ferulacea is distributed from Eastern  
Europe to Middle East and Central Asia (13). This herb has  
been used as carminative, laxative, stomach tonic, neuralgia  
relief, anti-inflammatory, antivirus, anti-parasite, antifungal  
and antibacterial (14-16). Phyto-chemical investigations  
lead to separation of Coumarins, alkaloids, Flavonoids, and  
Terpenoides from different species of prangos.  
Further researches on aerial essences and seeds of  
Prangos ferulacea identified 33 types of oils. In the oil  
produced from the fruit, 39 compositions were determined  
which were mainly consisted of alpha-pinene.  
Monoterpenes, sesquiterpene, and Coumarins were the  
other essential compositions of the root. Antioxidants are  
the compounds protecting and decelerating the oxidation of  
other molecules and reducing oxidation speed with  
inhibition of free radicals, peroxide decomposition and  
chelating up the metals (17-22). The objective of this study  
Herbs were used extensively in conventional medical  
profession for several diseases. Scientific studies confirmed  
the hopeful treatment ability of herbs for different diseases,  
including infectious diseases, cancer, atherosclerosis, scald  
and Neurological disease (1-4). Although side effects  
cannot be ignored totally for such herbs, fewer negative  
effects are conceivable for them in comparison with  
synthetic medicines, and in many cases they can reduce the  
toxicity of other medicines because of antioxidant  
properties. Nowadays, new recognized compositions  
between the herbs are applied as medicine and can be used  
as a key for cheaper disease diagnosis with fewer side  
effects (5-12). Apiaceae (Prangos ferulacea) is  
a
Corresponding autor: Seyyed Alireza Hashemi,  
Department of Medical Nanotechnology, School of  
Advanced Medical Sciences and Technologies, Shiraz  
University of Medical Sciences, Shiraz, Iran. E-mail:  
kempo.smm@gmail.com.  
4
12  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 214-224  
was to elucidate the antioxidant content in Prangos  
ferulacea (Apiaceae) using different extraction techniques,  
e.g. hydraulic distillation and HS-SPME.  
ability of temperature control during extraction process.  
The fiber assembly was kept in a 10 ml glass container and  
the fiber holder attached to the container. The glass  
container was inside the circulating bath to reach the bath  
temperature. Then, the fiber assembly was in contact with  
upper section for 5 minutes, and then the fiber was pulled  
into the plunger. For heat desorption of pulled components  
on the fiber, the injection performed immediately into the  
GC-MS instrument.  
2
Materials and methods  
2
.1 Materials  
All chemical materials were purchased from Merck and  
Fluka companies with desired purity like anhydrite sodium  
sulfate with 97% and normal hexane with 95% purity.  
2
.3.3 Measurement of Antibacterial Activity of Apiaceae  
2
.2 Instruments  
The characterization of used instruments is shown in  
essential oil on microorganisms  
The recommended medium for disk diffusion method is  
Nutrient agar, and we performed the test according to the  
guidelines of the Clinical and Laboratory Standards  
Institute (25-27). First the medium was prepared based on  
the proposed procedure then the mentioned medium was  
autoclaved and precisely placed in a 50 to 55°C water bath.  
Afterward, it was poured into round plastic petri and let to  
cool at room temperature. The stock bacterial culture was  
set at 0.5 McFarland standard with an optical density of 600  
nm, and a sterile swab was applied to add this prepared  
culture to Nutrient agar plates. Then the disk blanks which  
had been saturated with the samples were located on the  
plates and incubated for hours at 37°C to determine the  
susceptibility of the samples. In this study, Ampicillin and  
sterile water were regarded as positive and negative control  
respectively. In final step, all the plates were assessed for  
the presence of inhibition zones. The microdilution broth  
assay was utilized to specify the minimum inhibitory  
concentrations (MICs) of the samples. Briefly, 2-fold serial  
dilutions of the samples and control groups were proposed  
with Nutrient broth in 96-well microplates. Then the  
bacterial stock (0.5 McFarland Standard) was added to  
previous suspension in a way that the first concentration  
was 6.25 mg/ml. To determine the minimum bactericidal  
concentrations (MBCs) of the samples, the obtained result  
of previous test could be useful. In a way, the lowest  
concentration of samples, which causes no growth of  
bacteria, was regarded (MBC). Components of Apiaceae  
After analysis, the components of essence oil of Apiaceae  
using HD and SPME-HS methods were determined and  
shown in Table 3.  
Table 1, and characterizations of the used fiber in the  
SPME method are also shown in Table 2. SPME fiber  
excluding solid phase and SPME fiber holder were made by  
SUPELCO (USA).  
2
2
.3 Experimental procedure  
.3.1 Hydro-distillation (HD) method  
Hydro distillation is a method of extraction, which is  
sometimes used instead of steam distillation. This process  
of extraction is one of the most used traditional methods of  
extraction. In this work, 100 gram of dried herb was  
grinded, and the essence oil was extracted by Clevenger  
instrument for 3.5 hours. The oil was dried by anhydrous  
sodium-sulphate (Na SO ) and kept in the dark and closed  
2
4
container till analysis.  
2
.3.2 Headspace Solid Phase Microextraction (HS-  
SPME) method  
Solid-phase microextraction, or SPME, is a solid phase  
extraction sampling technique that involves the use of a  
fiber coated with an extracting phase, that can be a liquid  
(polymer) or a solid (sorbent), which extracts different  
kinds of analytes (including both volatile and non-volatile)  
from different kinds of media, that can be in liquid or gas  
phase. The quantity of analyte extracted by the fibre is  
proportional to its concentration in the sample as long as  
equilibrium is reached or, in case of short time, pre-  
equilibrium, with the help of convection or agitation (23,  
2
4). The method carried out using minimum amount of  
herb powder (1 g) without using any solvent. The  
circulating bath was used in this experiment, which had the  
Table 1: Characterization of used instruments  
Apparatus  
Applications  
Model  
2
To identify different substances within a test  
sample  
GC-MS model HP-6890 supplied by Hewlett-  
Packard (USA)  
GC-MS  
15  
3
is a physical characterization method used to study  
the thermal behavior of herb  
DSC  
Electric mill grinder  
this mill is needed for SPME method  
M20 (IKA-WERKE, Germany)  
2
Gas chromatographymass spectrometry  
Differential Scanning Calorimetry  
3
4
1ꢀ  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 214-224  
Table 2: Characterizations of the used fiber in the SPME method  
Characterization of the used fiber in the SPME method  
Type of fiber: (carboxen / poly dimethyl siloxane , CAR / PDMS)  
Adsorbent thickness: 75 micrometer  
Type of adsorbent connections: powerfully network  
Color: Black  
-
thujene  
I= 930  
C H  
16  
MW= 136  
1
0
-
pinene  
I= 939  
C H  
16  
MW=136  
1
0
-
pinene  
I= 979  
C H16  
MW=136  
1
0
Myrcene  
I= 991  
C H  
16  
MW=136  
1
0
4
1ꢁ  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 214-224  
-
terpinene  
I= 1017  
C H  
16  
MW=136  
1
0
p-cymene  
I= 1025  
C H  
14  
MW=134  
1
0
Limonene  
I=1029  
C H  
16  
MW=136  
1
0
1
,8-cineole  
I= 1031  
C H O  
MW=154  
1
0
18  
(Z)- -ocimene  
I=1037  
C H  
16  
MW=136  
1
0
4
1ꢂ  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 214-224  
-
terpinene  
I= 1060  
C H  
MW=136  
1
0
16  
Artemisia triene  
I= 1084  
C H  
16  
MW= 136  
1
0
-
terpinolene  
I= 1089  
C H  
16  
MW=136  
1
0
Gamma-terpinene  
I= 1199  
C H  
16  
MW=136  
1
0
4
1ꢃ  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 214-224  
Fenchyl acetate  
I=1220  
C12H20O2  
MW=196  
Anethole  
I= 1253  
C10H12O  
MW=148  
Geranial  
I=1267  
C H O  
MW=152  
1
0
16  
Bornyl acetate  
I=1289  
C H O  
2
MW=196  
1
2
20  
4
1ꢄ  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 214-224  
Thrpinen4ol  
I= 1291  
C10H18O  
MW=154  
(Z)- -farnesene  
I= 1443  
C H  
24  
MW=204  
1
5
Isobornyl 3-methylbutanoate  
I= 1524  
C15H26O2  
MW=238  
Bornyl angelate  
I= 1566  
C H O  
2
MW=236  
1
5
24  
Figure 1: The mass spectra of identified compounds of Apiaceae  
2
.3.4 Test methods of measuring oxidation stability of  
that, nitrogen gas removed, and oxygen flowed into the  
device, and heating continued up to 280°C. The oxygen  
flow was 50 ml/min, and thermal increase was 10 C/min.  
The empty crucible was used as control test. During the  
dynamic process, samples heated up from 25°C to 280°C  
essence oil using DSC  
o
Measuring test by DSC carried out with 8 mg sample in  
the crucible without lid. The test completed with one  
atmosphere nitrogen pressure and 250°C heating. After  
4
4ꢅ  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 214-224  
and oxidation stability of the samples determined from  
maximum temperature deflection curve.  
then injected into GC-MS. Eventually, all components are  
determined using this apparatus.  
The mass spectra of identified compounds of Apiaceae are  
showed in Figure 1. In this figure, I, MF and MW are  
Quartz Index, Molecular Formula, and Molecular Weight,  
respectively.  
Table 3: The components of essence oil of Apiaceae using  
HD and SPME-HS methods  
HS-  
SPME  
Compound  
I
HD (%)  
(
%)  
3
Results and discussions  
°
(60 C)  
3
.1 Antioxidant activity of essence oil in Apiaceae  
α- Thujene  
α Pinene-  
Pineneβ-  
930  
0.66  
7.75  
0.72  
1.62  
0.53  
13.55  
1.35  
0.34  
-
0.88  
8.48  
0.87  
2.33  
0.37  
12.91  
0.78  
-
The antioxidant activity of essence in Apiaceae and its  
effect was measured in delaying the oxidation of fatty acid  
oleic acid). Different concentrations of mentioned essence  
939  
(
979  
such as 250, 500, 750 and 1000 ppm (diluted with distilled  
water) were used in acetone as a solvent, and fatty acid  
without antioxidant (oleic acid) added to the mixture. The  
solution (1% v/w) injected into the oil container rotating  
with 1000 rpm speed. Oleic acid without antioxidants used  
as a control test. Figure 2 shows the oxidation stability of  
Apiaceae and control test according to dynamic process of  
DSC device.  
Myrcene  
991  
α Terpinen-  
Para-cymene  
Limonen  
1017  
1025  
1029  
1031  
1037  
1060  
1084  
1089  
1169  
1199  
1220  
1253  
1267  
1289  
1291  
1299  
1381  
1443  
1524  
1566  
1
,8-cineole  
Ocimene(z-beta)  
γ- Terpinene  
0.24  
20.71  
-
2
1
1
1
1
00  
80  
60  
40  
20  
21.4  
0.48  
0.45  
1.59  
0.72  
0.33  
-
control  
Artemisia alcohol  
α-terpineolene  
Thujene4ol  
0.34  
-
Apiaceae  
γ - Therpineol  
Fenchy acetate(endo)  
Anethol(z)  
-
-
5.56  
0.23  
0.31  
6.31  
0.34  
10.24  
0.23  
0.74  
10.2  
Geranial  
-
Bornyl acetate  
γ – Therpinental  
Acetanisol(meta)  
Geranyl acetate  
Franesense(z)beta  
Isobornyl-3-methyl  
Bornyl angelate  
0.6  
4.19  
-
-
-
2
50  
500  
750  
1000  
0.54  
9.42  
Concentration (ppm)  
Figure 2: Measuring the oxidation stability of samples containing  
essence oil of Apiaceae and control test using a dynamic process of  
DSC device.  
2
.3.5 Separation and identification of components in  
essence oils  
As the components present in essence oils are known as  
The vertical axis is temperature in °C, and horizontal  
axis is the concentration in ppm. The process was done  
under one atmosphere of nitrogen gas. Also, the oxygen  
flow rate and the heat rate were 50 ml /min and 10°C /min,  
respectively. As shown in Fig. 2, thermal stability of  
Apiaceae increased with increasing temperature. Also, the  
temperatures of oxidation stability of Apiaceae and control  
test are showed in Table 4.The effect of anti-oxidation  
stability of Apiaceae is depicted in Figure 3. For  
determining the effect of anti-oxidation, samples were  
analyzed at high temperatures. Calculate phenolic  
compounds of the concentration the measuring  
concentrations Acid gallic of different absorbance  
volatile and semi-volatile oils, therefore GC-MS method  
was applied for separation and identification of the  
components. In order to confirm the identified components  
of standard mass spectrum, Quartz index was applied.  
Firstly, the Alkanes of C8-C25 were injected into GC-MS,  
and deterrence time for each Alkane was measured using  
I=100n when ‘n’ is the number of carbons in related  
Alkane. Quartz index of essence oils was calculated using  
the following equation (28):  
I=100n + 100((t -t )/ (trn+1-trn))  
rx rn  
n: Carbon number of normal Alcan  
trn+1: Retention time of unknown compound  
trn: Retention time of normal alkane  
After dewatering the produced oil, the oil was diluted using  
normal hexane (Merck) with the proportion of 1 to 10 and  
4
41  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 214-224  
Table 5 : Amount of phenol in Apiaceae essential oil  
1
1
200  
000  
Name plant  
Apiaceae  
Essence  
Mg/ꢇꢑꢆꢅꢊꢇꢒꢏꢄꢄꢅꢆ  
Extraction  
0.37  
8
6
4
2
00  
00  
00  
00  
0
3
.2 Antimicrobial effect of Apiaceae essential oil on  
microorganisms  
Inhibitory effect of ethanolic extract and methanolic  
extract of Apiaceae against the eight mentioned bacterial  
strains and five different yeasts and fungus were evaluated  
through disk diffusion method, and the results are shown in  
figure 4. At the tested concentrations, ethanolic and  
methanolic extract showed the highest mean diameter of  
non-growth halo against E. Coli with the mean diameter of  
22.8667 and 16.5067 mm respectively. Also, the lowest  
mean diameter of non-growth halo for both ethanolic and  
methanolic extract was for Terichophyton verrucosum.  
In high concentrations both ethanolic and methanolic  
extracts of Apiaceae have significant antibacterial effects  
against mentioned microorganisms. It can be stated that, by  
increasing the concentration value, antibacterial effects  
grow in a concentration-dependent manner. Ethanolic and  
methanolic extracts of Apiaceae have the highest average  
of inhibitory effects against E.coli with the MIC values of  
0.390 and 0.781 mg/ml respectively. These mentioned  
samples have more significant antibacterial activity against  
gram-negative strains, and MBC values verify the  
0
50  
100  
150  
200  
250  
Concentration (ppm)  
Figure 3: The temperature measurement of anti-oxidation stability  
of Apiaceae according to dynamic process of DSC device  
Table 4: phenolic compounds of the concentration  
Microliter Acid gallic  
distilled water  
0
5
10  
-
-
100  
400  
500  
495  
490  
calculated using the following equation (1):  
ꢁꢂꢃꢄꢅꢆꢇꢆꢃꢈ ꢃꢉꢂꢊꢋꢇꢃꢌꢇꢍꢀꢁꢇꢆꢃꢂꢆꢁꢂꢍꢎꢏꢍꢅꢃꢂ  
ꢑꢆꢅꢊꢇꢒꢏꢄꢄꢅꢆ  
ꢖꢔꢇꢕꢓ  
ꢐꢇ  
ꢇꢇꢕꢇꢇꢇ  
ꢓꢔꢔꢔ  
bacteriostatic  
performance  
of  
these  
extracts.  
Amount of phenol in Apiaceae essential oil has been  
reported in Table 5 :  
Ethanolic extract  
Methanolic extract  
3
2
2
1
1
0
5
0
5
0
5
0
Microorganisms  
Figure.4: Inhibition zone (mm±SD) of Apiaceae essential oil on microorganisms  
4
44  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 214-224  
Table 6: MICs and MBC/MFC values of compounds against microorganisms  
Ethanolic  
MIC  
Extract (mg/ml)  
MBC/MFC  
Methanolic  
MIC  
Ecxtract (mg/ml)  
MBC/MFC  
Microorganism  
Arizona  
Salmonella  
Morganella  
Entrobacter  
1.562  
1.562  
0.781  
3.125  
0.390  
3.125  
3.125  
3.125  
0.781  
1.562  
3.125  
6.125  
3.125  
3.125  
1.562  
6.25  
0.781  
3.125  
3.125  
0.781  
0.781  
0.781  
1.562  
0.781  
0.781  
6.25  
1.562  
6.25  
6.25  
1.562  
1.562  
1.562  
3.125  
1.562  
1.562  
12.5  
E.coli  
0.781  
6.25  
6.25  
Klebsia Pesudomon  
Pseudomonas aeruginosa  
staphylococcus aureus  
Candida albicans  
Cryptoccus neoformans  
Aspergillus flavous  
Terichophyton verrucosum  
Epidermophyton  
6.25  
1.562  
6.125  
6.25  
3.125  
6.25  
6.25  
12.5  
6.25  
1
.562  
3.125  
1.562  
3.125  
floccodum  
Also, the inhibition performances of both ethanolic and  
methanolic extracts of Apiaceae against five different  
yeasts and fungus are confirmed by MBC tests (Table 6).  
Finally it can be concluded that the antibacterial  
performance of ethanolic and methanolic extracts of  
Apiaceae is acceptable.  
devoid of investigated Apiaceae essential oil. The lowest  
concentration, which did not show any growth of tested  
organisms after macroscopic evaluation, was determined as  
Minimum inhibitory concentration (MIC). The activity was  
determined by measuring the diameter of the inhibition  
zone (in mm). The antimicrobial activities were expressed  
as zone of inhibition and minimum inhibitory concentration  
(
MIC). Identification of compounds from a crude extraction  
4
Conclusion  
of ferulacea essential oil was carried out by GC/MS  
technique. Finally, Apiaceae essential oil could serve as a  
useful source of new antimicrobial agents.  
In this study, the antioxidant effect of Apiaceae essence  
oil was investigated using oleic acid and Differential  
Scanning Calorimetry. By increasing the concentration of  
essence oil, thermal stability of oleic acid increases. The  
Differential Scanning calorimetry method is practical in  
industry for measuring antioxidant properties of oils and  
fats because of simplicity, no toxicity, and high speed. The  
required time is short and small amount of the sample is  
enough. While there is no need for solvent and chemical  
reagents, the applied method is also helpful to qualify the  
oil and its oxidation stability .The scanning calorimetry  
tests on Apiaceae essence oil reveal that antioxidant  
activity depends on several parameters including substrate,  
oil type, available fatty acids, presence of other materials  
References  
1. Moradi M-T, Karimi A, Rafieian-Kopaei M, Kheiri S, Saedi-  
Marghmaleki M. The inhibitory effects of myrtle (Myrtus  
communis) extract on Herpes simplex virus-1 replication in  
Baby Hamster Kidney cells. Journal of Shahrekord  
Uuniversity of Medical Sciences. 2011;12.  
2
.
Rafieian-Kopaei M, Asgary S, Adelnia A, Setorki M, Khazaei  
M, Kazemi S, et al. The effects of cornelian cherry on  
atherosclerosis  
and  
atherogenic  
factors  
in  
hypercholesterolemic rabbits. Journal of Medicinal Plants  
Research. 2011;5(13):2670-6.  
3
4
.
.
Shahrani M, NABAVIZADEH F, RAFIEIAN M, SHIRZAD  
H, HASHEMZADEH CM, Yousefi H, et al. Effect of Allium  
Sativum extract on acid and pepsin secretion in basal condition  
and stimulated with Pentagastrin in rat. 2007.  
Shirzad H, Taji F, Rafieian-Kopaei M. Correlation between  
antioxidant activity of garlic extracts and WEHI-164  
fibrosarcoma tumor growth in BALB/c mice. Journal of  
medicinal food. 2011;14(9):969-74.  
like  
Tocopherols,  
phenolic compounds,  
applied  
concentration of essences, stability measurement method  
and antioxidant activity. Also, following results are  
obtained:1. The antioxidants of Apiaceae essence increase  
the stability of oil oxidation.2. Increasing the concentration  
of antioxidants leads to increase in antioxidant activity and  
oxidation prevention.3. Essences prevent oxidation  
improvement during primary steps and diffusion stage.4.  
The conventional application of Apiaceae can play a  
significant role in clinical trials and treatment of many  
diseases as it contains many herbal compounds like  
antibiotics, palliatives, and diabetes reagents. Although this  
ability was not restricted to one order or division within the  
macro Apiaceae essential oil, but all of them offerd  
opportunities to produce new types of bioactive  
compounds. Minimum inhibitory concentration (MIC) of  
investigated Apiaceae essential oil against bacterial isolates  
was tested in Mueller Hinton broth by Broth macro dilution  
method. The control tube contained only organisms and  
5. Kuznetsova G, Yurev YN, Kuzmina L, Senchenko G, Shagova  
L. Essential oil composition of fruit of some species of  
Prangos. 1973.  
6
.
Akhgar M. Composition of essential oils of fruits and leaves of  
Prangos ferulacea (L.) Lindl. growing wild in Iran. Trends  
Mod Chem. 2011;1:1-4.  
Razavi S. Chemical composition and some allelopathic aspects  
of essential oils of (Prangos ferulacea L.) Lindl at different  
stages of growth. 2012.  
7
.
8. Asadi SY, Parsaei P, Karimi M, Ezzati S, Zamiri A,  
Mohammadizadeh F, et al. Effect of green tea (Camellia  
sinensis) extract on healing process of surgical wounds in rat.  
International Journal of Surgery. 2013;11(4):332-7.  
4
4ꢆ  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 214-224  
9
1
1
1
.
Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani  
AM, Savar Dashtaki A, et al. Green synthesis of silver  
nanoparticles toward bio and medical applications: review  
study. Artificial cells, nanomedicine, and biotechnology.  
Schools in Abeokuta Environs, Ogun State. Journal of  
Environmental Treatment Techniques. 2018;6(3):47-52.  
26. Humphries RM, Ambler J, Mitchell SL, Castanheira M,  
Dingle T, Hindler JA, et al. CLSI methods development and  
standardization working group best practices for evaluation of  
antimicrobial susceptibility tests. Journal of clinical  
microbiology. 2018;56(4):e01934-17.  
27. Fazal F. European Committee on Antimicrobial Susceptibility  
Testing and Clinical and Laboratory Standards Institute  
breakpointsthe only point that matters in candidemia?  
Journal of Thoracic Disease. 2019;11(Suppl 9):S1412.  
28. Vaysi R, Ashrafi SS. Determination and Comparison of the  
Extractives Chemical Compounds in Wood and Bark of  
Planted Eldar Pine Tree by GC-MS Methods. Asian Journal of  
Chemistry. 2013;25(3).  
2
018;46(sup3):S855-S72.  
0. Kouhbanani MAJ, Beheshtkhoo N, Fotoohiardakani G,  
Hosseini-Nave H, Taghizadeh S, Amani AM. Green Synthesis  
and Characterization of Spherical Structure Silver  
Nanoparticles Using Wheatgrass Extract. Journal of  
Environmental Treatment Techniques. 2019;7(1):142-9.  
1. Mousavi SM, Zarei M, Hashemi SA, Babapoor A, Amani AM.  
A conceptual review of rhodanine: current applications of  
antiviral drugs, anticancer and antimicrobial activities.  
Artificial  
cells,  
nanomedicine,  
and  
biotechnology.  
2
019;47(1):1132-48.  
2. Ravanshad R, Karimi Zadeh A, Amani AM, Mousavi SM,  
Hashemi SA, Savar Dashtaki A, et al. Application of  
nanoparticles in cancer detection by Raman scattering based  
techniques. Nano reviews & experiments. 2018;9(1):1373551.  
3. Celep F, Doğan M, Duran A. A new record for the Flora of  
Turkey: Salvia viscosa Jacq.(Labiatae). Turkish Journal of  
Botany. 2009;33(1):57-60.  
1
1
1
4. Sefidkon F, Khajavi M, Malackpour B. Analysis of the Oil of  
Prangos ferulacea (L.) Lindl. Journal of essential oil research.  
1
998;10(1):81-2.  
5. Ahmed J, GÜVENÇ A, KÜÇÜKBOYACI N, BALDEMİR A,  
COŞKUN M. Total phenolic contents and antioxidant  
activities of Prangos Lindl.(Umbelliferae) species growing in  
Konya province (Turkey). Turkish Journal of Biology.  
2
011;35(3):353-60.  
1
1
1
1
2
6. Bahrani S, Hashemi SA, Mousavi SM, Azhdari R. Zinc-based  
metalorganic frameworks as nontoxic and biodegradable  
platforms for biomedical applications: review study. Drug  
metabolism reviews. 2019;51(3):356-77.  
7. Massumi MA, Fazeli MR, Alavi SHR, Ajani Y. Chemical  
constituents and antibacterial activity of essential oil of  
Prangos ferulacea (L.) Lindl. fruits. Iranian Journal of  
Pharmaceutical Sciences. 2007;3(3):171-6.  
8. Emamghoreishi M, Taghavi A, Javidnia K. The effect of  
aqueous and methanolic extracts of Prangos ferulacea on  
formalin-induced pain in mice. Journal of Jahrom University  
of Medical Sciences. 2012;9(4):2-7.  
9. Angaye T, Mieyepa CE. Assessment of Elemental and  
Microbial Quality of Lake Efi In Bayelsa State, Central Niger  
Delta, Nigeria. Journal of Environmental Treatment  
Techniques. 2015;3(2):71-3.  
0. Mousavi SM, Hashemi SA, Amani AM, Saed H, Jahandideh  
S, Mojoudi F. Polyethylene terephthalate/acryl butadiene  
styrene copolymer incorporated with oak shell, potassium  
sorbate and egg shell nanoparticles for food packaging  
applications: control of bacteria growth, physical and  
mechanical properties. Polymers from Renewable Resources.  
2
017;8(4):177-96.  
2
2
1. Mousavi SM, Hashemi SA, Esmaeili H, Amani AM, Mojoudi  
F. Synthesis of Fe3O4 nanoparticles modified by oak shell for  
treatment of wastewater containing Ni (II). Acta Chimica  
Slovenica. 2018;65(3):750-6.  
2. Mousavi S, Esmaeili H, Arjmand O, Karimi S, Hashemi S.  
Biodegradation study of nanocomposites of phenol novolac  
epoxy/unsaturated polyester resin/egg shell nanoparticles  
using natural polymers. Journal of Materials. 2015;2015.  
3. Spietelun A, Pilarczyk M, Kloskowski A, Namieśnik J.  
Current trends in solid-phase microextraction (SPME) fibre  
coatings. Chemical Society Reviews. 2010;39(11):4524-37.  
4. Mousavi S, Zarei M, Hashemi S. Polydopamine for  
Biomedical Application and Drug Delivery System. Med  
Chem (Los Angeles). 2018;8:218-29.  
2
2
2
5. Akinrotoye KP, Bankole MO, Oluwole S. Occurrence of  
Pathogenic Bacteria on Public Surfaces within Community  
4
42