Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 346-352  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Modeling of Groundwater Quality for Drinking  
and Agricultural Purpose: A Case Study in  
Kahorestan plain  
1
*
2
3*  
Marjan Salari , Maryam HosseiniKheirabad , Majid Ehteshami , Sayedeh Niloufar  
4
5
Moaddeli and Ehsan Teymouri  
1
Department of Civil and Environmental Engineering, Sirjan University of Technology, Kerman, Iran  
2
Department of Civil Engineering, Payame noor University, Shiraz, Iran  
3
Head and Assistant Professor, Environmental Eng. Dept. KN Toosi Univ. of Technology, Tehran, Iran  
4
Department of Civil Engineering, Estahban University, Fars province, Iran  
5
Graduated MSc.student, Faculty of Civil Engineering, Semnen University, Semnan, Iran  
Received: 27/09/2019  
Accepted: 15/12/2019  
Published: 20/02/2020  
Abstract  
In the current study, planning for optimal utilization of groundwater resources is described. Kahorestan plain in Hormozgan  
province was the study zone. Since the main problem of the plain is high salinity of groundwater, chloride concentration was  
examined as an indicator of salt and also water quality degradations. This decision was made due to its high solubility, poor  
absorption, and stability of the compounds in the groundwater. A quality model was developed using software coding of visual  
mudflow to identify the problem. The collected chloride data of Kahorestan water wells were processed as an input in MT3D  
software from 2007 to 2011. Longitudinal and transverse diffusion coefficients were calibrated and the distribution of contaminants  
in the Kahorestan aquifer was analyzed. The mathematical model was developed to predict and simulate groundwater quality by  
October-2014. According to a developed qualitative model, the average concentration of chloride in groundwater was increased  
due to the need for more withdraw about a 5% increase in some parts of the northwest plains. Besides, the plain faces with a growth  
rate of chloride concentration about 3% compared to the initial situation in October-2011. Furthermore, to reduce the salinity,  
management schemes and plans were presented to reform water-use patterns, especially in the agricultural sectors.  
Keywords: Groundwater, Salt, Chloride, Mathematical Modeling, Visual Mudflow  
pond, supply, and tube-well water quality parameters (12  
1
Introduction1  
parameters such as pH, TDS, TS, SS, DO, COD, BOD, etc.)  
and identified water collection and distribution system in  
Chandpur district of Bangladesh. They found that all the  
parameters vary significantly with the types of water. Water  
quality management programs should be initiated under the  
supervision of the government to maintain the acceptable  
limit and proper water supply schemes should be followed  
for effective water collection and distribution systems [8].  
Garba et al. (2016), evaluated 9 open well water  
contamination in the high-density residential area. Microbial  
contaminants, the concentration of some chemical and  
physical parameters were tested. The results showed that  
Nitrate exceeded the limit range in about 75% of samples  
while e- Coli bacteria were observed in 8 out of 9 samples.  
Overall, they recommended that another source of domestic  
Nowadays, Changes in the quality of groundwaters and  
salty water resources have been becoming the greatest  
warning to the agriculture industry, in particular, in arid and  
semi-arid lands. Therefore, many researchers have been  
doing to evaluate, estimate and measuring the concentration  
of contaminant properties either in fields or using a  
computation model [1-5].  
Theorical foundations for describing the transfer of  
sakts, which is a conceptual framework to model analysis the  
modeling of the processes of transfering physical salts in  
underground water, was presented by Domenico and  
Schwartz [6] Khalifa, (1996) calculated the pizpmetric  
future levels and budget of water volume by a 3-D limited  
difference method for SiwaOasis project [7].  
Lokman Hossain et al. (2013), investigated the status of  
Corresponding author: (a) Marjan Salari, Department of Civil Engineering, Sirjan University of Technology, Kerman, Iran, E-  
mails: salari.marjan@gmail.com. (b) Majid Ehteshami, Head and Assistant Professor, Environmental Eng. Dept. KN Toosi Univ.  
of Technology, Tehran, Iran, P.O Box 1587-544-16, Tel. +98-21-88770006, Fax: Tel. +98-21-88779476. E-mail:  
3
46  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 346-352  
water supply and other water purification techniques that is  
consumer-friendly is needed for the area [9].  
precision would better to be used to provide the most likely  
conditions similar to what is in the reality and result in  
satisfactory outcomes [17]. The combination of chlorine,  
which considers in halogen categories, and sodium leads to  
produce salt. Serious kidney damages a high blood pressure  
are repercussions of increasing salt in drinking water [18, 19  
and 20]. It is also might lead to stroke and left ventricular  
hypertrophy in a long-term period of consuming [21]. Some  
evidence has shown that consuming excess salt is an indirect  
reason for obesity with drinking soda [22]. It has been said  
that the risk of kidney stones, osteoporosis and one of the  
main reasons for gastric cancer are overusing salt [23 and  
24]. Since the salt is the most soluble and the most extensive  
types of salt, it would be dangerous for the plants provided  
that there has not been an envolved mechanism to regulate  
its accumulation [25 and 26]. One of the predominant effects  
of chlorine on the human’s health is disinfection by-product  
(DBPs) which define as side-substance that are produced in  
the presence of chlorine. This substance is caused by the  
reaction of chlorine and organic materials. Terly Halo  
Methane, Nitrozomines, and Halo acetic acid are the most  
important examples of DBPs that have great potential for  
cancer and genetic mutations in humans [27]. Hence, in the  
present study, we focused on the application of a quality  
model using software coding of visual mudflow to identify  
chloride concentration as an indicator of salt and also water  
quality degradations the problem. The collected chloride  
data of Kahorestan water wells was processed as an input in  
MT3D software from 2007 to 2011.  
Richards et al. (2019), investigated the spatial  
relationships between functional genes with chlorinated  
ethene concentrations in a surficial aquifer at a contaminated  
site by using cryogenic soil coring, and this result in that  
both aerobic methanotrophs and anaerobic VC-  
dechlorinators may play  
a significant role in VC  
biodegradation in aquifers that have little dissolved  
oxygen [10]. Panjaitan et al. (2018), used Chloride  
Bicarbonate Ratio Method to determine the seawater  
intrusion in the shallow aquifer by taking 30 samples with a  
2
km distance each and measured Cl−, HCO3 −, CO3 – and  
EC as chemical parameters. The experiment showed that  
water usage debit and aquifer permeability affected seawater  
intrusion significantly with an adjusted coefficient R2 of  
0
.797 [11]. Banks et al. (2018), used the chloride mass  
balance (CMB) method to determine chloride  
decomposition in rainfall to estimate regional groundwater  
recharge in Africa. In order to provide input data for  
recharge estimation, simple rainfall collectors were  
developed and installed in sites, and also, other available  
researches data about chloride concentration in rainfall were  
used to create a regional map of chloride decomposition  
[
12]. Xie et al. (2018), utilize an analytical model in three  
cases for contaminant transport in a vertical cut-off wall and  
an aquifer system. With a fixed hydraulic gradient of 0.5, the  
chloride (Cl-) breakthrough time increased by 1.7 which was  
more sensitive to the scale of the aquifer that the same trend  
of lead (Pb) [13]. Alexandria Demi (2018), considered the  
variation in groundwater geochemistry in the Great Bend  
Prairie aquifer by collecting samples from 24 wells and  
comparing results to previous data. Results demonstrated  
that water quality in the aquifer has degraded over the past  
2
Methodology  
2
.1 Case Study  
Khahorestan plain is located 90 kilometers away on the  
west of Bandar Abbas, and DMS latitude and longitude  
coordinates for Kahorestan are: 55°27’ up to 55° and 27°8’  
up to 27°16’. Average altitude of the plain is 66 meters and  
almost 62 percent of the area is between 50 to 100 meters.  
Kahorestan plain is considered as the hot and dry areas with  
0 to 40 years due to nitrate accumulation [14].  
Mountadar et al. (2018), studied the salinization  
mechanisms in the coastal area between Sidi Abed and  
Ouled Ghanem (El Jadida Province, Morocco) based on  
analyzing and discussing the physicochemical data of water  
samples from 73 wells. They found that the wells which  
were located in the coastal fringe are characterized by a high  
concentration of sodium and chloride and EC values but  
lower values were found in that of located in upstream, and  
the groundwater is contaminated by seawater intrusion [15].  
Underground waters, is very important in Iran because  
of its dry climate. During the past 20 years, quick population  
growth, developing urban and agriculture areas, surface  
water restriction and overuse of underground water have led  
to serious damages to underground water aquifers in the  
country. Kahorestan plain in an important agriculture center  
in the west of the Hormozgan province which provides a  
portion of drinking water of Bandar Khamir and surrounding  
villages and also supplies the water requirement of the  
cement factory of the Hormozgan through the under-  
groundwater sources from its northwest part. Consequently,  
underground water quality has been decreased due to  
overusing [16]. Management of underground water in both  
forms of quality and quantity needs to be noted carefully. On  
the one hand, sources of contaminants and related equations  
should be well-known and on the other hand, advanced  
methods such as simulators and models with clockwork  
1
56 millimeters average annual rainfall and 27°C average  
annual temperature. Average annual evaporation is about  
680 millimeters. Almost 60 of 260 square kilometer of the  
3
plain is suitable to be noticed and studied, and the rest is  
practically useless because of high salinity of underground  
water (Laar Consaltant Engineering Company).  
Underground water flow modeling and soluble transfer  
휕ℎ  
휕ℎ  
휕ℎ  
휕ℎ  
(
) + (퐾 ) + (퐾 휕) − 푊 = 푆 휕푡  
ꢀ1ꢁ  
휕푥  
휕푦  
휕푦  
휕푧  
휕퐶  
휕푡  
휕퐶  
ꢇ  
ꢀ푉 ꢆ + ꢆ + ∑ 푘  
=
ꢂ퐷  −  
ꢀ2ꢁ  
푘ꢈꢉ  
휕푥푖  
휕푥ꢄ  
휕푥푖  
2
.2 Ground water flow model and soluble transfer  
Among the groundwater movement simulation  
programs, PMWIN and MT3D are more widely used due to  
the physical properties of the porous medium and their  
completeness. Most numerical models of groundwater are  
based on the solving of two differential equations with  
partial derivatives, which are the three-dimensional  
equations for the movement of groundwater with constant  
density in the porous medium, being explained as follows:  
3
47  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 346-352  
휕ℎ 휕 휕ℎ 휕 휕ℎ 휕ℎ  
) + (퐾 ) + (퐾 휕) − 푊 = 푆 휕 ꢀ3ꢁ  
휕푦 휕푦 휕푧  
(
휕푥  
where α_L and α_T are the longitudinal and transverse  
diffusion coefficient, V are the average water velocity of the  
groundwater and D is the Effective molecular Dispersion  
coefficient.  
In this equation, K is hydraulic conductivity, h is the  
potential load, W is the volume flux in the volume unit,  
̇
which indicates the discharge and feed,  is specific storage  
for porous materials, t indicates time, and X, Y and Z  
represent the Cartesian coordinates [25 to 28]. The partial  
differential equations for transporting materials in a three-  
dimensional system in an underground aquifer are as  
follows:  
ꢐ  
= [1 +  푛  
]
(9)  
C) Retardation: The process of delaying the movement  
of pollution in underground water due to the  
absorption mechanism, which is carried out both  
for organic particles and non-organic particles. The  
Retardation coefficient is calculated using the  
diffusion coefficients, absorption and soil porosity  
characteristics as follows:  
휕퐶  
휕푡  
휕퐶  
ꢇ  
ꢀ푉 ꢆꢁ + ꢆ + ∑ 푘  
=
ꢃ푗  
ꢅ −  
ꢀ4ꢁ  
푘ꢈꢉ  
휕푥푖  
휕푥ꢄ  
휕푥푖  
where: C is the concentration of groundwater soluble  
contaminants, t times, x_i, the distance in the X direction in  
the Cartesian coordinate system, D_ij, the hydrodynamic  
relaxation coefficient, V_i the velocity of water in the  
aggregates, q_s the volume of the inlet or outlet in the unit  
that Inputs are positive and outputs are negative, C_s are the  
ꢐ  
푅 = [1 + 퐾 푛  
]
(10)  
where K  
d
is the absorption coefficient, P  
d
is the density of  
soil particles and n is soil porosity [35-36]. In this research,  
the quantitative model was first made, calibrated and  
validated by MODFLOW, then it was used to prepare a  
qualitative model. To provide a qualitative model of the  
MT3D package and the qualitative data of the 15 observation  
wells, chlorine measurements were used, as shown in Fig. 1.  
Due to the fact that we prepared and calibrated a small plain  
model for the years 87-88, we prepared a qualitative model  
for the year 2010 and we used the information from the  
following years to validate the model.  
concentrations of inputs and outputs, θ are the porosity of the  
N
kꢈꢉ  
medium and ∑  
R are the term of chemical interactions  
k
[
29]. Three factors contributing to the transmission of  
pollution in groundwater include:  
A) Advection: The contaminants in groundwater are  
transmitted according to Darcy law. According to  
the law, the flow rate from point 1 to point 2 is  
proportional to the head loss and has Photo ratio  
with the length of the path.  
ꢋℎꢌ  
푄 = −퐾. 퐴.  
(5)  
2.3 Predict the quantitative status of the aquifer in  
Kahurestan plain in Mehr (September- October: 2015)  
In this section, a quantitative aquifer model is used to  
predict the level of aquifer water level up to 2015. In order  
to predict the future status of the aquifer, the level of water  
level in mehr October 2011 is given as the initial level of  
aquifer water level and is simulated for a 4-year period of  
aquifer.  
The actual speed of passing through the soil pores is  
calculated as follows:  
ꢋℎꢌ  
푉 =  
=  푛  
.
(6)  
푛.ꢎ  
where n is the Effective porosity or percentage of porosity  
that flow is passing through them. Therefore, only when the  
flow transfer is significant, the pollutant, along with the  
groundwater flow, does not move at the same rate and the  
concentration of the pollutant in the flow path will not be  
reduced.  
B) Dispersion: Dispersion in underground waters  
actually indicates the spread of a contaminated  
substance in an area with groundwater velocity.  
The hydrodynamic diffusion coefficient is as  
follows:  
̇
퐷 = 훼 푉 + 퐷  
(7)  
(8)  
Fig 2: Forecast water level for October 2015  
̇
 = 훼 푉 + 퐷  
3
48  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 346-352  
Fig 1: Chlorine observation wells and quantitative model range of plain aquifer  
Figure 2 shows the distribution of water loss in the plain  
from mehr October 2011 to mehr September 2015 during a  
four-year period. As can be seen, using the quantitative  
model we conclude that the highest amount of water loss  
occurs in the northwestern part of Kahurestan plain.  
the calibration period, that is, after one year of simulation,  
two amounts of observed and calculated concentrations are  
compared.  
2
.3. Calibration of the model  
In qualitative aquifer modeling, the parameters that are  
affected by the distribution process (absorption coefficient,  
horizontal distribution ratios to distribution length, vertical  
distribution to distribution length and distribution length) are  
calibrated. Basically, these parameters should be obtained  
from laboratory studies, but due to the lack of laboratory  
results data evidence, this was done by using trial and error  
and matching observational values with computational  
values. The calibrated parameters of the model are described  
in Table 1.  
Fig 3: Lines map of calculated and observed Cl concentration in  
3
65-day time step during the calibration period (2009-2008)  
2
.4 Error Distribution  
Scatter diagram is a Comparison of the values calculated  
by the observation model as a graph. The distribution curve  
is, in fact, a kind of comparison of model results errors. Fig  
Table 1: The calibrated parameters of the model  
TRPT  
TRPV  
DMCOEF  
0.1  
0.1  
0
4
shows the fitting of the results for the calibration period,  
which are acceptable with respect to the number of 15  
observation plains wells. In addition, the qualitative model  
was calibrated for a one-year period. In Fig. 3, at the end of  
Longitudinal Dispersivity  
235  
3
49  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 346-352  
Fig 4: Distribution study of the calculated and modeled values  
2
.5 Parameters Sensitivity analysis  
The purpose of the sensitivity analysis is to demonstrate  
after 2 years (October 2009) and the accuracy of the model  
after 3 years (October 2010).  
the response of the quality model to the change of an  
unconfident input parameter. The model response to the  
variation of the input parameter can be high or low. The  
quality model of groundwater in Kahurestan Plain is  
sensitive to the length of distribution and the concentration  
of nitrate input and output of the aquifer respectively, and  
the model sensitivity to density of soil particles is low.  
Figure 5 shows the variation of the model error relative to  
the distribution length parameter.  
1.65  
1.6  
1.55  
1.5  
1.45  
1
.4  
.35  
.3  
1
1
5
0
0 45 40 35 30 25 23 21 20 15 10  
2
.6 Model Verification  
50 1  
0
0
0
0
0
5
5
0
0
0
To validate the model and determine the accuracy of it,  
Series1 1.6 1.6 1.6 1.5 1.5 1.5 1.4 1.4 1.5 1.5 1.5 1.5 1.5  
the initial aquifer concentration was assumed to be the  
concentration for October 2007, and run the model for  
several consecutive time periods. The model results showed  
that the more predictive time goes, the greater the predictive  
error becomes. Based on the results, it can be said that it is  
quite obvious that maximum of 2 to 3 years to come can be  
predicted by this model and, for more than that, prediction  
accuracy becomes low, and is not recommended. Figure 6  
illustrates this point and shows the accuracy of the model  
Longitudinal Dispersivity  
Fig 5: Model sensitivity to diffusion coefficient  
2
.7 Predict  
In this section, the model was used to predict the three-  
year period. To do this, we initially considered the data of  
007 as the initial concentration and simulated the aquifer  
2
3
50  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 346-352  
for a period of three years. As a result, the chlorine map in  
2
010 was shown in Fig. 7.  
Fig 7: Forecasted Chlorine Map for 2014  
Then, in order to predict the chlorine concentration in the  
aquifer, the qualitative parameters in October 2011 as the  
initial values of concentration were given to the model and  
simulated for a 3-year period of the aquifer. In Figure 8, solid  
lines of the map, are chlorine concentration lines in the  
October 2011, and dotted lines, are chlorine concentration  
lines in October 2011 Kahurestan plain.  
A: Model accuracy after 2 years (October 2009)  
Fig 8: Forecasted Chlorine Map for 2014  
3
Conclusion  
In this study, PMWIN showed that it is a good option,  
both quantitatively and qualitatively, for the groundwater  
quality modeling of Hormozgan Plain. Modeling for the  
three-year forecast indicates that the amount of chlorine in  
the whole plain has a relative increase, which the average is  
3
.3% for the whole plain. This increase is due to more water  
harvesting in the northwestern plain. Thus, due to  
concidering the decrease in groundwater level, it is  
recommended to apply smart meter devices in these areas for  
efficient management of crop permitting, given the  
estimated water requirement of crops grown in the area and  
the methods of compensating for the loss of moisture.  
The following two main axes can be examined. Long-  
term methods, including the proper use of modern irrigation  
and agricultural methods, are recommended and also  
necessary groundwater management changes in the area to  
compensate for groundwater quality. Short-term approaches  
include the creation of artificial feeding plans with regard to  
the potential of surface currents along the plain. This can be  
partially offset by a reduction in reservoir volume and  
improved groundwater quality. Therefore, by protecting  
water in agriculture by improving irrigation methods by  
taking steps such as problem solving and increasing the level  
of knowledge of farmers, developing an optimal cropping  
B: Model accuracy after 3 years (October 2010)  
Fig 6: Distribution graph of observed and modeled chlorine  
concentration values  
3
51  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 346-352  
pattern, preventing unauthorized harvesting and non-  
issuance of new licenses, protecting aquifers and artificial  
feeding. This can minimize the rate of groundwater level loss  
and its consequences.  
12 Banks, Eddie W., Peter Cook, Michael Owor, Seifu Kebede,  
Prince Mleta, Helen Bonsor, and Alan MacDonald. "Chloride  
deposition in rainfall to estimate regional groundwater recharge  
in Africa." In EGU General Assembly Conference Abstracts,  
vol. 20, p. 14713. 2018.  
1
3
Xie, Haijian, Shaoyi Wang, Yun Chen, Jianqun Jiang, and  
Zhanhong Qiu. "An analytical model for contaminant transport  
in cut-off wall and aquifer system." Environmental  
Geotechnics (2018): 1-10.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
1
4
Richard, Alexandria Demi. "Variation in groundwater  
geochemistry and microbial communities in the High Plains  
aquifer system, south-central Kansas." PhD diss., 2018.  
(avoidance of guest authorship), dual submission,  
manipulation of figures, competing interests and compliance  
with policies on research ethics. Authors adhere to  
publication requirements that submitted work is original and  
has not been published elsewhere in any language.  
15 Mountadar, Sara, Abdelkader Younsi, Abdelkader Hayani,  
Mustapha Siniti, and Soufiane Tahiri. "Groundwater  
salinization process in the coastal aquifer sidi abed-ouled  
ghanem (province of el Jadida, Morocco)." Journal of African  
Earth Sciences 147 (2018): 169-177.  
Competing interests  
The authors declare that there is no conflict of interest  
that would prejudice the impartiality of this scientific work.  
1
6
He, Feng J., and Graham A. MacGregor. "Salt, blood pressure  
and cardiovascular disease." Current opinion in cardiology 22,  
no. 4 (2007): 298-305.  
1
7
Meneton, Pierre, Xavier Jeunemaitre, Hugh E. de Wardener,  
and Graham A. Macgregor. "Links between dietary salt intake,  
renal salt handling, blood pressure, and cardiovascular  
diseases." Physiological reviews 85, no. 2 (2005): 679-715.  
Swift, Pauline A., Nirmala D. Markandu, Giuseppe A. Sagnella,  
Feng J. He, and Graham A. MacGregor. "Modest salt reduction  
reduces blood pressure and urine protein excretion in black  
hypertensives: a randomized control trial." Hypertension 46,  
no. 2 (2005): 308-312.  
Authors’ contribution  
All authors of this study have a complete contribution  
for data collection, data analyses and manuscript writing.  
1
8
References  
1
2
3
4
5
Almasri, Mohammad N., and Jagath J. Kaluarachchi.  
"
Modeling nitrate contamination of groundwater in agricultural  
watersheds." Journal of Hydrology 343, no. 3-4 (2007): 211-  
29.  
1
2
2
2
9
0
1
2
Nagata, Chisato, Naoyoshi Takatsuka, Natsuki Shimizu, and  
Hiroyuki Shimizu. "Sodium intake and risk of death from stroke  
in Japanese men and women." Stroke 35, no. 7 (2004): 1543-  
2
van der Grift, Bas, and Jasper Griffioen. "Modelling assessment  
of regional groundwater contamination due to historic smelter  
emissions of heavy metals." Journal of Contaminant  
Hydrology 96, no. 1-4 (2008): 48-68.  
Saâdi, Zakaria, and Abdellatif Maslouhi. "Modeling nitrogen  
dynamics in unsaturated soils for evaluating nitrate  
contamination of the Mnasra groundwater." Advances in  
Environmental Research 7, no. 4 (2003): 803-823.  
Chen, Yaming, Leslie Smith, and Roger Beckie. "Modeling of  
strategies for performance monitoring of groundwater  
contamination at sites underlain by fractured bedrock." Journal  
of contaminant hydrology 134 (2012): 37-53.  
Bear, Jacob, and Arnold Verruijt. Modeling groundwater flow  
and pollution. Vol. 2. Springer Science & Business Media,  
1
547.  
Cappuccio, Francesco P., Rigas Kalaitzidis, Stuart Duneclift,  
and John B. Eastwood. "Unravelling the links between calcium  
excretion, salt intake, hypertension, kidney stones and bone  
metabolism." Journal of nephrology 13, no. 3 (2000): 169-177.  
Tsugane, S., S. Sasazuki, M. Kobayashi, and S. Sasaki. "Salt  
and salted food intake and subsequent risk of gastric cancer  
among middle-aged Japanese men and women." British Journal  
of Cancer 90, no. 1 (2004): 128.  
Garthwaite, Alaina J., Roland von Bothmer, and Timothy D.  
Colmer. "Salt tolerance in wild Hordeum species is associated  
with restricted entry of Na+ and Cl− into the shoots." Journal of  
Experimental Botany 56, no. 419 (2005): 2365-2378.  
Munns, Rana. "Genes and salt tolerance: bringing them  
together." New phytologist 167, no. 3 (2005): 645-663.  
Bull, Richard J. "Carcinogenic activity of haloacetonitrile and  
haloacetone derivatives in the mouse skin and lung." Water  
chlorination: chemistry, environmental impact and health  
effects 5 (1983): 221-227.  
2
2
3
4
2
012.  
6
7
Domenico, Patrick A., and Franklin W. Schwartz. Physical and  
chemical hydrogeology. Vol. 506. New York: Wiley, 1998.  
Khalifa, M. R., Development of water resources for irrigating  
western desert specially with reference to Siwa Oasis. M.S.  
Thesis, Faculty of Engineering, Alexandria University, 1996.  
Hossain, Md Lokman, and Kazi Shariful Islam. "Assessment of  
Water Quality in Chandpur District of Bangladesh." Journal of  
Environmental Treatment Techniques 1, no. 2 (2013): 91-100.  
Garba, T., Ilelah, K. G., Kwari, M. A., Sadiq, L. S., Sani, M. J.  
and Zulkarnain, O. L. "Assessment of Open Well Water  
Contamination in High Density Residential Area". 4 (2016): 37-  
2
5
Xu, Xu, Guanhua Huang, Hongbin Zhan, Zhongyi Qu, and  
Quanzhong Huang. "Integration of SWAP and MODFLOW-  
8
9
2
000 for modeling groundwater dynamics in shallow water  
table areas." Journal of Hydrology 412 (2012): 170-181.  
Yang, Qingchun, Wenxi Lun, and Yanna Fang. "Numerical  
modeling of three-dimension groundwater flow in Tongliao  
2
2
2
6
7
8
(China)." Procedia Engineering 24 (2011): 638-642.  
4
0
Peng-xiang, W. E. I. "Application of Visual Modflow to  
simulation of groundwater contamination migration [J]." Water  
Resources Protection 4 (2011).  
Rahman, Norhan Abd, and WoeiKeong Kuan. "Simulation of  
groundwater flow and pollutant transport for alluvial aquifer in  
Kampung Tekek, Tioman Island." Jurnal Teknologi 41, no. 1  
1
1
0
1
Richards, Patrick M., Yi Liang, Richard L. Johnson, and  
Timothy E. Mattes. "Cryogenic soil coring reveals coexistence  
of aerobic and anaerobic vinyl chloride degrading bacteria in a  
chlorinated ethene contaminated aquifer." Water research 157  
(2019): 281-291.  
Panjaitan, Delima, Johannes Tarigan, Abdul Rauf, and Esther  
SM Nababan. "Determining sea water intrusion in shallow  
aquifer using Chloride Bicarbonate Ratio Method." In IOP  
Conference Series: Earth and Environmental Science, vol. 205,  
no. 1, p. 012029. IOP Publishing, 2018.  
(2004): 21-34.  
2
9
Schwartz, Franklin W., and Hubao Zhang. "Fundamentals of  
Groundwater John Wiley & Sons." New York 583 (2003).  
3
52