Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 448-454  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Phytoremediation Potential of Hymenachne  
acutigluma in Removal of Nitrogen and Phosphorus  
from Catfish Pond Water  
1
1
2
3*  
Le Diem Kieu , Pham Quoc Nguyen , Hans Brix , Ngo Thuy Diem Trang  
1
College of Resources and Environment, Dong Thap University, Vietnam  
2
Department of Bioscience, Aarhus University, Ole Worms Allé 1, 8000 Aarhus, Denmark  
3
College of Environment and Natural Resources, Can Tho University, Vietnam  
Received: 21/09/2019  
Accepted: 03/12/2019  
Published: 20/02/2020  
Abstract  
The study assessed the growth and nutrient uptake capacity of Hymenachne acutigluma (Steud.) Gillilland by cultivating plants in  
striped catfish (Pangasianodon hypophthalmus) pond water for 42 days. The experiment simulated varying degrees of nutrient  
enhancement by using fish pond effluent enriched with three levels of nitrogen (N) (2.1, 4.3 and 8.6 mmol/l) and three concentrations  
levels of phosphorus (P) (0.16, 0.32 and 0.64 mmol/l) using NH  
completely randomized design with four replications. Raw striped catfish pond water was served as background growth solution which  
was spiked with NH NO (as a N source) and KH PO (as a P source) and was renewed weekly. Nitrogen supply significantly affected  
4 3 2 4  
NO and KH PO , respectively. The treatments were arranged in a  
4
3
2
4
most tested parameters whereas P only affected biomass, P content and N : P ratio content and accumulation in the roots and the shoots.  
H. acutigluma had significant higher growth, biomass and nutrient uptake when N concentration increased but not for the case of P  
increment. H. acutigluma helped to remove 7.6-19% N and 2.1-5.2% P from total input N and P concentrations in the experimental  
treatment. It indicates that Hymenachne appears to be a promising phytoremediation agent in nutrients removal from aquaculture water.  
Keywords: Aquaculture water, Hymenachne acutigluma, Mass balance, Nitrogen, Phosphorus, Phytoremediation, Uptake  
Introduction1  
The Mekong Delta (8 33’–10 55’N, 104 30’–106 50’E) is  
growth rate which was highest at N : P ratios between 10 and  
1
o
o
o
o
33 on a molar basis. Furthermore, Martins et al. [10] reported  
that the highest biomass of Polygonum hydropiperoides was  
obtained at a N : P ratio of 16 on a molar basis.  
by far the most productive region for aquaculture in Viet Nam.  
Striped catfish, Pangasianodon hypophthalmus, is currently the  
main aquaculture species in the delta with a total production of  
Hymenachne acutigluma Steud. (Poaceae) is an emergent  
grass that grows abundantly in natural wetlands, irrigation  
channels, and fresh waterways. This species has potential to  
remove excess nutrients from domestic wastewater [11] and  
aquaculture wastewater [7]. It is also commonly cultivated in  
the field for fodder production [12]. H. acutigluma has also  
been recognized as a potential N and P hyperaccumulator when  
it grown in striped catfish pond water enriched with N and P  
6
87,000 and 1,094,897 tonnes in 2007 and 2008, respectively,  
and discharging 31,602-50,364 tonnes of nitrogen (N) and  
,893-15,766 tonnes of phosphorus (P) to the environment [1].  
9
In addition, Phan et al. [2] estimated that for every ton of catfish  
produced, 6.4 Ml of water was used, releasing nutrients-rich  
effluents into the receiving water bodies and causing  
eutrophication [3] and long-term adverse effect on the  
environment and human health [4]. Removal of nutrients from  
aquaculture effluents using phytoremediation techniques is one  
of the environmentally friendly methods that can be used to  
improve water quality and to minimize adverse environmental  
impacts from the aquaculture sector [5].  
Nitrogen and phosphorus are important mineral nutrients  
for plants and promote high biomass production [6, 7]. In a  
review on responses of plants to N and P additions across  
marine, aquatic, and terrestrial ecosystems, Elser et al. [8]  
showed that simultaneously adding both nutrients gave a much  
stronger response than either of them alone. However, Romero  
et al. [9] reported that N level in the growth solution  
significantly affected the relative growth rate and tissue  
concentrations of N and P in Phragmites australis, whereas P  
did not have a significant affect. They also concluded that the  
N : P ratio in the growth solution significantly affected the  
[7]. H. acutigluma had very high growth and biomass at the  
high N concentration of 40 mg N/l in the growth solution, and  
the authors suggested that the growth of H. acutigluma may be  
even higher at higher N levels. However, high N concentration  
can also be toxic to plants [13]. There are, to our knowledge,  
no information on the effects of N and P availability on growth  
and nutrient allocation of H. acutigluma. The objective of this  
study was therefore to assess growth and nutrient allocation  
responses of H. acutigluma to different combination levels of  
N and P. The background growth solution was raw striped  
catfish pond water which was spiked with ammonium nitrate  
(as a N source) and potassium phosphate (as a P source). We  
hypothesize that H. acutigluma grows best and has the highest  
nutrient accumulation at the highest N and P concentrations  
leading to a better N and P removal rate.  
Corresponding Author: Ngo Thuy Diem Trang, College of Environment and Natural Resources, Can Tho University, Vietnam. Email:  
ntdtrang@ctu.edu.vn (NTD. Trang); Phone: +84 (0) 909 243 703.  
4
48  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 448-454  
concentration in the plant fractions initially and at harvest, and  
the biomass production during the 42-day experiment.  
2
Materials and methods  
2
.1 Experimental set up  
The experiment was set up in the campus of Dong Thap  
2
.3 Water, sediment sampling and analysis  
Water temperature, pH and dissolved oxygen (DO) were  
University (10°25’18 - 10°25’20N, 105°38’27’ - 105°38’28E)  
in Dong Thap province in the Mekong Delta of Viet Nam. The  
climate of the region is influenced by the monsoon. The  
average temperature during the experimental period was 32-  
analyzed weekly using a portable meter (HORIBA W-2000S,  
Korea). In addition, water samples were collected weekly and  
3
-
analyzed for ortho-phosphate (PO  
4
), total ammonium (TAN),  
) using ion chromatography  
1100 Thermo, USA), and total phosphorus (TP) and total  
3
7°C and 22-25°C in the day and the night, respectively. The  
-
-
nitrite (NO ) and nitrate (NO  
(
2
3
experiment was setup under a glass roof which was sheltered  
on its sides by plastic nets to prevent the incursion of insects  
and rain.  
Kjeldahl nitrogen (TKN) following standard procedures [14].  
The sediment in the pots was sampled initially and at the  
end of the study. Air-dried sediment samples were analyzed for  
N and P using the Kjeldahl method and the Ascorbic Acid  
method, respectively [14].  
A complete factorial experimental design with three  
concentrations levels of N (2.1, 4.3 and 8.6 mmol/l) and three  
concentrations levels of phosphorus (P) (0.16, 0.32 and 0.64  
mmol/l) (Table 1) in the growth solution was setup with four  
replicates giving a total number of experimental units of 3 x 3  
x 4 = 36 arranged in a completely randomized design. Each  
experimental unit consisted of a 50-L plastic pot (diameter 0.38  
m; height 0.45 m) containing 7 kg catfish pond sediment (48%  
dry weight) and 35 L of pond water. Each pot was planted with  
three young shoots of H. acutigluma obtained from drainage  
channels in the vicinity of the setup.  
2
.4 Nutrients mass balance  
The N and P mass balances (g/pot) were calculated based  
on the total inputs and outputs of N and P in the pots. The total  
inputs were the N and P contents in the initial plant biomass  
and the sediment plus the amount of N and P added with the  
spiked pond water weekly. The total outputs were the N and P  
contents in the harvested plant biomass and the content in the  
sediment at the end of the experiment plus the amount of N and  
P in the water before weekly renewal.  
Table 1: Concentrations of N and P (mmol/l) and the corresponding N  
:
P ratios in the water in the experimental treatment  
Treatments  
Added  
concentration  
N : P  
ratios  
2.5 Statistical analyses  
(
N
mmol/l)  
All data were tested for normal distribution and variance  
homogeneity (Levene’s test) and logarithmically transformed  
if necessary. Two-way analysis of variance (ANOVA using  
Type III sum of squares were used to identify interactive effects  
of the N and P treatments on plant growth and tissue nutrients  
content. Post-hoc Tukey Honestly Significant Differences  
P
Low N; low P  
Low N; intermediate P  
Low N; high P  
Intermediate N; low P  
Intermediate N; intermediate P  
Intermediate N; high P  
High N; low P  
High N; intermediate P  
High N; high P  
2.1  
2.1  
2.1  
4.3  
4.3  
4.3  
8.6  
8.6  
8.6  
0.16  
0.32  
0.64  
0.16  
0.32  
0.64  
0.16  
0.32  
0.64  
13.3  
6.6  
3.3  
26.6  
13.3  
6.6  
53.1  
26.6  
13.3  
(
HSD) was used to identify significant differences between  
treatments at the 5% probability level. The software SPSS 22  
IBM SPSS Statistics V22.0, USA) was used for all statistical  
analyses.  
(
3
Results and discussion  
The pond water and sediment were collected from a  
commercial striped catfish farm in Dong Thap province. The  
average concentrations of N and P in the pond water were  
3.1 Plant growth and biomass allocation  
Nitrogen and phosphorous are essential plant nutrients and  
critical determinants of plant growth and productivity. The  
plants grew well in all treatments and showed no toxicity  
symptoms, even at the highest nutrient concentrations.  
Nitrogen significantly affected most of the measured growth  
and biomass allocation parameters while P only affected shoot  
and root biomass production (Table 2). Shoot height of H.  
acutigluma was affected by N treatment, but the effect  
depended on the P level as indicated by the significant N x P  
interaction (Table 2). Both N and P treatments significantly  
affected root and shoot dry biomass (p<0.05; Figure 1B; Table  
2). Both root and shoot biomass increased with increasing N  
levels whereas the biomass decreased with increasing P level  
(Figure 1B). Shoot to root dry biomass ratio was in the range of  
2.7-3.7 and was the highest at the high N level meaning that H.  
acutigluma allocate more biomass to the shoot fraction at high  
N levels. The biomass was the lowest at the low N : P ratio of  
3.3 showing the negative effects of an unbalanced nutrient  
supply (Figure 1B). Martin et al. [10] reported that Polygonum  
hydropiperoides produced the highest biomass at the molar N :  
P ratio of 16 and the lowest biomass at the molar N : P ratio of  
2. They concluded that within the range of molar N : P ratios  
between 7.8 and 11.8 the biomass production of P.  
hydropiperoides were similar.  
0
.61±0.01 and 0.017±0.005 mmol/l (n=6), respectively. The  
pond water was spiked with NH NO (as N source) and  
KH PO (as P source) to reach the experimental treatment N  
4
3
2
4
and P concentrations in the pots (Table 1). The water in the pots  
were renewed weekly throughout the 6-week experimental  
period and analyzed for water quality. The water pH was in the  
range of pH 6.4-7.7 and was not controlled during the  
experiment.  
2
.2 Plant biomass and nutrient allocation  
Initially, the shoot and root length of the experimental  
plants were measured as well as their fresh weight before  
transplanting them into the pots. After 42 days, the plants were  
harvested, rinsed thoroughly in deionized water, and then  
fractionated into shoots (stalks, leaves, flowers) and roots to  
determine the fresh and dry mass after drying at 60°C till  
constant weight. The relative growth rate (RGR, g/gDW/d),  
based on total plant dry weight was calculated.  
The dried plant fractions were ground (<1 mm particle size)  
and the concentrations of N and P in the plant fractions were  
analyzed using the Kjeldahl method and the Ascorbic Acid  
method, respectively [14]. The tissue concentrations of N and  
P were used to estimate the amounts of N and P extracted by  
the plants from the spiked pond water. The plant nutrient  
accumulation (mg/plant/d) were calculated from the nutrient  
4
49  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 448-454  
Table 2: Results of ANOVA (P-values) showing the effects of N and  
P on growth, biomass partitioning and nutrient accumulating of H.  
acutigluma after growth for 42 days at 9 treatment combinations of N  
and P  
tested, nitrogen was the main nutrient limiting the growth of H.  
acutigluma.  
Main Effects Interaction  
N
P
N x P  
Growth  
Shoot height  
Root length  
Shoot biomass  
Root biomass  
RGR  
0.018 0.051  
0.171 0.340  
0.000 0.034  
0.002 0.044  
0.000 0.057  
0.045  
0.215  
0.897  
0.703  
0.540  
Nitrogen and phosphorus concentration  
N shoot concentration  
N root concentration  
P shoot concentration  
P root concentration  
N : P shoot ratio  
0.000 0.542  
0.000 0.118  
0.306 0.002  
0.000 0.001  
0.000 0.005  
0.000 0.000  
0.779  
0.149  
0.425  
0.853  
0.086  
0.026  
N : P root ratio  
Nitrogen and phosphorus accumulation  
N shoot accumulation  
N root accumulation  
P shoot accumulation  
P root accumulation  
N : P shoot accumulation  
ratio  
0.000 0.062  
0.000 0.072  
0.000 0.938  
0.670 0.403  
0.783  
0.868  
0.524  
0.811  
0
.000 0.003  
0.073  
N : P root accumulation  
ratio  
0
.000 0.001  
0.056  
Note: P-values in bold are significant at the 0.05 probability level.  
The N concentration in the roots and shoots of H.  
acutigluma increased as N supply increased (p<0.05; Figure  
2
A) regardless of the P treatment. Hence, the amount of N  
accumulated in the roots and shoots increased concomitantly  
p<0.05; Figure 3A) and reached the highest values (30-40  
(
mg/plant/d) in the high N treatment. Thus, the current levels of  
P did not affect neither the tissue N concentrations nor the N  
uptake capacity of H. acutigluma [7]. Similar findings were  
reported for Phragmites australis by Romero et al. [9], who  
found that the concentrations of N and P in the plant tissues  
increased in concert with N supply, and not P supply.  
Koerselman and Meuleman [15] suggested that an N : P  
ratio greater than 16 on a weight basis should indicate P  
limitation, whereas an N : P ratio less than 14 should be  
indicative of N limitation. In our study, only the treatment  
combination of N-high and P-low had a N : P ratio of 24 on a  
weight basis (i.e. 53.1 N : P molar ratio) and the rest of the  
treatment combinations had N : P weight based ratios lower  
than 14. Thus, overall our treatment combinations, except one,  
were indicative of N limitation, and although the tissue P  
concentration responded to the P levels in the water, the lowest  
tissue P concentration were found in the treatment combination  
N-high and P-low (Figure 2B).  
The N treatment significantly affected the RGR of the  
plants while the P treatment had no effect, and there the effect  
of N was independent on the P-treatment as shown by the lack  
of a significant interaction term between N and P (Table 2).  
This is similar to the findings of Romero et al. [9], who found  
that the N level in the water significantly affected the RGR of  
Phragmites australis while the P level had no effect. The higher  
RGRs were achieved in the high N treatments regardless of P  
level and tended to decrease (although not statistically  
significantly) with P level within N- treatments (Fig. 1C). The  
RGR was particularly low at the low N : P ratio of 3.3 showing  
the negative effects of an unbalanced nutrient supply (p<0.05;  
Figure 1C). This shows that, within the concentration range  
Figure 1: Mean (± 1 S.D., n=4) shoot height and root length (A),  
biomass allocation (B), and relative growth rate (C) of H. acutigluma  
grown for 42 days at three levels of N (2.1, 4.3 and 8.6 mmol/l) and  
three levels of P (0.16, 0.32 and 0.65 mmol/l). Identical letters above  
bars indicate groups of means that are not statistically significant  
different at the 95% confidence level based on a Tukey HSD test.  
3
.2 Nutrient content and accumulation  
Both N and P treatments in the growth solution significantly  
affected the tissue N and P concentrations (%) and the N : P  
ratio except for the N concentrations in roots and shoots and the  
P concentration in shoots. There were no significant interaction  
terms in the ANOVA (Table 2).  
The nutrient accumulation rate in the plant biomass (mg N  
or P per plant per day) was calculated for each treatment from  
the mean dry mass of each biomass fraction (shoot and root)  
multiplied by the mean N and P concentration of that fraction  
divided by the 42-day incubation time (Figure 3). The N  
accumulation rate in the shoots was five-folds higher than that  
in the roots (Figure 3A), because the shoot biomass production  
rate of H. acutigluma was 2-4 times higher than that of the roots  
(Figure 1B) and, in addition, the N concentration in the shoots  
was higher than the concentration in the roots (Figure 2A).  
Similarly, accumulated P in the shoots was 2-4 times higher  
than that of in the roots (Figure 3B). The accumulation of N and  
P in the shoots and roots’ tissues largely reflected patterns of  
biomass allocation of H. acutigluma. Jiang et al. [16] also  
concluded that the N and P accumulations in plant tissues of 15  
emergent wetlands species were significantly positively  
correlated with plant biomass. H. acutigluma produced an  
4
50  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 448-454  
average of aboveground (i.e. the shoots) dry biomass of 40  
g/plant in 42 days.  
42-day experiment. Only a fraction of this, namely 0.9-5.8 g  
N/pot and 0.2-0.4 g P/pot, were accumulated in the H.  
acutigluma biomass. Hence, the plants contributed to remove  
7
.6-19% N and 2.1-5.2% P from the total inputs (Table 3).  
Figure 2: Tissue concentration (mean ± 1S.D., n=4) of (A) nitrogen, (B)  
phosphorus and (C) the N:P concentration mass ratio in plant tissue of  
H. acutigluma grown for 42 days at three levels of N (2.1, 4.3 and 8.6  
mmol/l) and three levels of P (0.16, 0.32 and 0.65 mmol/l). Identical  
letters above bars indicate groups of means that are not statistically  
significant different at the 95% confidence level based on a Tukey HSD  
test.  
Figure 3: Mean nutrient accumulation rate (mean ± 1 S.D., n=4) of (A)  
nitrogen, (B) phosphorus and (C) the N : P mass accumulation ratio in  
plant tissue of H. acutigluma grown for 42 days at three levels of N  
(2.1, 4.3 and 8.6 mmol/l) and three levels of P (0.16, 0.32 and 0.65  
mmol/l). Identical letters above bars indicate groups of means that are  
not statistically significant different at the 95% confidence level based  
on a Tukey HSD test.  
The high growth rate and biomass production in concert  
with the high N and P tissue concentration at high nutrient  
supply rates indicates that harvesting the shoots of H.  
acutigluma may be possible way to remove N and P from  
polluted water [17] thus H. acutigluma may be a candidate  
Previous studies reported that N and P assimilation in plant  
biomass accounted for 30% N and 39% P with Typha orientalis  
[18], 76% N and 86% P with Phragmites australis [19], 11% N  
and 3% P with Baumea articulata [20]. The sediment was an  
important sink and accumulated 6.0-8.8% of N and 7.0-27.6%  
of P from the total inputs (Table 3). It can be explained by the  
accumulation of algae and the remained water in the sediment  
due to weekly renewal, which made up an increment of N and  
species for use as  
wastewater.  
a phytoremediator for aquaculture  
3
.3 Nutrient mass balance  
The N and P mass balance (g/pot) were calculated based on  
the total inputs and outputs of N and P per pot (Table 3). The  
total inputs were the N and P contents in the initial plant and  
sediment plus the sum of N and P contents added with the  
weekly renewal of the water. The total N and P inputs into each  
pot during the 42-day experiment were 11.9-30.8 and 7.2-10.4  
g/pot, respectively (Table 3). The total outputs were the N and  
P contents in the harvested plant material and the sediment plus  
the sum of the remained N and P concentrations in the water  
before renewal. On average, 65-75% of N and 77-89% of P  
from the total inputs N and P in the water were removed, which  
is equivalent to 5.2-19.6 g N/pot and 1.0-3.6 g P/pot during the  
P in the sediment. Mayo et al. [21] concluded that  
denitrification and net sedimentation were the major N removal  
mechanisms in a water hyacinth pond accounting for 81.9% and  
13.1% of removed nitrogen, respectively. Van der Steen et al.  
[22] reported that 18% of influent N was recovered by  
duckweed and 8% settled in sediment whereas El-Shafai et al.  
[23] found that 80% N was taken up by duckweeds (Lemna  
gibba and Lemna minor), 5% was settled in sediments and 15%  
N was unaccounted-for.  
4
51  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 448-454  
Table 3: Mass balance (mean ± S.E., n=4) of N and P (g/pot) in the treatments for the 42 days experiment  
Input (g/pot) Output (g/pot)  
Treatment  
N
Unaccounted for  
P
Total  
input  
Water(1)  
8.06  
14.36  
26.96  
8.06  
14.36  
26.96  
8.06  
14.36  
26.96  
Phosphorus  
1.16  
1.16  
1.16  
2.15  
2.15  
2.15  
4.31  
4.31  
4.31  
Plant(2)  
Sediment(3)  
Water(4)  
Plant(5)  
Sediment(6)  
Total output  
Nitrogen  
Low  
Int.  
High  
Low  
Int.  
High  
Low  
Int.  
Low  
Low  
Low  
Int.  
Int.  
Int.  
High  
High  
High  
0.09 ± 0.003  
0.09 ± 0.004  
0.09 ± 0.005  
0.09 ± 0.003  
0.08 ± 0.004  
0.09 ± 0.003  
0.09 ± 0.005  
0.09 ± 0.005  
0.09 ± 0.004  
3.77  
11.92  
2.63 ± 0.21  
3.63 ± 0.07  
7.31 ± 0.13  
2.79 ± 0.14  
3.93 ± 0.34  
7.88 ± 0.67  
2.78 ± 0.21  
4.02 ± 0.26  
7.98 ± 0.51  
1.53 ± 0.14  
2.31 ± 0.44  
5.93 ± 0.31  
1.39 ± 0.07  
1.96 ± 0.31  
5.66 ± 0.50  
1.00 ± 0.13  
1.86 ± 0.37  
4.95 ± 0.17  
4.48 ± 0.10  
4.93 ± 0.09  
5.71 ± 0.10  
4.82 ± 0.17  
5.16 ± 0.07  
6.09 ± 0.08  
4.69 ± 0.08  
4.86 ± 0.09  
5.95 ± 0.08  
8.64 ± 0.14  
10.88 ± 0.40  
18.95 ± 0.22  
9.00 ± 0.15  
11.05 ± 0.49  
19.63 ± 0.60  
8.47 ± 0.25  
10.74 ± 0.58  
18.89 ± 0.34  
3.28 ± 0.14  
7.34 ± 0.39  
11.87 ± 0.23  
2.92 ± 0.15  
7.16 ± 0.49  
11.18 ± 0.60  
3.45 ± 0.24  
7.48 ± 0.57  
11.93 ± 0.34  
3.77  
3.77  
3.77  
3.77  
3.77  
3.77  
3.77  
3.77  
18.22  
30.82  
11.91  
18.21  
30.82  
11.92  
18.22  
30.81  
High  
Low  
Int.  
High  
Low  
Int.  
Low  
Low  
Low  
Int.  
Int.  
Int.  
High  
High  
High  
0.0058 ± 0.0002  
0.0060 ± 0.0003  
0.0062 ± 0.0003  
0.0056 ± 0.0002  
0.0054 ± 0.0002  
0.0058 ± 0.0002  
0.0057 ± 0.0004  
0.0057 ± 0.0003  
0.0056 ± 0.0003  
6.07  
6.07  
6.07  
6.07  
6.07  
6.07  
6.07  
6.07  
6.07  
7.24  
7.24  
7.24  
8.23  
8.23  
8.23  
10.39  
10.39  
10.39  
0.14 ± 0.02  
0.17 ± 0.03  
0.13 ± 0.02  
0.50 ± 0.03  
0.45 ± 0.06  
0.34 ± 0.08  
0.86 ± 0.06  
0.86 ± 0.05  
0.26 ± 0.03  
0.35 ± 0.08  
0.38 ± 0.02  
0.28 ± 0.02  
0.31 ± 0.04  
0.42 ± 0.01  
0.22 ± 0.04  
0.30 ± 0.06  
0.44 ± 0.03  
6.69 ± 0.04  
6.58 ± 0.08  
6.70 ± 0.03  
7.14 ± 0.06  
7.27 ± 0.11  
7.38 ± 0.15  
8.86 ± 0.17  
8.63 ± 0.29  
7.09 ± 0.06  
7.10 ± 0.03  
7.21 ± 0.00  
7.92 ± 0.04  
8.03 ± 0.08  
8.13 ± 0.00  
9.94 ± 0.08  
9.79 ± 0.08  
10.12 ± 0.09  
0.15 ± 0.06  
0.14 ± 0.03  
0.02 ± 0.00  
0.31 ± 0.04  
0.20 ± 0.08  
0.09 ± 0.00  
0.45 ± 0.08  
0.60 ± 0.08  
0.27 ± 0.09  
High  
Low  
Int.  
High  
1
0.73 ± 0.05  
3
8.94 ± 0.19  
2
4
Notes: ( ) Sum of N and P content in the renewed water; ( ) N and P content in initial plant biomass; ( ) N and P content in initial sediment; ( ) the remained N and P content in the growth solution  
5
6
(
sampling weekly); ( ) N and P content in the harvested plant biomass; ( ) the remained N and P content in sediment at harvest.  
4
52  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 448-454  
For N, the unaccounted-for component in a balance system  
can usually be considered as the quantity loss to the atmosphere  
through denitrification whereas P as a conservative element and  
all input P is theoretically countable within the growth system  
partitions [18]. In the present study, 24-41% N and 0.3-5.8% P  
from the total inputs were unaccounted-for (Table 3). The  
amount of P unaccounted-for in our system was assumed to be  
the amount of P in the sediment and the water loss during  
weekly renewal and sampling. Different nutrient loading rates  
and plant species were responsible for different nutrient uptake  
by plants in various studies [24]. The high plant uptake  
proportion was due to the rapid biomass growth and influent  
quality [25]. Altering nutrient availability in the growth  
solution can change productivity and potential nutrient uptake  
of H. acutigluma. In general, H. acutigluma grew well and  
accumulated high N and P contents in the plant tissues. The  
average N and P accumulated in the harvested H. acutigluma’s  
biomass were 17-64 and 38-79 times higher than in the initial  
plant biomass, respectively. Therefore, harvesting biomass is a  
good strategy to remove N and P from wastewater treatment  
system [17].  
9. J.J. Elser, M.E.S. Bracken, E.E. Cleland, D.S. Gruner, W.S.  
Harpole, H. Hillebrand, J.T. Ngai, E.W. Seabloom, J.B. Shurin and  
J.E. Smith, Global analysis of nitrogen and phosphorus limitation  
of primary producers in freshwater, marine and terrestrial  
1
1
1
0. J.A. Romero, H. Brix and F.A. Comin, Interactive effects of N and  
+
P on growth, nutrient allocation and NH4 uptake kinetics by  
1. A.P.L. Martins, C.B. Reissmann, M.R.T. Boeger, E.B. De Oliveira  
and N. Favaretto, Efficiency of Polygonum hydropiperoides for  
phytoremediation of fish pond effluents enriched with N and P, J.  
Aquat. Plant Manage., 48 (2010) 116-120.  
2. H.D. Trương and T.T. Bui, Plant tissue nutrient concentration and  
porosity ratio of four tropical macrophyte species and their  
potential use for wastewater treatment, J. Sci. & Technol., 52 (3A)  
(2014) 140-146.  
the Mekong delta, Vietnam, J. Animal Sci. Technol., 9 (2010) 34-  
3
9.  
1
4. N. Piwpuan, A. Jampeetong and H. Brix, Ammonium tolerance  
and toxicity of Actinoscirpus grossus - A candidate species for use  
4
Conclusions  
1
The results of the study support the general impression that H.  
acutigluma is a well-adapted species for growth in nutrient-rich  
environments. The plant is N limited under the experimental  
condition. After 42 days, H. acutigluma removed 7.6-19% N  
and 2.1-5.2% P from the total inputs. The results indicated that  
Hymenachne is an effective accumulator plant for  
phytoremediation of nutrients in aquaculture water.  
1
1
5. APHA, Standard methods for examination of water and  
wastewater, 20th Ed, American Public Health Association  
Publications, Washington DC, USA, 1998.  
6. W. Koerselman and A.F.M Meuleman, The vegetation N : P ratio:  
a new tool to detect the nature of nutrient limitation, J. Appl. Ecol.,  
33 (1996) 1441-1450. DOI: 10.2307/2404783.  
17.  
F.Y. Jiang, X. Chen and A.C. Luo, A  
comparative study on the growth and nitrogen and phosphorus  
uptake characteristics of 15 wetland species, Chemistry and  
Acknowledgements  
263-272.  
This work was financially supported by the project  
B2015.20.02 which was funded from the Ministry of Education  
and Training of Vietnam.  
1
8. . Suzuki, W.G.A. Nissanka, Y. Kurihara, Amplification of total dry  
matter, nitrogen and phosphorus removal from stands of  
Phragmites australis by harvesting and reharvesting regenerated  
shoots. In: Hammer, D.A. (Ed.) Constructed Wetlands for  
Wastewater Treatment Municipal, Industrial and Agricultural,  
Lewis Publishers, Chelsea, Michigan 1989, pp 530-535.  
References  
1
.
S.S. De Silva, B.A. Ingram, T.P. Nguyen, T.M. Bui, G.J. Gooley  
and G.M. Turchini, Estimation of nitrogen and phosphorus in  
effluent from the striped catfish farming sector in the Mekong  
1
2
9. P.F. Breen, A mass balance method for assessing the potential  
of artificial wetlands for wastewater treatment, Water  
Ambio, 39  
(7)  
(2010)  
504-514.  
689-697.  
2
.
L.T. Phan, T.M. Bui, T.T.T. Nguyen, G.J. Gooley, B.A. Ingram,  
H.V. Nguyen, P.T. Nguyen and S.S. De Silva, Current status of  
farming practices of striped catfish, Pangasianodon  
hypophthalmus in the Mekong Delta, Vietnam, Aquaculture, 296  
0. D.O. Huett, S.G. Morris, G. Smith and N. Hunt, Nitrogen and  
phosphorus removal from plant nursery runoff in vegetated and  
3
2
2
1. K. Browning and M. Greenway, Nutrient removal and plant  
growth in a subsurface flow constructed wetland in Brisbane,  
Australia, Water Sci. Technol., 48 (5) (2003)183-190.  
2. A.W. Mayo, E.E. Hanai and O. Kibazohi, Nitrification–  
denitrification in a coupled high rate Water hyacinth ponds, Phys.  
3
4
.
.
W.J. Showers, C.M. Williams and G.D. Jennings, Impact of large  
1
5
poultry operations on groundwater: stable N isotopes of nitrate  
assessment, Int. J. Poult. Sci., (2006) 318-329. DOI:  
5
(2014)  
88-95.  
5
6
7
8
.
.
.
.
B. Halling-Sørensen and S.E. Jørgensen, The removal of nitrogen  
compounds from wastewater (1 Ed.), Elsevier Science  
Publications, London, 1993. Vol. 54, pp. 440. eBook ISBN:  
st  
3. P. Van der Steen, A. Brenner and G. Oron, An integrated duckweed  
and algae pond system for nitrogen removal and renovation, Water  
2
2
2
9
780080875132.  
(1998)  
335-343.  
T.D.T. Ngo and H. Brix, Use of planted biofilters in integrated  
recirculating aquaculture-hydroponics systems in the Mekong  
C. Dordas, Dry matter, nitrogen and phosphorus accumulation,  
partitioning and remobilization as affected by N and P fertilization  
4. S.A. El-Shafai, F.A. El-Gohary, F.A. Nasr, N.P. van der Steen and  
H.J. Gijzen, Nutrient recovery from domestic wastewater using a  
5. Z. Zhang, Z. Rengel and K. Meney, Interactive effects of nitrogen  
and phosphorus loadings on nutrient removal from simulated  
wastewater using Schoenoplectus validus in wetland microcosms,  
D.K. Le, P.Q. Nguyen, T.H.N. Nguyen and T.DT. Ngo, Evolution  
of nitrogen forms in wastewater of intensive catfish  
1823-1828.  
6. V. Sawaittayothin and C. Polprasert, Nitrogen mass balance and  
microbial analysis of constructed wetlands treating municipal  
(
(
Pangasianodon hypophthalmus) pond growing Hymenachne grass  
Hymenachne acutigluma) (In Vietnamese), Sci. J. of Can Tho Univ.,  
Special issue Environment and Climate change (2015) 80-87.  
2
4
53  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 448-454  
Author Profile:  
Dr. Le Diem Kieu (born 1983,  
Vietnam) got her M.Sc. in 2008  
from the University of Can Tho  
(Vietnam). She is permanent  
lecturer at the Department of  
Environmental Sciences, the  
Faculty of Natural Resources  
and Environment, Dong Thap  
University, Vietnam. She is  
specialized in ecology, plant  
biology and focuses on aquatic  
plant  
ecophysiology  
and  
application for the treatment of  
agricultural polluted water.  
Dr. Pham Quoc Nguyen (born  
1
2
978, Vietnam) got his M.Sc. in  
008 from the University of Can  
Tho (Vietnam). He is permanent  
lecturer at the Department of  
Environmental Sciences, the  
Faculty of Natural Resources  
and Environment, Dong Thap  
University, Vietnam. He is  
specialized in ecotoxicology.  
Dr. Hans Brix is a professor at  
the Department of Biological  
Sciences, Aarhus University  
(Denmark). He is specialised in  
ecophysiology of wetland plants  
and use of wetlands in water  
pollution control, and has  
published more than 300 peer  
reviewed publications.  
Dr. Ngo Thuy Diem Trang is  
associate professor at the  
Department of Environmental  
Sciences, the Faculty of  
Environment  
&
Natural  
Resources, Can Tho University,  
Vietnam. She is specialized in  
freshwater ecology, wetland  
ecology  
and  
plant  
cophysiology. Applied aspects  
of the research involve the use of  
natural and constructed wetlands  
for the treatment of various  
kinds of polluted water. She has  
published more than 40 peer  
reviewed publications.  
4
54