Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 390-402  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: ttp://www.jett.dormaj.com  
Membrane Separation for Recovery of Umami  
Compounds: Review of Current and Recently  
Developed Membranes  
1
*
2
Purwayantie S , Sediawan W.B  
1
Food Science and Technology Department; Tanjungpura University, Pontianak, Indonesia  
Chemical Engineering Department; Gadjah Mada University, Yogyakarta, Indonesia  
2
Received: 22/08/2019  
Accepted: 19/12/2019  
Published: 20/02/2020  
Abstract  
The goal of this review was to determine the right membrane materials that were the current test to recovery of umami compounds  
as guidance for the future. Despite the fact that umami characteristic can influence effect too, the right membrane materials are still  
needed to understand to avoid increase resulting in fouling during membrane processes or better control of membrane fouling. The  
results from this study showed for the last 20 years of 18 articles suggested that the major of membrane materials to separate umami  
compounds which are in hydrolyzed of protein or peptides or as a free amino acid such as glutamic, aspartic or glycine still used  
conventional pressure-driven filtration membrane. The membrane materials were used such as PES, polyamide and cellulose acetate.  
We discuss the three membrane materials. The study concludes that membrane materials such as thin-film composite polyamide (PA-  
TFC) have been promising to the recovery of umami compounds.  
Keywords: Umami, Membrane materials, PES, Polyamide, CA  
Introduction1  
triacetate) or CA (cellulose acetate) or derivate, using reverse  
osmosis technique (5, 6). With technology development in  
membrane materials, Connell et al. reported that PVDF  
1
Membrane technology is one of the future separation  
methods in which technologies are predicted to be used in  
industries worldwide. The membrane can replace conventional  
chemical treatments and also clarifiers using heavy equipment  
that leads to high operating costs and associated with  
environmental problems. Even though it cannot completely  
replace conventional treatment technologies and be a stand-  
alone treatment option (1). Now many techniques of  
membrane separation have been developed from conventional  
to modern; pressure-driven, electrodialysis or liquid  
membranes could be combined.  
One of the varieties of membrane separation techniques  
can be characterized by their membrane pore size (2).  
Generally, membranes use the principle of molecular size and  
pore size distribution to separate different materials even (3)  
other factors also play a role such as electrostatic, molecular  
or chemical properties of the sample (4).  
(polyvinylidene  
difluoride)  
membranes  
for  
MF  
(microfiltration) were the best option on the market in 2017 to  
treat raw water and mine wastewater (7).  
So far, the technology was widely used to recovery  
nutrition or phytochemicals including condensed milk (8),  
milk protein separation (9), juice clarification and  
concentration (10, 11), concentration of whey protein (12),  
color (13), sugar and polyphenols recovery (14, 15) metals (16,  
1
7). Of course, the membrane-type used for nutrition or  
phytochemicals are different than that for pure water.  
The separation of chemical compounds for different  
applications has become an important industrial operation.  
Considerable progress continues to be made in membrane  
technology, and newer applications for existing systems are  
being discovered as the trend is to create integrated systems  
that utilize several different types of the membrane within a  
process. Aware of the fact that membrane separations have  
great potential, many scientists are dealing with their  
Recently, membrane technology was used for water  
purification and waste management. The special membrane is  
typically used to obtain pure water. Generally, commercially  
available membranes for pure water were CTA (cellulose  
Corresponding author: S Purwayantie, Food Science and  
Technology Department; Tanjungpura University, Pontianak,  
Indonesia, E-mail: sulvipurwayanti06@gmail.com.  
390  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 390-402  
adjustment to the requirements such as flavor enhancer-  
industry and pharmaceuticals.  
surface pore size (11). Moreover, the choice of the membrane  
depends on the application objective, however commonly used  
membranes are commercially available. This review was  
performed to evaluate the disadvantage and advantages of  
membrane materials to recovery umami in the proposed  
scheme or to improve the membrane separation technique that  
was done.  
This review will discuss and focus just only on membrane  
materials type selection which scientifically proven based on  
current studies and research to recovery nutrition and  
phytochemicals from natural resources such as umami (flavor  
enhancer) compounds. Umami contained chemical  
compounds that the major contribution to food palatability (18,  
1
9, 20). Flavor enhancer industry, particularly in the form of  
2
Material and Methods  
the MSG (monosodium glutamate) was growing so fast  
especially in East Asia (Japan, China, Taiwan, South Korea)  
and Indonesia (U.S. International Trade Commission, 2013; ).  
However, the glutamic acid production in the industry still  
used the conventional manufacture, thus it has not been yet  
used membrane processes separation in the purification stage  
Literature review using a research article conducted in any  
part of the world from 1987 to 2017. The search terms  
membranes separation, microfiltration, ultrafiltration,  
nanofiltration was separately integrated with the savory,  
umami, flavor enhancer, glutamate or glutamic acid, aspartate  
or aspartic acid, amino acid polar, nucleotides, hydrolyzed of  
protein, peptides. All authors analyzed the current state on  
material membranes specification profiles and evaluation to  
umami separation. A narrative summary of the results is  
presented.  
(
21). Until now, publications about membrane separation of  
umami compounds are still less discussed. The industrials used  
membrane technology were fixed and existed, such as the  
sugar industry (22) and dairy industry (23), but the membrane  
which compatible with umami compounds is still being  
discovered and proved by research. To obtain the fixed  
membranes it is still needed a review of the literature in a  
thesis, dissertation or research paper as a short guide.  
The main objectives of this review focus on obtaining the  
type of membrane materials which can be used to separation  
of umami compounds from foods or by-products. This is an  
early review of membrane processes separation of umami  
compounds. Moreover, studies that led to the development of  
novel raw materials to umami production are still needed.  
Dates syrups and cassava starch have been reported to produce  
glutamic acid by Ahmed et al. and Nampoothiri & Pandey  
2
.1 Overview of Umami  
Generally, umami well known as a flavor enhancer was  
used in seasoning mainly in Asia in MSG form. Umami was  
the fifth basic taste in human which feel as savory, brothy and  
meaty (18). The main chemical compounds contributed to  
umami were glutamic acid, although a lot of chemical  
compounds were in synergy, such as 5’-nucleotides mainly  
IMP, GMP and AMP (30,31,32). Purwayantie et al. have  
proved that in Albertisia papuana Becc (26). contains the 5’-  
nucleotides. In addition, it is has been proved by Chaudhari et  
al., that one of the receptors for umami in humans  
(24,25) Albertisia papuana Becc. leaves have been reported  
(T1R1+T1R3) is activated by a broad range of amino acids and  
of rich in umami compounds (26). Other raw materials such as  
tea leaves (27) are rich in umami also by-products from wheat  
displays as a strongly potentiated response in the presence of  
nucleotides (30). The fact in MSG production (commercially),  
(
28) could be utilized for glutamate productions too. It is  
1
% of 5’-nucleotides were added (survey in 2011 on MSG  
important to be aware of the fact that there is trend sugarcane  
production mainly in Java, Indonesia (Directorate General of  
Estate Crops-Ministry of Agriculture-Republic of Indonesia,  
Factory, Mojokerto, East of Java, Indonesia, unpublished).  
Another amino acid showing similar behavior to glutamic  
properties was aspartic acid, both of MSG-like compounds.  
Yamaguchi et al. reported, the characteristic of aspartic acid  
possesses only 7% of the efficacy of MSG (100% umami  
level) (33).  
2
016) in which molasses (by-product) is the only raw material  
of MSG production.  
In membrane separation processes, fouling is a major  
problem (29). Factors affecting membrane fouling were  
membrane properties including membrane materials and  
Table 1: The Properties of Amino Acid Based Umami Compounds  
Properties/  
amino acid  
MW (Dalton)  
glutamic acid  
(MSG-like)  
129.12*  
aspartic acid  
(MSG-like)  
114.11*  
Glycine  
(sweet)  
57.05*  
75**  
Serine  
(sweet)  
87.08*  
105**  
Threonine  
(sweet)  
101.11*  
119**  
Alanine  
(sweet)  
71.09*  
89**  
1
47**  
133**  
Solubility (pH):  
pK1  
2.19  
1.88  
3.24  
2.21  
2.09  
2.34  
pK2  
9.67  
9.60  
9.60  
9.15  
9.10  
9.69  
pKR  
4.25  
3.65  
-
-
-
-
polarity  
charge  
Side chains  
Bonding form  
polar  
polar  
Non polar  
neutral  
-
Polar  
polar  
Non polar  
neutral  
-
negative  
COOH-group  
Salt bridge  
138-154  
(medium)  
negative  
COOH-group  
Salt bridge  
108-117  
(small)  
Neutral  
OH-group  
H-bond  
60-90  
neutral  
OH- group  
H-bond  
108-117  
(small)  
Vol. classes  
60-90  
(very small)  
60-90  
(very small)  
o
(
A )  
(very small)  
Source: Nelson et al. (70)  
*
391  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 390-402  
Based on molecular and functional points of view both of  
them have a similarity of non-essential amino acids (34) and  
neurotransmitters. Glutamate and aspartate were the two  
neurotransmitters in the central nervous system (CNS) of the  
brain (35,36), but Herring et al. explained that the aspartate has  
not been an excitatory neurotransmitter, just the only  
glutamate was prominent (37).  
The solubility of both amino acids is very effected by pH.  
The pKa values of glutamic and aspartic at acid pH (a carboxyl  
group), are of 2.19 and 1.88, at base pH (an-ammonium ion)  
are of 9.67 and 9.60, at side chain group pH are of 4.25 and  
MSG production (50). During fermentation, processes  
proteolysis or autolysis occurs that generates the predominant  
tastants of amino acids. Zhao et al. and Y. Zhang et al.  
explained, the major contribution of taste-active of fermented  
foods was glutamate, amino acid derivate, and peptides  
(51,52). Peptides particularly impart umami taste such as α-  
glutamyl peptides especially pyrutamyl-Pro-X peptides which  
also produced by pGlu cyclase. Moreover, a number of  
bioactive peptides find their potential applications in the food  
or pharmaceutical industry (53, 54).  
3
.65, meanwhile the pI (isoelectric point) occurs at pH of 3.22  
3
Result  
and 2.77 (34). Thus, both amino acids were very polar and  
more acidic than other amino acids. Other umami compounds  
were glycine, threonine, and serin, also contribute to umami  
benefit in which they act modulator on the glutamic receptor  
of umami taste (38, 39, 40). The characteristics of umami  
compounds are presented in Table 1.  
Membrane separation of amino acids has been started  
since 1980, include glutamic acid. The majority of these work  
aims to recover savory fraction that umami-rich such as  
peptides. On the other hand, most of umami-rich foods linked  
with high protein foods or fermented foods (41) such as  
fermented fish (42) fermented mung bean (43), soy sauce (44),  
fermented shrimp products in Southeast Asia (45), cheese (46),  
fermented meats (47), wine (48), sake (49), fermentation of  
By research methods, we find of 18 research articles in  
past 20 yr (Table 2) The finding showed and proved about  
umami separation such as savory fraction, protein hydrolyzed  
or peptides, the free amino acid (glutamate, aspartate,  
glutathione, glycine, glutamine) can separate by using  
membrane filtration. There is three of membrane separation  
technology for a long time, majority using pressure-driven  
conventional membrane filtration processes; only two using  
the technique of Electro Membrane Process or electrodialysis  
(EMP) by M. Kumar et al. and Doyen et al. and only one using  
Emulsion Liquid Membranes (ELM) technique by  
Bhuvaneswari et al. (55, 56, 57).  
Table 2: Umami Fraction of Membranes Separation Reported  
Objectives  
Membrane Separation Technic  
Findings  
The nutrition obtained:  
Methods: UF and NF  
Type of membrane:  
UF (Hydranautics model 3838-30; MWCO  
1
.
Protein and sugar (30-69%) and  
Selective membranes filtration integrated into a  
pilot process to obtain the hydrolyzed of spent  
brewer’s yeast (peptides) with different MW and  
with improving the chemical and nutritional  
Amorim et al. (58)  
20-48%  
2.  
3.  
The major minerals: Na and K  
The freest amino acids:  
1
0kDa; Lenntech)  
NF (PTI; Advanced Filtration, NF 3838/30-  
FF; MWCO 3kDa  
Filtration area: UF 7.4m and NF 6.9m  
glutamate, glutamine, and alanine  
4. Peptides profiles: hydrophilic  
and hydrophobic usually associated with  
biological activities  
2
2
Methods: diafiltration-nanofiltration (DF-  
NF), continuous mode.  
Membrane separation/pressure-driven  
operations: MF of 0.2 µm and NF 45PE  
DF-NF method on autolysate of  
Rhizopus/Aspergillus was able to reduce  
salt at dial volume 0.2 with a resulted  
composition of concentration of salt 0 and  
0.14%, glutamic acid (total protein) 0.64  
and 0.32%  
(MWCO 300Da; Dow Film Tech, USA)  
Recover savory fraction of fermented mung bean  
from two autolysate  
Membrane modules: sheet (plate and frame)  
diameter 20 cm, effective  
(Rhizopus and Aspergillus) (43)  
2
area of 0,036 m  
Membrane processes: pump motor frequency  
o
of 20 Hz (flow rate 7.5L/minute), 23-25 C;  
2
0bar, Pre-filter in 200 µm filter  
Methods: stepwise filtration (MF-UF-NF)  
Type of membrane:  
MF (PES)  
UF (PES; MWCO 10kDa, 5kDa; Nadire,  
Germany)  
No glutamic acid showed in HPLC  
analysis when filtration conducted at pH  
8.0 (Tris HCL buffer as a solvent)  
Separation taste compounds of Albertisia papuana  
Becc. leaves extract (26)  
NF (PES; MWCO 4Da; Nadire, Germany)  
NF (PES; MWCO 1kDa; Sartorius, Germany  
System membrane: dead end  
Membrane modules: plate and frame  
Diameter: 47 mm in diameter  
392  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 390-402  
Objectives  
Membrane Separation Technic  
Findings  
Methods: membrane integrated hybrid  
reactor system  
Type of membrane: NF (polyamide; Sepro  
Co. (USA)  
Membrane modules: flat sheet, cross flow  
Membrane Separation Technic  
Methods: nanofiltration with pretreatment:  
UF  
High selectivity by using NF helped  
achieve over 97% product purity of  
glutamic acid without any need for pH 5  
adjustment in a fully membrane-integrated  
fermentation process  
Green process of glutamic acid production (59)  
Objectives  
Findings  
Type of membrane: NF270-4040 (polyamide The membrane of NF270 the most suitable  
A pilot plant test on the desalination of soy sauce  
by nanofiltration (60)  
thin film composite (Dow Filmtech) and  
Desal-5 DK-4040 (GE Osmonics)  
for desalination of soy sauce  
Glutamic and aspartic acid had the highest  
retention by NF270  
Membrane modules: UF tubular modules  
and NF spiral wound modules (cross flow)  
1
.
The most abundant population  
in a compartment located near the anode  
for the recovery of anionic/acid peptide  
fractions and near the cathode for the  
recovery of cationic/basic peptide fractions  
were peptides with MWCO ranging from  
300 to 700 Da.  
Methods: Electrodialysis with Ultrafiltration  
Membranes (EDUF)  
2.  
Peptides with MWCO ranging  
To compare the impact of PES and CA  
materials on peptides selective migration from  
snow crab by-product hydrolysate (57)  
from 700 to 900Da did not migrate during  
the EDUF treatment.  
Type of membrane: UF PES MWCO of  
2
0kDa (GE, France) and CA (Spectrum  
3.  
The recovery of high MWCO  
Laboratories Inc., Rancho Dominguez, CA).  
(900-20000Da) in compartments located  
near the anode and cathode only from CA.  
4
.
Peptides desorbed from PES  
and CA UFM after 6h of EDUF separation  
had low MWCO and belonged mainly to  
the 600-700 Da  
Methods: electro-membrane processes  
(EMP)  
Type of membrane: PES  
Methods: UF and NF  
Tight UF and commercial polymeric NF  
Type of membrane:  
The separation of GLULYS mixture was  
possible at pH 8.0 and 85% recovery of  
glutamic acid.  
Amino acid (glutamate and lysine) separation (56)  
Nanofiltration of concentrated amino acid solution  
1.  
Higher rejection and flux drop  
over the concentration was observed in  
alkaline, where the amino acid is present  
in dissociated form.  
DK (NF 150-300Da; GE (G-5) (UF  
1
(
3
000Da), GH (G-10) (UF 2.5 kDa), NP030  
NF permanently hydrophilic PES 150-  
00Da, NP010 (NF (NF permanently  
2.  
At low concentration (< 0.2  
mol/L) higher rejection for charged.amino  
acids and more stresses decrease in flux  
with increasing concentration occurs for  
negatively charged amino acids  
(diprotic amino acid: glycine and glutamine) (61)  
hydrophilic PES 1kDa)  
Membrane modules: plate and frame;  
effective surface membrane area 350cm  
2
3.  
At higher concentration, lower  
rejection for anionic amino acids  
Objectives  
Membrane Separation Technic  
Methods: UF and NF  
Findings  
Type of membrane:  
UF (ESP04; modified PES; MWCO 4kDa)  
NF (PA coated on PES); AFC40NF  
(
Polyamide film; MWCO 3Da)  
The UF fractionation produces a permeate  
enriched with respect to the FPH smaller  
than a molecular weight of about 600750  
Dalton, and a retentate enriched in large  
peptides (above the same MW). Similar  
behavior is found for the NF fractionation  
The impact of a two-step UF/NF to produce  
fractionation of fish hydrolysate on two industrial  
process (62)  
Membrane modules: tubular membranes,  
diameter 12 mm, surface area 0.033m2.  
Spec of ESP04: pH range 1-14; max  
temperature 65oC; max pressure 30 bar;  
hydrophilicity relative low (PCI Membrane).  
Spec of AFC40NF: pH range 1.5-9.5; max  
temperature 60oC; max pressure 60 bar;  
apparent retention character 60% CaCl2;  
hydrophilicity relative high (PCI membrane)  
393  
Journal of Environmental Treatment Techniques  
Objectives  
2020, Volume 8, Issue 1, Pages: 390-402  
Membrane Separation Technic  
Findings  
Methods: step wise of UF (MWCO 10kDa;  
Umami and sweet taste-free amino acids  
and sodium salt are the key compounds of  
the intense savory taste  
3
kDa; 5Da)  
Isolate of umami or savory taste of soy sauce (63)  
Spec of the membrane: unpublished  
Methods: UF and NF  
Type of membrane:  
UF (MT68; PS, MWCO 8 kDa; PCI)  
UF (MTP04; modified PES, MWCO 4kDa;  
Concentration and purification peptide hydrolysates PCI)  
NF (polyamide/PES, MWCO 300Da) was  
good for both fluxes and recovery rates to  
peptides concentration.  
of fish on UF and NF (64)  
NF (MT04; polyamide/PES, MWCO 300Da  
Membrane modules: tubular  
Spec of the membrane: surface area of 0.033  
2
m2 surface area of 0.033 m  
Method: UF (Diafiltration in a cross-flow  
thin-channel device)  
Type of membranes: Eight polymer  
materials membranes with MWCO ranging  
from 500 to 800 Da  
1
.
Aliphatic alcohol (Zenon  
Environmental Inc., Burlington, Ontario,  
Canada)  
2
.
CA (DDS, Nakskov, Denmark);  
Osmonics Inc. (Minnetonka, Minnesota),  
Amicon Corp. (Danvers, Massachusetts) and  
Millipore Corp. (Bed ford, Massachusetts)  
The cellulosic membranes proved to be  
successful and reliable for the purification  
of synthetic peptides (hexapeptide (MW  
844); insulin (MW 5730). and cytochrome  
c (MW 12,384) in 5% acetic acid  
Comparative Evaluation of Ultrafiltration  
Membranes for Purification of Synthetic Peptides  
3.  
Regenerated cellulose disks  
(Amicon and Spectrum Medical Industries  
(Los Angeles, California)  
(65)  
4
5
.
.
PES  
PS (Dr. C. Bouchard, Dept. of  
Chemical Engineering, Ecole Polytechnique  
de Montreal, Canada)  
6
(
.
Modified PS flat sheets  
proprietary modification) came from Bio-  
Recovery Inc., Northvale, New Jersey.  
7
8
.
.
Fluoropolymer  
Teflon  
Membrane modules: plate and frame  
Spec of membrane: 90 mm diameter disks  
2
(
effective membrane area = 40 cm )  
Method: NF  
Type of membranes: NF (MWCO 1kDa);  
Millipore, USA  
The membrane was cleaned with NaOH  
Amino acid separation of a hydrolysate of  
Lumbricus rubellus protein  
The best condition for amino acid filtration  
was obtained on 9 psi, concentration 1 g/L,  
with amino acid rejection 27-30%  
0
,1N  
Membrane modules: plate and frame (cross  
flow)  
Method: NF with pretreatment of MF CA  
1.  
NTR-7450 rejected of the  
0
.45µm  
electrolytes corresponded to the ratio of  
their anionic species varying with pH  
Type of membranes: NTR-7450 (PES,  
MWCO 1kDa); Nitto Electric Industrial Co.  
The diameter of the membrane 4.3 cm  
2. At pH 7.4, glutamic acid  
rejected almost 100%.  
Separation of glutathione and its related amino  
acids by nanofiltration (66)  
3.  
In the presence of divalent  
metal ions, the rejection of glutamic  
decreased with increasing the  
concentration of the metal.  
Membrane modules: dead end  
Glutamic acid separation by extraction membrane  
Method: emulsion liquid membrane  
Solvent: kerosene  
Carrier: oleic acid  
Using emulsifier tri-ethanol amine to  
separate glutamic acid more feasible than  
using HCL and Indian glycol with  
(55)  
394  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 390-402  
Objectives  
Membrane Separation Technic  
Findings  
condition processes M/E ratio of 0.25 at  
50 rpm, external phase pH of 4.0  
obtained maximum solute recovery of  
3.5%  
1
6
Method: NF  
Type of membranes: NTR7450  
Spec NTR7450: PES, MWCO 600-800 Da,  
pH range 1-12; temperatures up to 90oC;  
max 50bar (Nitto Electric Industrial Co.,  
Japan)  
The separation selectivity of Glutamin and  
glutamic acid was affected greatly by the  
pH, transmembrane pressure and broth  
concentration.  
Glutamine separation from broth fermentation (67)  
Method: NF  
Type of membranes: NF-40 (Film Tech  
Corporation); Desal-5 (Desalination  
systems); G-20 (UF; Thin film; MWCO  
3500 Da; Desalination systems; GE  
Osmonics (USA); NTR-7450 (PES; MWCO  
Separation of amino acids and peptides  
was suitable on NF NTR-7450 and G-20  
(MWCO 2000-3000Da) but the charged  
amino acids and peptides were rejected  
meanwhile peptides and the neutral amino  
acids permeated through the membranes  
Separation of peptides and amino acid with  
nanofiltration membranes (68)  
6
00-800 Da; Nitto Electric Industrial Co.,  
Japan); UTC20 and UTC60 (Toray  
Industries)  
Method: molecular imprinting technique  
The molecularly imprinted CA membranes  
are applicable to separate between D-  
glutamic and L-glutamic  
Separation of racemic glutamic using cellulose  
acetate (69)  
Type of membranes: CA  
Method: NF  
Type of membranes: CA (NTR-1698; Nitto  
Denko Corporation, Tokyo, Japan), PA-  
PPSO (Toray Industries, Inc., Tokyo, Japan),  
polyamide composite (PI-COM; NTGS-  
2100; Nitto Denko Corporation, Tokyo,  
Japan)  
The PA-PPSO membrane with methanol  
as solvent appeared the most promising to  
separate aspartic acid meanwhile CA  
suitable too but the stability was very poor.  
Concentration and separation of aspartic acid and  
phenylalanine in an organic solvent (70)  
Membrane module: dead-end ((with a  
diameter of 7.5 cm and an exposed surface  
area of 32 cm')  
Membrane process: operated at 40°C; 500  
rpm by a magnetic stirrer.  
A precursor of lubricant (S-GONR) was  
used as an organic solvent, DBEHPA as a  
carrier, and Paradox 100 as a surfactant. A  
The concentration of amino acid (71)  
Method: liquid emulsion membrane  
1
.5 M H2SO4, a solution was used as an  
internal aqueous phase.  
Method: UF, DF (diafiltration) and RO  
Alat: module-20 UFlRO unit (De Dnaske  
Sukkerfabrikker (DDS) (Copenhagen,  
Denmark)  
Type of membranes: UF (DDS GRIOPP;  
MWCO 500kDa RO (DDS HR-98);  
Membrane processes: 0.576 m2 of  
Recovery of glutamic acid from the fermentation  
broth (72)  
Separation of glutamic acid from bacterial  
cells by membrane processing could  
improve the efficiencies of subsequent  
evaporation and crystallization processes  
membrane area, were used for UF and DF;  
0
.144 m2 of membrane area, were used for  
RO. cutoff of 500,000 Da was used for UF  
and DF. The recommended maximum  
operating pressure and temperature for the  
membrane were 10 bar and 8O” C,  
respectively. The pressure and temperature  
limits for the RO membrane were 80 bar and  
8
O” C  
Generally, it is not all of the stages in pressure-driven  
conventional membrane filtration processes was done such as  
MF first, following by UF and NF, including pore size too,  
from large to small ones. In fact, by author experience who is  
worked in membrane filtration in 7 past yr, it has to be done to  
all of the stage processes, especially the sample test came from  
the crude extract of plants. If not done, it will cause an increase  
in fouling seriously, so that it will need more membranes, even  
395  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 390-402  
more, if done without cleaning membrane processes, will  
impact to high costs. The stage of pre-treatment has to done  
too such as clarification in couple days at lower temperatures  
or by high-speed centrifuges. Some articles state that MF or  
UF as a pre-treatment (60,66). We think all of the pre-  
treatment for the same aims to remove total dissolved solids  
explained that between UF and DF were different techniques  
and generally (74), UF often combined with DF (75, 35). The  
last one in NF stage majority were used polyamide-base  
membrane (26, 59, 60, 61, 62, 70, 76, 78).  
4.1 PES (Polyether Sulphone) Membrane  
(
TDS) which can affect the effectiveness of membrane used.  
This material has become the most popular membrane  
for MF, UF or NF stage. Almost of membrane researchers said  
that the PES membrane is good mechanical strength, excellent  
thermal and pH stabilities, high flux and reasonable cost  
compared to the other membrane materials. Unfortunately,  
almost of the research reported that higher rejection of amino  
acid (especially of negatively charged) such as umami  
compounds; glutamic acid, aspartic acid or peptides which  
umami-rich by using PES (26, 60, 66, 76, 79).  
Polyethersulfone membrane has low hydrophilic.  
Based on Table 2 too, this review only analyzed three  
kinds of majority membrane materials, a natural polymer such  
as CA; synthetic membranes as a PES and polyamide-based  
membranes to the recovery of umami compounds. The  
membranes present some differences in their performance and  
structures.  
4
Discussion  
The membrane materials that using to obtain umami  
It is proved that even PES have excellent hydrophobicity,  
it fouled more seriously. The hydrophobicity of membranes  
means the lower hydrophilic properties than other membrane  
materials such as polyacrylonitrile, CA, polyamide,  
polyamide-imide (77). Unfortunately, PES and PS have a  
problem in the fouling of polymeric membranes because of  
compounds at the MF stage can be from PES (26) or CA (66)  
with a pore size of 0.2 µm in (43). At the UF stage, the majority  
of membrane material was PES (20, 78) or by modified PES  
(62, 64). In fact, in comparison to other membrane materials  
such as CA, regenerated cellulose, PCS, PES, modified PS,  
fluoropolymer and Teflon, the best to obtain the purified  
peptides were cellulosic-based membrane material (65). The  
Cellulose acetate membrane including produces a lot of  
peptides which has a molecular weight range 600 to 700  
Dalton and 900-20,000 Da when compared with PES (57).  
There are three articles using diafiltration (43, 72, 73). This  
that properties. Alsvik & Hägg also explained that the  
properties between PES and PS are quite the same (80). It is  
different from the length of units, PS has longer repeating units  
than PES and the structure of membranes (Fig 1.).  
technique as  
a conventional process to achieve high  
purification of macro solutes with an economically acceptable  
flux. Diafiltration in Limayem et al. mean adding continuously  
pure water to feed volume to make constant (44). Paulen et al.,  
Figure 1: a. The SEM cross-sectional structure of PES (81); b. PES (blank); c. 5,000x; d. 15,000x (82) and the structural formula of PES and PS  
synthesis (81)  
396  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 390-402  
a.  
Figure 2: (a) Chemical structure of CA; (b) SEM images of pure CA and the 3D surfaces of CA (83); (c) and (d) SEM of the active surface of  
CA and SEM of the porous surface of CA (17)  
4
.2 Cellulose Acetate Membrane  
4.3 Polyamide-Based Membrane  
On the contrary, CA membrane properties were different  
The membranes of polyamide (PA) being hydrophilic  
properties material (2); the removed salt and flux effective  
(85). One of PA membranes is thin-film composite polyamide  
(PA-TFC) generally using at NF and has been widely applied  
in many food industrial applications. Polyamide is materials of  
high tensile strength, abrasion and fatigue resistance, low  
friction coefficient and good toughness (86). The properties  
are owing to its better combination between the flux of water  
and rejection than to other asymmetric membranes. The profile  
of the PA-TFC membrane consists of three different layers  
made of different materials (87). However, there is two kind  
polyester backing substrate, one from PES and the other from  
PS. Composition of PA-TFC with PES as a polyester backing  
substrate shown in Fig. 3.  
from the PES membrane. This membrane is a green polymer  
that is produced from raw materials generally from plants.  
Cellulose acetate or cellulose triacetate is a kind of cellulose-  
based membrane which is synthesized by a reaction of natural  
polymer cellulose and acetic acid (42), having properties of  
higher transparency and toughness among thermoplastics (81)  
and uncharge membrane properties (84). It is called xylonite  
sometimes or acetylated cellulose (42). This membrane  
provided high salt rejection and high fluxes at moderate  
hydrostatic pressure. The structure of CA is shown in Fig. 2.  
397  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 390-402  
Figure 3: Schematic diagram of PA-TFC (PES) Membrane Synthesis and The Structure with the top and cross-sectional morphologies (83)  
Some variant of polyamides membranes were PA-TFC on  
polyester backing with a PS substrate (78); PA-TFC on  
polyester backing with a PES substrate (62); aromatic  
polyamide (60); polyamide polyphenylene sulfone composite;  
PA-PPSO (70), etc. In accordance with the report of Nady et  
al., due to intrinsic hydrophobic properties of PES (82),  
relatively low surface energy and high water contact angle, the  
PES membrane is vulnerable to adsorptive of fouling. Jeon et  
al. were reported about the effect of membrane materials and  
surface pore size on the fouling on PES (11). The fouling of  
the membrane decreased sharply with increased pore size.  
Biofouling was occurred on the PES membrane surface due to  
the interaction between protein or microorganisms  
The major of foulants on PES could be microbial  
metabolites, bacterial cell lysis and un-metabolized  
wastewater components (88), including proteins, nucleic  
acids, polysaccharides and other polymers (36, 88, 89). In the  
same words, Suwal et al. said too, generally the major of  
foulants were protein, amino acid, and peptide (50). One of the  
evidence was reported by Doyen et al., the foulants at the  
surface and or into the pores of the PES were a peptide (57).  
According to Luo et al. , besides that compounds, the major of  
foulants could be other chemical compounds than expected  
due to combined fouling, such as saccharide, organic acid,  
NaCl too (60). Besides amino acid, glucose could also block  
the membrane pores by adsorption, or protein adsorption takes  
place on the membrane surface and due to the inherent  
hydrophobic characteristics of the membrane.  
(hydrophobic foulants) and the hydrophobic membranes itself.  
The charge of the membrane such as PES can form the  
electrostatic interactions between charged proteins and  
charged membrane (25, 64).  
Generally, one of the causes in fouling was depended on  
the pH of feed. We agree with Kattan Readi et al. statements  
398  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 390-402  
that pH-change as important to electrodialysis process or  
membrane filtration (90). Both methods when the separation  
of amino acid, pH-changes play an important role in terms of  
the efficiency of the process. Due to the zwitterionic character  
of amino acids, small pH changes may result in significant  
changes in the charge of the amino acids. pH effect occurs  
when the separation of l-glutamine from fermentation broth  
which umami-rich (glutamic acid) that reported by Li et al.,  
that, if the feed were umami-rich and contained metal ions  
which separation on the PES membrane in alkaline pH, the  
complexes could be blocking the pore of the membrane and  
could not be through the pore of the membrane.  
Besides of PES membrane, the CA membrane was used  
for a long time ago (32,70). CA membrane always used to  
obtained peptides fractions and protein on biomedical  
application, mainly to recovery hemoglobin and BSA  
including alanine of amino acid (17); bioactive peptides  
fractions such as an anticancer peptide from snow crab by-  
product hydrolysate (57), synthetic peptides (73), acid and  
basic peptides (26). In accordance with (73) statements that  
cellulose-based membranes are good compatibility with  
peptides or proteins. The cellulosic membranes were proved to  
be successful and reliable to the purification of peptides with  
having MW 12,384Da. Interestingly reported by Yoshikawa et  
al., that glutamic acid from racemic amino acids could be  
separated (resolution) by using the CA membrane (32). It  
means that the glutamic suitable separated using CA.  
(
76). In single amino acid solution especially for glutamic acid  
showed that rejection of glutamic acid increased slightly with  
the rise of the pH from 4 to 9, and held at about 90% when the  
pH was higher than 6. Almost all of the glutamic acid in the  
solutions dissociated into monovalent anions when the pH was  
higher than 6 and into bivalent anions when the pH was higher  
than 11. The rejection of glutamic acid was similar to what was  
expected according to the percentage of glutamic acid  
monovalent anions at a pH of 68. Since the PES membrane  
(NTR7450) pore size is larger than the Stokes radius of  
glutamic acid (meanwhile glutamine which has a Stokes’  
radius of 0.28 nm (91), the results indicated that the rejection  
of glutamic acid was mainly governed by the charge effect  
when the pH varies from 6 to 8. The glutamic acid phenomena  
are different from glutamine so that the PES membrane  
Jeon et al. reported that the hydrophilic CA membranes to  
have a lower fouling potential than other hydrophobic  
membranes (e.g., PES) (11). The air contact angles of CA and  
PES were 121° and 115°, respectively.  
Thus, the  
(
NTR7450) can reject more than 90% of glutamic acid and  
hydrophobicities of the materials increase in the order CA >  
PES. So, hydrophilic membrane materials are preferable for  
reducing membrane fouling. Sun et al., indicating that the  
foulant in the CA membrane when separated protein staining  
dyes and BSA, only smaller aggregates protein formation (94).  
When using DLS (dynamic light scattering) test, a large  
protein aggregate was confirmed but using SEC filtration and  
native-PGE analyses showed BSA dimmer did not play in the  
fouling. It is clear that CA was not significant fouling by  
protein. The fouling occurs in the isoelectric pH of BSA (4.8).  
The BSA and the small aggregates being uncharged, would  
have the highest tendency to reversibly associated with more  
strongly held foulant. When in pH 6.9 the foulant easily is  
removed. It is indicating that the foulant in the CA membrane  
was pH-dependent too, but no report that one of the foulants  
on CA was umami compounds. The conclusions, the  
hydrophilic of CA showed good mitigation of membrane  
fouling and the membrane pore size had no significant effect  
on fouling mitigation.  
Compared by polyamide-base membranes that are being  
reported commonly used for RO (95) especially to obtain pure  
water (96) showed umami productivity better used than  
cellulose-based membranes. (70) have been done  
concentration and separation aspartic acid using PA-PPSO  
composite compared with CA membranes. The results  
conclude that the PA-PPSO membranes combined with  
methanol are the most performance of membrane separation.  
It is proved too by Vikramachakravarthi et al., who has been  
obtained the umami compounds as glutamic acid achieved  
over 90% by using PA-TFC (PS) (78). The result of glutamic  
acid in Vikramachakravarthi et al. was 0.95g/g compared with  
the result of amino Nitrogen by Lou was 0.008g/ml by using  
aromatic polyamide membranes (60, 78). Glutamic acid is one  
of the amino nitrogen. Reported by Bourseau et al., (62) that  
PA-TFC (PES) still forming fouling while membrane cut off  
(MWCO) is well affected to obtain fish protein hydrolysates.  
In line with PA-TFC (PES) to purification blue whiting of fish  
permit almost 85% of glutamine to pass through the membrane  
when pH is adjusted to about 7. The separation selectivity of  
glutamine and glutamic acid by the PES membrane as a  
function of the pH. Glutamine was polar and uncharged as like  
other umami compounds etc, threonine and serine, meanwhile,  
glycine was nonpolar, but was different from glutamic or  
aspartic of amino acid which is polar and having a negative  
charge.  
Gotoh et al. reported that at a pH of 7.4 conditions,  
glutamic acid rejected almost 100% by using PES (66). This  
membrane is negatively charged due to the fixed sulfonic  
anions of the separation layer. So, the pH of a feed solution is  
expected to affect the rejection of the membrane for the  
amphoteric electrolytes. Kovacs & Samhaber, conclude that  
higher rejection and flux drop over the concentration was  
observed in higher pH range, where diprotic amino acids are  
present in dissociated from (61). One of the diprotic amino  
acid tests was glycine, amino acids that contribution to umami  
taste (6). Purwayantie et al. reported too that when has been  
done separation of taste compounds using PES membrane in  
buffer Tris HCl of pH 8.0 in a crude extract of A. papuana  
Becc., it has not been saw of the glutamic acid detected by  
HPLC. The research conclusion Kovacs & Samhaber could  
explain the phenomena of research results from Purwayantie  
et al. (26, 61). The higher rejection and flux drop over the  
concentration was observed in alkaline, where the amino acid  
is present in dissociated form. It could happen when glutamic  
acid in alkaline (pH 8.0) in dissociated form (the net charge is  
-
1). The fact, it is nature characteristic because severe amino  
acid, protein, and peptide (especially having amino acid  
negative charge residue) were umami-rich.  
One of the foulants according to (92) were metals and  
one of the metals as main fouling (10%) detected on membrane  
autopsies was Fe (67.7%). Umami compound's behavior  
especially glutamic and aspartic acid which can be complexed  
with metal especially on pH alkaline was clear (28, 93). So  
399  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 390-402  
peptide hydrolysates using a membrane having MWCO 300Da  
6. Li G, Li XM, He T, Jiang B, Gao C. Cellulose triacetate forward  
osmosis membranes: preparation and characterization.  
Desalination and water treatment. 2013 Mar 1;51(13-15):2656-  
(
2
(
60) while MWCO 4000-8000 to fractionating and MWCO  
0kDa to the recovery of non-hydrolyzed protein and enzymes  
59).  
6
5.  
7
.
Connell P.O, Water P, Lilley T, Corporation P. Important  
Characteristics of Membranes for Reliable Water and Wastewater  
Processes for Discharge and Re-use. Mine Water and Circular  
Economy,2017; 396402.  
5
Conclusion and Outlook  
In 20 past years, still, the majority using pressure-driven  
8
9
.
.
EPRI. Membrane Separation in Food Processing. Tech  
Application,1991;3:12.  
Omont S, Froelich D, Gésan Guiziou G, Rabiller-Baudry M,  
Thueux F, Beudon D, Tregret L, Buson C, Auffret D. Comparison  
of milk protein separation processes by life cycle analysis:  
chromatography vs filtration. In(44) 2012.  
conventional membrane filtration as a green process of umami  
production. The processes were done with a combination of  
stage pre-treatment (clarification or centrifugation) with  
stepwise MF-UF/DF-NF. The material was used for years was  
PES but generally was high rejected for umami compounds  
(glutamic, aspartic acid, peptides rich umami). It means that  
10. Ghosh P, RANA S, KUMAR S, PRADHAN R, Mishra S.  
Membrane filtration of fruit juiceAn emerging technology. Int.  
J. Food Nutr. Sci. 2015;4:47-57.  
the umami compounds could be as a foulants adsorption in the  
membrane. The pH effect could be trigger building a form of  
fouling on PES was clear. The effect of pH can trigger  
interaction between umami compounds that having some  
functional groups with metals too. Their anions of glutamic  
acid, other amino acids or derivatives are versatile ligands, and  
the leading idea to protect the N- or C-terminus of amino acids  
by metal ions or by metal complexes (55). Although PES can  
be considered as a model membrane material, it is widely used  
for commercial MF and UF (97). Now, PES is extensively  
used for special applications when protein adsorption is not a  
significant problem (73). In contrast, the CA membrane still  
rarely uses separation in umami, still focuses on peptides  
separation with high of WM. Although any foulants on the CA  
membrane are pH-dependent too, the future need for  
evaluation or autopsy studies varying of the cellulose-based  
membrane. However today, the polyamide-based membranes  
have been used to replace of CA membrane. We conclude that  
the suitable to obtain the umami compounds was PA-TFC but  
the variant of polyamide could affect the productivity of  
chemical compounds from membrane processes with  
especially using the suitable MWCO of membrane.  
1
1. Jeon S, Rajabzadeh S, Okamura R, Ishigami T, Hasegawa S, Kato  
N, Matsuyama H. The effect of membrane material and surface  
pore size on the fouling properties of submerged membranes.  
Water. 2016 Dec;8(12):602.  
1
2. Kukučka MĐ, Kukučka NM. Investigation of whey protein  
concentration by ultrafiltration elements designed for water  
treatment. Hemijska industrija. 2013;67(5):835-42.  
13. Giwa A, Ogunribido A. The Applications of Membrane  
Operations in the Textile Industry: A Review. British Journal of  
Applied  
https://doi.org/10.9734/bjast/2012/1520.  
4. Aminzadeh R. Recovery of Sugar Compounds from Molasses via  
Membrane Separation, 2014. Retrieved from  
Science  
&
Technology,  
2012;2(3):296310.  
1
https://www.researchgate.net/publication/264900000_Recovery_  
of_Sugar_Compounds_from_Molasses_via_Membrane_Separati  
on.  
15. Wei DS, Hossain M, Saleh ZS. Separation of polyphenolics and  
sugar by ultrafiltration: Effects of operating conditions on fouling  
and diafiltration. International Journal of Chemical and  
Biomolecular Engineering. 2008;1(1):14-23.  
1
6. Gunatilake SK. Methods of removing heavy metals from  
industrial wastewater. Methods. 2015 Nov;1(1):14.  
1
7. Wang X, Zhou K, Ma Z, Lu X, Wang L, Wang Z, Gao X.  
Preparation and characterization of novel polyvinylidene  
fluoride/2-aminobenzothiazole modified ultrafiltration membrane  
for the removal of Cr (VI) in wastewater. Polymers. 2018  
Jan;10(1):19.  
6
Acknowledgments  
This financial was supported by The Ministry of Research,  
Technology and the Higher Education Republic of Indonesia,  
Special Programme for Grand Research of Postdoctoral 2018,  
with contract number research 943/UN.22.10/PP/2019 in  
March of 2019.  
1
1
8. Wei DS, Hossain M, Saleh ZS. Separation of polyphenolics and  
sugar by ultrafiltration: Effects of operating conditions on fouling  
and diafiltration. International Journal of Chemical and  
Biomolecular Engineering. 2008;1(1).  
9. McCabe C, Rolls ET. Umami: a delicious flavor formed by  
convergence of taste and olfactory pathways in the human brain.  
European Journal of Neuroscience. 2007 Mar;25(6):1855-64.  
0. Yamaguchi S, Ninomiya K. The use and utility of glutamates as  
flavoring agents in food. J Nutr. 2000;130:921-6.  
1. Kumar R, Vikramachakravarthi D, Pal P. Production and  
purification of glutamic acid: A critical review towards process  
intensification. Chemical Engineering and Processing: Process  
Intensification. 2014 Jul 1;81:59-71.  
References  
1
.
Mortazavi, S. (2007). Application of Membrane Separation  
Technology to Mining Processes. 14th Annual BC/MEND  
ML/ARD Workshop. Ottawa, Ontario, June 22. http://bc-  
mlard.ca/files/presentations/2007-21-MORTAZAVI-application-  
membrane-separation.pdf.  
2
2
2
3
.
.
Sirvain MA, Dalex M. Accurate measuring of membrane pore  
size distributions. Filtration & Separation. 2015; 52(6):14-7.  
Beck W. Metal complexes of biologically important ligands,  
CLXXII [1]. metal ions and metal complexes as protective groups  
of amino acids and peptidesreactions at coordinated amino acids.  
Zeitschrift für Naturforschung B. 2009 Dec 1;64(11-12):1221-45.  
Munir A. Dead end membrane filtration. Laboratory Feasibility  
Studies in Environmental Engineering. 2006:1-33.  
2
2
2. Rafik M, Qabli H, Belhamidi S, Elhannouni F, Elkhedmaoui A,  
Elmidaoui,A. Membrane Separation in The Sugar Industry.  
Journal  
of  
Chemical  
and  
Retrieved  
Pharmaceutical  
from  
Research,2015;7(9):653658.  
https://www.scopus.com/inward/record.uri?eid=2-s2.0-  
4979473439&partnerID=40&md5=71685980001b4c817ea673f  
4
5
.
.
8
cd0900e31  
Kaiser A, Stark WJ, Grass RN. Rapid production of a porous  
cellulose acetate membrane for water filtration using readily  
available chemicals. Journal of chemical education. 2017 Mar  
3. Kumar P, Sharma N, Ranjan R, Kumar S, Bhat ZF, Jeong DK.  
Perspective of membrane technology in dairy industry: A review.  
Asian-Australasian journal of animal sciences. 2013  
Sep;26(9):1347.  
3
0;94(4):483-7.  
400  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 390-402  
2
2
2
4. Ahmed YM, Khan JA, Abulnaja KA, Al-Malki AL. Production of  
glutamic acid by Corynebacterium glutamicum using dates syrup  
as carbon source. Afr J Microbiol Res. 2013;7:2071-7.  
5. Nampoothiri KM, Pandey A. Fermentation and recovery of L-  
glutamic acid from cassava starch hydrolysate by ion-exchange  
resin column. Revista de Microbiologia. 1999 Jul;30(3):258-64.  
6. Purwayantie S, Santoso U, Gardjito M, Susanto H. The Isolation  
of taste compounds in Bekkai lan (Albertisia papuana Becc.)  
leaves extract using nanofiltration. International Food Research  
Journal. 2015 Jan 1;22(1).  
Diafiltration-nanofiltration (DF-NF) Mode for Quality  
Improvement of Savory Flavor Product. Procedia Chemistry.  
2015 Jan 1;16:58-65.  
44. Lioe HN, Selamat J, Yasuda M. Soy sauce and its umami taste: a  
link from the past to current situation. Journal of Food Science.  
2010 Apr;75(3):R71-6.  
45. Hajeb P, Jinap S. Fermented shrimp products as source of umami  
in Southeast Asia. J Nutr Food Sci S. 2012;10:006.  
46. Drake SL, Carunchia Whetstine ME, Drake MA, Courtney P,  
Fligner K, Jenkins J, Pruitt C. Sources of umami taste in Cheddar  
and Swiss cheeses. Journal of food science. 2007  
Aug;72(6):S360-6.  
47. Dermiki M, Mounayar R, Suwankanit C, Scott J, Kennedy OB,  
Mottram DS, Gosney MA, Blumenthal H, Methven L.  
Maximising umami taste in meat using natural ingredients: effects  
on chemistry, sensory perception and hedonic liking in young and  
old consumers. Journal of the Science of Food and Agriculture.  
2013 Oct;93(13):3312-21.  
2
7. Kaneko S, Kumazawa K, Masuda H, Henze A, Hofmann T.  
Molecular and sensory studies on the umami taste of Japanese  
green tea. Journal of agricultural and food chemistry. 2006 Apr  
5
;54(7):2688-94.  
2
2
8. Sari YW, Alting AC, Floris R, Sanders JP, Bruins ME. Glutamic  
acid production from wheat by-products using enzymatic and acid  
hydrolysis. biomass and bioenergy. 2014 Aug 1;67:451-9.  
9. Nguyen T, Roddick FA, Fan L. Biofouling of water treatment  
membranes: a review of the underlying causes, monitoring  
techniques and control measures. Membranes. 2012  
Dec;2(4):804-40.  
48. Klosse P. Umami in Wine. Research in Hospitality  
Management,2013;2(12):2528.  
https://doi.org/10.1080/22243534.2013.11828287  
3
3
3
0. Chaudhari N, Pereira E, Roper SD. Taste receptors for umami: the  
case for multiple receptors. The American journal of clinical  
nutrition. 2009 Jul 1;90(3):738S-42S.  
1. Kinnamon SC, Lin W, Ogura T, Ruiz C, Delay E. Downstream  
signaling effectors for umami taste. Chemical senses. 2005 Jan  
49. Sake J, Shochu Makers Association. A comprehensive guide to  
Japanese sake. Tokyo: Japan Sake and Shochu Makers  
Association. 2011.  
50. Tracy SE. Delicious: A History of Monosodium Glutamate and  
Umami, the Fifth Taste Sensation (Doctoral dissertation).  
51. Zhang Y, Venkitasamy C, Pan Z, Liu W, Zhao L. Novel umami  
ingredients: Umami peptides and their taste. Journal of food  
science. 2017 Jan;82(1):16-23.  
52. Zhao CJ, Schieber A, Gänzle MG. Formation of taste-active  
amino acids, amino acid derivatives and peptides in food  
fermentationsA review. Food Research International. 2016 Nov  
1;89:39-47.  
53. Davalos A, Miguel M, Bartolome B, Lopez-Fandino R.  
Antioxidant activity of peptides derived from egg white proteins  
by enzymatic hydrolysis. Journal of food protection. 2004  
Sep;67(9):1939-44.  
1
;30(suppl_1):i31-2.  
2. Zhang F, Klebansky B, Fine RM, Xu H, Pronin A, Liu H,  
Tachdjian C, Li X. Molecular mechanism for the umami taste  
synergism. Proceedings of the National Academy of Sciences.  
2
008 Dec 30;105(52):20930-4.  
3
3. Yamaguchi S, Yoshikawa T, Ikeda S, Ninomiya T. Measurement  
of the relative taste intensity of some l‐α‐amino acids and 5′‐  
nucleotides. Journal of Food Science. 1971 Sep;36(6):846-9.  
4. Lehninger AL, Nelson DL, Cox MM, Cox MM. Lehninger  
principles of biochemistry. Macmillan; 2005.  
3
3
5. Lozić-Đurić M. Neurotransmitters in the central nervous system:  
Basic  
knowledge  
revisited.  
Medicinski  
podmladak.  
54. Dlask, O., & Václavíková, N. (2018). Electrodialysis with  
Ultrafiltration Membranes for Peptide Separation. Chemical  
Papers, 72(2), 261271. https://doi.org/10.1007/s11696-017-  
0293-6  
55. Bhuvaneswari S, Begum S, Meera KM, Sivashanmugam P,  
Anantharaman N, Sundaram S. Separation of L-glutamic acid by  
emulsion liquid membrane extraction.  
56. Kumar M, Tripathi BP, Shahi VK. Electro‐membrane process for  
the separation of amino acids by iso‐electric focusing. Journal of  
Chemical Technology & Biotechnology. 2010 May;85(5):648-57.  
57. Doyen A, Beaulieu L, Saucier L, Pouliot Y, Bazinet L. Impact of  
ultrafiltration membrane material on peptide separation from a  
snow crab byproduct hydrolysate by electrodialysis with  
ultrafiltration membranes. Journal of agricultural and food  
chemistry. 2011 Jan 21;59(5):1784-92.  
2
015;66(2):12-5.  
3
6. Marmiroli P, Cavaletti G. The Glutamatergic Neurotransmission  
in the Central Nervous System. Current Medicinal  
Chemistry,2012;19(9):12691276.  
https://doi.org/10.2174/092986712799462711  
7. Herring BE, Silm K, Edwards RH, Nicoll RA. Is aspartate an  
excitatory neurotransmitter?. Journal of Neuroscience. 2015 Jul  
3
3
1
5;35(28):10168-71.  
8. Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD. Researching  
glutamateinduced cytotoxicity in different cell lines:  
a
comparative/collective analysis/study. Frontiers in cellular  
neuroscience. 2015 Mar 17;9:91.  
9. Smart TG, Paoletti P. Synaptic neurotransmitter-gated receptors.  
Cold Spring Harbor perspectives in biology. 2012 Mar  
3
4
1
;4(3):a009662.  
58. Amorim M, Pereira JO, Gomes D, Pereira CD, Pinheiro H,  
Pintado M. Nutritional ingredients from spent brewer's yeast  
obtained by hydrolysis and selective membrane filtration  
integrated in a pilot process. Journal of food engineering. 2016  
Sep 1;185:42-7.  
0. Wroblewski JT, Fadda E, Mazzetta J, Lazarewicz JW, Costa E.  
Glycine and D-serine act as positive modulators of signal  
transduction at N-methyl-D-aspartate sensitive glutamate  
receptors  
in  
cultured  
cerebellar  
granule  
cells.  
Neuropharmacology. 1989 May 1;28(5):447-52.  
59. Vikramachakravarthi D, Kumar R, Pal P. Production of L (+)  
glutamic acid in a fully membrane-integrated hybrid reactor  
system: direct and continuous production under non-neutralizing  
conditions. Industrial & Engineering Chemistry Research. 2014  
Nov 24;53(49):19019-27.  
4
4
4
1. Mouritsen OG, Duelund L, Calleja G, Frøst MB. Flavour of  
fermented fish, insect, game, and pea sauces: garum revisited.  
International journal of gastronomy and food science. 2017 Oct  
1
;9:16-28.  
2. Suhartini W, Yang F, Xia W. Physiochemical Properties, Volatile  
Compounds and Sensory Evaluation of Chili Sauce Shrimp Paste  
from Different Regions in Indonesia. Food and Nutrition  
Sciences. 2019 Mar 4;10(3):333-48.  
3. Susilowati A, Melanie H. Reducing Salt from Autolysate of  
Fermented Mung Bean (Phaseolus Radiatus l.) Using  
60. Luo J, Huang W, Song W, Hang X, Ding L, Wan Y. A pilot-plant  
test on desalination of soy sauce by nanofiltration. Separation and  
purification technology. 2012 Mar 22;89:217-24.  
61. Kovacs Z, Samhaber W. Nanofiltration of concentrated amino  
acid solutions. Desalination. 2009 May 15;240(1-3):78-88.  
401  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 390-402  
6
2. Bourseau P, Vandanjon L, Jaouen P, Chaplain-Derouiniot M,  
Massé A, Guérard F, Chabeaud A, Fouchereau-Peron M, Le Gal  
Y, Ravallec-Plé R, Bergé JP. Fractionation of fish protein  
hydrolysates by ultrafiltration and nanofiltration: impact on  
peptidic populations. Desalination. 2009 Aug 1;244(1-3):303-20.  
3. Lioe HN, Yasuda M. Isolation and Identification of Savory  
Compounds Present in Koikuchi Shoyu-A Most Well-Known  
Japanese Soy Sauce, 2007 August; 37.  
4. Vandanjon L, Johannsson R, Derouiniot M, Bourseau P, Jaouen  
P. Concentration and purification of blue whiting peptide  
hydrolysates by membrane processes. Journal of Food  
Engineering. 2007 Dec 1;83(4):581-9.  
81. Abe T, Kato K, Fujioka T, Akizawa T. The blood compatibilities  
of blood purification membranes and other materials developed in  
Japan. International journal of biomaterials. 2011;2011.  
82. Zang Q, Sun BS, Zhang HF, Qi GS. Influence of extracellular  
polymeric substances on characteristics of membrane filtration in  
a submerged membrane bioreactor. Tianjin Gongye Daxue  
Xuebao/ Journal of Tianjin Polytechnic University. 2005  
Oct;24(5):41-4.  
83. Khorshidi B, Thundat T, Fleck BA, Sadrzadeh M. A novel  
approach toward fabrication of high performance thin film  
composite polyamide membranes. Scientific reports. 2016 Feb  
29;6:22069.  
6
6
6
5. Mourot P, Oliver M. Comparative Evaluation of Ultrafiltration  
Membranes for Purification of Synthetic Peptides. Separation  
84. Van Reis R, Brake JM, Charkoudian J, Burns DB, Zydney AL.  
High-performance tangential flow filtration using charged  
membranes. Journal of Membrane Science. 1999 Jul 1;159(1-  
2):133-42.  
Science  
and  
Technology,1986;24(56):353367.  
https://doi.org/10.1080/01496398908049774  
6
6
6
6
6. Gotoh T, Iguchi H, Kikuchi KI. Separation of glutathione and its  
related amino acids by nanofiltration. Biochemical engineering  
journal. 2004 Jul 15;19(2):165-70.  
7. Li SL, Li C, Liu YS, Wang XL, Cao ZA. Separation of L-  
glutamine from fermentation broth by nanofiltration. Journal of  
Membrane science. 2003 Sep 1;222(1-2):191-201.  
8. Tsuru T, Shutou T, Nakao SI, Kimura S. Peptide and amino acid  
separation with nanofiltration membranes. Separation science and  
technology. 1994 May 1;29(8):971-84.  
9. Yoshikawa M, Ooi T, Izumi JI. Alternative molecularly imprinted  
membranes from a derivative of natural polymer, cellulose  
acetate. Journal of applied polymer science. 1999 Apr  
85. Singh PS, Rao AP, Ray P, Bhattacharya A, Singh K, Saha NK,  
Reddy AV. Techniques for characterization of polyamide thin  
film composite membranes. Desalination. 2011 Nov 1;282:78-86.  
86. Anadão P. Ciência e Tecnologia de Membranas, 2010. Retrieved  
from  
https://www.amazon.com.br/Ciência-Tecnologia-  
Membranas-Priscila-Anadão/dp/8588098504  
87. Drioli E. Polyamide Membrane. In E. Drioli & L. Giorno (Eds.),  
Encyclopedia of Membranes, 2016;15881590. Retrieved from  
http://93.174.95.29/_ads/00FF884C8DF95918212D5C8E4BC51  
62B  
88. Flemming HC, Wingender J. Relevance of microbial extracellular  
polymeric substances (EPSs)-Part I: Structural and ecological  
aspects. Water science and technology. 2001 Mar 1;43(6):1-8.  
89. Nakao S, Osada H, Kurata H, Tsuru T, Kimura S. Separation of  
proteins by charged ultrafiltration membranes. Desalination. 1988  
Nov 1;70(1-3):191-205.  
2
5;72(4):493-9.  
7
0. Roh IJ, Park SY, Kim JJ, Kim CK. Effects of the polyamide  
molecular structure on the performance of reverse osmosis  
membranes. Journal of Polymer Science Part B: Polymer Physics.  
1
998 Aug;36(11):1821-30.  
90. Readi OK, Kuenen HJ, Zwijnenberg HJ, Nijmeijer K. Novel  
membrane concept for internal pH control in electrodialysis of  
amino acids using a segmented bipolar membrane (sBPM).  
Journal of membrane science. 2013 Sep 15;443:219-26.  
91. Shultz S, Bass M, Semiat R, Freger V. Modification of polyamide  
membranes by hydrophobic molecular plugs for improved boron  
rejection. Journal of Membrane Science. 2018 Jan 15;546:165-72.  
92. Poulin JF, Amiot J, Bazinet L. Simultaneous separation of acid  
and basic bioactive peptides by electrodialysis with ultrafiltration  
membrane. Journal of biotechnology. 2006 May 29;123(3):314-  
28.  
7
7
7
1. Hong SA, Yang JW. Process development of amino acid  
concentration by a liquid emulsion membrane technique. Journal  
of membrane science. 1994 Jan 27;86(1-2):181-92.  
2. Kuo WS, Chiang BH. Recovery of glutamic acid from  
fermentation broth by membrane processing. Journal of Food  
Science. 1987 Sep;52(5):1401-4.  
3. Mulyanti R, Susanto H. Wastewater Treatment by Nanofiltration  
Membranes. IOP Conference Series: Earth and Environmental  
Science,2018;142(1).  
315/142/1/012017  
https://doi.org/10.1088/1755-  
1
7
7
7
4. Peña N, Gallego S, Del Vigo F, Chesters SP. Evaluating impact  
of fouling on reverse osmosis membranes performance.  
Desalination and Water Treatment. 2013 Jan 1;51(4-6):958-68.  
5. Limayem I, Charcosset C, Fessi H. Purification of nanoparticle  
suspensions by a concentration/diafiltration process. Separation  
and Purification Technology. 2004 Jul 15;38(1):1-9.  
93. Ahmed M., Qadir M. A. Synthesis of Metal Complexes with  
Amino Acids for Animal Nutrition. Global Veterinaria,  
2014;12(6):858861.  
https://doi.org/10.5829/idosi.gv.2014.12.06.841  
94. Suwal S, Doyen A, Bazinet L. Characterization of protein, peptide  
and amino acid fouling on ion-exchange and filtration  
membranes: Review of current and recently developed methods.  
Journal of Membrane Science. 2015 Dec 15;496:267-83.  
95. Cho YH, Han J, Han S, Guiver MD, Park HB. Polyamide thin-  
film composite membranes based on carboxylated polysulfone  
microporous support membranes for forward osmosis. Journal of  
membrane science. 2013 Oct 15;445:220-7.  
96. Sajadi SA. Metal ion-binding properties of L-glutamic acid and  
L-aspartic acid, a comparative investigation. Natural Science.  
2010 Mar 2;2(02):85.  
97. Homaeigohar SS, Buhr K, Ebert K. Polyethersulfone electrospun  
nanofibrous composite membrane for liquid filtration. Journal of  
Membrane Science. 2010 Dec 1;365(1-2):68-77.  
6. Liderfelt J, Royce J. Filtration Methods for Use in Purification  
Processes  
(Concentration  
and  
Buffer  
Exchange).  
InBiopharmaceutical Processing 2018 Jan 1 (pp. 441-453).  
Elsevier.  
7
7
7. Reddy KK, Kawakatsu T, Snape JB, Nakajima M. Membrane  
concentration and separation of L-aspartic acid and L-  
phenylalanine derivatives in organic solvents. Separation science  
and technology. 1996 Apr 1;31(8):1161-78.  
8. Voicu SI, Ninciuleanu CM, Muhulet O, Miculescu M. Cellulose  
acetate membranes with controlled porosity and their use for the  
separation of aminoacids and proteins. J. Optoelectron. Adv.  
Mater. 2014 Jul 1;16(7-8):903-8.  
7
8
9. Upadhyay V. Studies of Cellulose Acetate Supported Ergosterol  
Liquid Membrane. Journal of Membrane Science & Technology,  
2
012;02(02):25. https://doi.org/10.4172/2155-9589.1000116  
0. Alsvik IL, Hägg MB. Pressure retarded osmosis and forward  
osmosis membranes: materials and methods. Polymers. 2013  
Mar;5(1):303-27.  
402