Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 140-147  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
Potential of Reindustrialization of Federal Districts  
of the Russian Federation: Assessment Issues and  
Practical Results  
Ivan P. Danilov*, Nataliia V. Morozova, Tatyana I. Ladykova, Inessa A. Vasileva  
State and Municipal Management and Regional Economics Department, Chuvash State University, Cheboksary, Russia  
Received: 04/05/2019  
Accepted: 01/10/2019  
Published: 30/02/2020  
Abstract  
The article analyzes the proposed index "fixed assets and investments" in the aspect of the potential of reindustrialization processes  
in the economic systems of the Federal districts of the Russian Federation, which allows to ensure the comparability of the used absolute  
and relative statistical indicators. This work is the result of a study of the theory and practice of reindustrialization aimed at improving  
the efficiency-cy and competitiveness of the Russian economy in the face of negative external influences. The main theoretical  
approaches to the study of the concept of reindustrialization and its potential, its role and importance in ensuring the economic  
sovereignty of the country and economic growth are considered. The reindustrialization potential was estimated on the basis of 14  
indicators and normalized indices calculated on their basis. The study of the dynamics of these indicators for 2005-2017 indicates the  
presence of certain positive changes in this area, but the structure of fixed assets and the nature of investment processes in the Russian  
Federation do not allow us to conclude that the predominance of the reindustrialization vector in this sphere of social production. At  
the same time, the economic policy currently being implemented in the Russian Federation does not promote reindustrialization, namely  
the renewal of fixed assets on a qualitatively new, modernizing basis. Based on the analysis of the integral index "fixed assets and  
investments" it can be concluded that the distribution of Russian Federal districts this index shows a certain stability, growth, analyzed  
the integral index was noted in all Russian Federal districts, except Urals FD, which indicates a certain improvement in the status and  
dynamics of basic assets and investments in the Russian economy. The approved methodology can be used to assess the potential of  
reindustrialization in individual regions, the totality of all Russian regions, as well as indicative planning of regional and Federal socio-  
economic development.  
Keywords: reindustrialization, reindustrialization potential, fixed assets, investments, Federal districts, linear scaling method, integral  
index, state policy of reindustrialization, dynamics of fixed assets and investments, components of the index  
1
E.V. Kotov (2017) identifies the following fundamental  
1
Introduction  
prerequisites of  
when  
considering the  
concept  
In the economic literature, it is noted that the term  
"
reindustrialization": 1) the Decisive importance of the state in  
reindustrialization was first proposed in 1984 in relation to the  
policy of restoring the us manufacturing sector (14, 16, 25). At  
the same time, reindustrialization was understood as  
combining the efforts of the state, business and the education  
system in order to develop and implement a coordinated  
industrial policy aimed at restoring the country's industrial  
potential. In the EU countries reindustrialization is considered  
as a necessary condition for sustainable growth (4, 17). The  
reindustrialization strategy is also used at the municipal level  
the processes of formation and implementation of  
reindustrialization policy; 2) the Manufacturing industry as the  
locomotive of reindustrialization; 3) Innovation as the basis of  
reindustrialization processes; 4) the Special role of science and  
education  
in  
the  
effective  
implementation  
of  
reindustrialization processes (13). In turn, A.A. Maltsev, C.  
Mercier-Suissa and A.E. Mordvinova (2017) distinguish the  
following approaches to the analysis of reindustrialization, in  
which it is considered as a process (14):  
(
3, 18).  
Corresponding author: Ivan P. Danilov, State and Municipal Management and Regional Economics Department, Chuvash State  
University, Cheboksary, Russia. E-mail: dip41@yandex.ru.  
1
40  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 140-147  
Preservation of the traditional structure of the regional  
economy (10);  
formation in the region of a segment of creative industries; 4)  
the formation of the regional spatial structure of the dominant  
active-active structures (22). E.V. Sumina (2015) justifies  
priority in terms of re-industrialization, industrial and  
technological updates aimed at diversifying regional  
Economics (23). In modern conditions the policy of re-  
industrialization must take into account the peculiarities of  
regional development and conducted with the participation of  
the state (8). At the same time, the role of regions as "actors"  
of reindustrialization policy is increasing (26). In modern  
conditions, it is objectively necessary to carry out the processes  
of reindustrialization in order to maximize the realization of  
their positive effects purposefully and systematically within  
the framework of strategic and indicative planning. At the  
same time, long  term goals should be set as part of strategic  
planning, and specific indicators should be set as part of  
indicative planning.  
Accordingly, the purpose of this article is to identify the  
features of the analysis of the potential of reindustrialization  
processes at the level of Federal districts and the Russian  
Federation as a whole using the index "fixed assets and  
investments" proposed by the authors, provided that the  
absolute and relative statistical indicators used in the study are  
comparable, which can and should serve as the basis for  
effective indicative planning.  
Restoration of the integrity of the Russian economy,  
broken as a result of falling volumes and reducing the range of  
industrial production (15);  
The increase in the share of the manufacturing sector  
in the GDP structure as a result of the implementation of state  
policy in industry, energy and Finance, as well as the return of  
previously withdrawn production to other countries (9);  
Development of manufacturing industries due to the  
advanced development of industry (2, 14, 24);  
Restoration of production, technological systems,  
industries and individual enterprises, together with the solution  
of the main tasks of socio-economic development aimed at  
creating competitive national goods and services (20).  
Of course, it was noted that reindustrialization should  
become a paradigm of the developing, not stagnating Russian  
economy, and its main goal is to restore the role and place of  
industry in the economy as its basic component on the basis of  
a new technological order and the solution of complex  
economic, organizational and other problems (2). Hence, the  
new objects of industrial policy should be the so-called related  
areas, that is, associations of people, things, technologies in the  
industrial system, structures based on such a special kind of  
business models as technological platforms, as well as human  
needs. The subject of the new industrial policy in the  
conditions of the fourth industrial revolution is the system of  
interaction of Federal and regional authorities with business  
associations and civil society institutions. And all this is  
realized in the conditions of rapid development of the digital  
economy (20). With regard to the personnel component of the  
process of re-industrialization was proposed the term  
2 Research Methodologies and Methodology  
To analyze the potential of re-industrialization in the  
Federal districts of the Russian Federation was based on the  
official statistical data of Goskomstat of the Russian  
Federation for 2005-2017. This time interval allows to make  
certain conclusions about the state of fixed assets and  
investments, the dynamics of their quantitative and qualitative  
indicators in the Russian Federation and Federal districts. It  
should be borne in mind that the published absolute and  
relative statistical indicators do not allow an objective  
assessment of the qualitative level of the potential for  
reindustrialization, especially when conducting interregional  
comparisons (1, 7, 11). Therefore, it was previously proposed  
to use for these purposes the methodology for assessing the  
potential of reindustrialization in the regions of the Russian  
Federation, based on the calculation of its integral index (5, 6).  
Based on the analysis of existing approaches to assessing  
the potential of reindustrialization of the Federal districts of the  
Russian Federation, we propose to use the following enlarged  
blocks of indicators characterizing its main components: fixed  
assets and investments, manufacturing, social block, computer  
technology, science and innovation. This article will analyze  
the first component of the potential of reindustrialization. In  
the unit " fixed assets and investments" in our view, should  
include the following indicators on the basis of which will be  
calculated 14 indices: the value of fixed assets per capita  the  
index I1; capital productivity of fixed assets  the index I2  
(GRP / value of assets); the commissioning of fixed assets per  
capita the index I3; the ratio of fixed assets commissioning –  
the index I4 (price entered fixed assets / value of assets);  
depreciation of fixed assets the index I5, investments in fixed  
capital per capita  the index I6; the index of physical volume  
"
competence gap", which is manifested in the acquisition of  
information competencies of universal character of  
a
multitasking as the main characteristics of the workplace,  
multicompetence as worker characteristics, the accelerated  
obsolescence of professional competences (12). As the main  
vector of reindustrialization processes, the position was  
substantiated that it should facilitate the transition to  
sustainable inclusive growth, contributing to the country's  
entry into new technological, product and service markets,  
respond to new global challenges, be environmentally  
oriented, reduce social stratification and generally lead to an  
increase in social welfare (19).  
At the same time, the categories "reindustrialization" and  
neo-industrialization" are considered separately, which, in  
"
our opinion, relate to each other as two interrelated stages in  
the development of the country's economy (27). The  
reindustrialization is aimed at addressing the negative effects  
of deindustrialization, and neoindustrialization  the creation  
of qualitatively new productive forces Technotronic-level,  
interconnected in the system of automated vehicles (21, 22).  
With regard to the regional level of O.S. Sukharev (2013)  
identifies the following main strategic directions of structural  
transformation, contribute to activation of processes of  
formation of new industrial spaces: 1) the formation of the  
actual neo-industrial segment of the economy; 2) modernizing  
traditional industries, especially primary industries; 3)  
1
41  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 140-147  
of investments into fixed capital the index I7; investments in  
machines, equipment, means of transport in the structure of  
investments in fixed capital the index I8; investments in fixed  
capital at the expense of own funds the index I9; investments  
in fixed capital at the expense of budget funds  index I10;  
gross fixed capital formation per capita  the index I11; gross  
regional product per capita  the index I12; spending on  
national economy in the structure of consolidated budget per  
capita index И13; spending on the national economy per unit  
of GRP  the index I14.  
Federal districts only for 2016.Similarly, when calculating the  
index I12, the forecast for 2017 of the gross regional product  
per capita was used. Indicator I11 was not used in the  
calculation for 2017, as Goskomstat excluded the indicator  
gross fixed capital formation per capita from the regional  
statistics. When calculating the I3 and I4 indexes, the  
commissioning of fixed assets indicator has been used since  
2010, due to the fact that Goskomstat has been providing this  
information in the regional context since 2010.  
To ensure comparability of indicators developed technique  
was used the formula for linear scaling, the index I5 (degree of  
depreciation of fixed assets) determined by the formula inverse  
linear scaling when a smaller value of the index corresponds  
to a higher index value.  
When calculating the indexes I2 and I14, the forecast for  
2017 of the gross regional product indicator was used, since  
the bodies of the state statistics Committee in 2017 provided  
up-to-date information on this indicator in the context of  
Table 1: Components of the rating of Federal districts on the value of the integral index "fixed assets and investments" in 2010  
Federal  
districts  
Integral  
index  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
I10  
I11  
I12  
I13  
I14  
Ural  
Far-Eastern  
North-  
Western  
Siberian  
Central  
Russian  
Federation  
Southern  
The North  
Caucasian  
Privolzhsky  
1
42  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 140-147  
Finally, the basis for the analysis were taken the following  
gradation values of the indices: 1.0 is the highest (maximum)  
value of the index; 0.9999-0.9000  very high values of the  
index; 0.8999-0.7000  high values of the index; 0.6999-  
In seventh place is the Southern Federal district (SFD),  
which had the value of the analyzed index "fixed assets and  
investments", equal to 0.3597. This was due to the maximum  
value of the index I7 (1.000), average values of indexes I2  
(0.6983), I4 (0.6781), I5 (0.5355), I6 (0.3513), I8 (0.4432), I11  
(0.3491), low index values I1 (0.145), I3 (0.1429), I9 (0.2093),  
I10 (0.2576), I12 (0.2248) and zero index values I13, I14.  
In eighth place was the North Caucasian Federal district  
(NCFD) with an integral index of 0.3397. From different  
maximum values of the indexes I4 (1.000), I10 (1.000), I14  
(1.000), average values of indexes I2 (0.534), I5 (0.3901), I7  
(0.500), low value of the index  I8 (0.2703), very low index  
values  I9 (0.0271), I13 (0.0337) and zero index values  I1,  
I3, I6, I11, I12.  
Ninth place was occupied by the Privjlzhsky Federal  
district (PFO), an integrated index of "assets and investments"  
which was 0.335 and partial indexes were in the following  
groups: high values for indices  I8 (0.8324), I9 (0.7054), I14  
(0.7129), average values at indexes I2 (0.5413), I13 (0.3288),  
low values of the indexes I1 (0.2174), I5 (0.1773), I6 (0.160),  
I7 (0.250), I10 (0.2237), I11 (0.1674), I12 (0.2916) and very  
low values at indexes I3 (0.0789), I4 (0.0028).  
0.3000  average values of the indexes; 0.2999-0.1000 low  
index values; 0.0999-0.0001  very low indexes; 0.0 is the  
smallest (minimum) value of the index.  
2.1 Dynamics of Fixed Assets and Investment Indexes in  
Federal Districts  
The largest integral index "fixed assets and investments"  
in 2010, equal to 0.5848, was characterized by the Ural Federal  
district (UrFD). The distribution of indexes was as follows  
(
(
table. 1): the highest values were present in indexes  I1  
1.000), I3 (1.000), I9 (1.000), I12 (1.000), very high values of  
the index  I6 (0.982), I11 (0.9913), high value of the index –  
I13 (0.7263), average values for indexes  I4 (0.3647), I7  
(
0.3176), I8 (0.054), a low value of the index  I14 (0.2005)  
and the lowest values of indexes  I2, I5, I10.  
In second place is the far Eastern Federal district (FEFD)  
with an integral index of 0.5589, which had the highest values  
of the indexes I5 (1.000), I6 (1.000), I11 (1.000), I13 (1.000).  
Very high values have the indexes I2 (0.9734), I14 (0.9229),  
high value indexes  I12 (0.7304), the average values of the  
indexes  I1 (0.4343), I10 (0.3797), low values of the index –  
I3 (0.2683), I7 (0.1149) and the smallest values of the indexes  
The maximum index value I1 in 2010 was characterized  
by a UrFD, I2  SibFD, I3  UrFD, I4  NCFD, I5  FEFD, I6  
 FEFD also, I7  SFD, I8  CFA, I9 UrFD, I10  NCFD, I11  
 FEFD, I12  UrFD, I13  FEFD, I14  NCFD.  
I4, I8, I9.  
The minimum values of the partial indexes were observed  
in the following Federal districts: I1  in the NCFD, I2  in the  
UrFD, I3  in the NCFD, I4  in the FEFD, I5  in the UrFD,  
I6  in the NCFD, I7  in the CFD, I8  in the FEFD, I9  also  
in the FEFD, I10 in the UrFD, I11 In the NCFD, I12 again  
in the NCFD, I13  SFD, I14  again in the SFD.  
The third place was occupied by the North-Western  
Federal district (NWFD). Integral index district made 0.5033,  
and private indexes settled in the following order: high values  
at indexes I2 (0.8515), I7 (0.750), average values of the  
indexes  I1 (0.3685), I3 (0.3489), I4 (0.4501), I5 (0.5461), I6  
(
0.5453), I8 (0.6703), I11 (0.5496), I12 (0.5925), I13 (0.5597),  
The results of the comparative analysis of the components  
of the integrated index "fixed assets and investments" by  
Federal districts in 2017 are presented in table. 2.  
I14 (0.501), a low value at the index of I10 (0.2814), very low  
value  the index I9 (0.031).  
In fourth place was a Siberian Federal district (SibFD) with  
integral index 0.4661, characterized by a maximum index  
value I2 (1.000), very high values of the index I8 (0.9838), I9  
*In 2017, the materials of the state statistics Committee of  
the Russian Federation did not contain data on gross fixed  
capital formation per capita in the regional context. Therefore,  
the index I11 is not used in the calculation of the index of fixed  
assets and investments in 2017.  
(
0.9302), a high value for the index I5 (0.7518), the average  
values of the indexes I4 (0.4986), I7 (0.6149), I12 (0.3636),  
low values of the indexes I1 (0.1966), I3 (0.168), I6 (0.1913),  
I10 (0.2034), I11 (0.2114), I13 (0.1948), I14 (0.2164).  
The Central Federal district (CFD) with integral index  
The highest integral index in 2017 was observed in the  
Central Federal district-0.6224 (Fig. 1). In this district the  
highest index value is I5 (1.000), very high index value  I13  
(0.9478), a high value of the index  I2 (0.8202), I8 (0.8713),  
I12 (0.739), I14 (0.8958), the average value of the indexes I1  
(0.4349), I3 (0.3725), I4 (0.587), I6 (0.3032), I7 (0.500), I9  
(0.6969), I10 (0.5452) and the lowest value of the index is I11.  
In second place is the North-Western Federal district with  
the integrated index 0.5866, which had the highest value of the  
index I8 (1.000), very high values of the index  I5 (0.9459),  
I14 (0.9271), high values of the indexes  I9 (0.7244), I13  
(0.7999), average values of the indexes  I1 (0.4444), I2  
(0.4719), I3 (0.3912), I4 (0.6356), I6 (0.4587), I7 (0.400), I10  
(0.4127), I12 (0.6008) and the minimum value is at index I11.  
0.4573, was on the fifth place with the maximum value of the  
index I8 (1.000), high values at indices indexes I2 (0.8868),  
I12 (0.7769), the average values of the indexes  I1 (0.4813),  
I3 (0.3426), I5 (0.6738), I9 (0.438), I10 (0.3932), I13 (0.5602),  
low values of the index I6 (0.2329), I11 (0.2948), I14 (0.34), a  
very low value of the index I4 (0.0883) and zero value of the  
index I7.  
The Russian Federation ranks sixth with integrated index  
0.3943 was characterized by average values of indexes I1  
(
(
0.3544), I2 (0.6633), I5 (0.4043), I6 (0.3352), I8 (0.6973), I9  
0.500), I11 (0.357), I12 (0.5141), I13 (0.4065), I14 (0.3697)  
and low values for indexes I3 (0.2749), I4 (0.2536), I7  
0.1284), I10 (0.261).  
(
1
43  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 140-147  
Table 2: Components of the rating of Federal districts by value integrated index "fixed assets and investments" in 2017*  
Federal  
districts  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
I10  
I11  
I12  
I13  
I14  
Central  
North-Western  
Far-Easternt  
Ural  
Russian Federation  
Siberian  
Southern  
Privolzhsky  
The North  
Caucasian  
high values of the index I6 (0.8055), I12 (0.7169), average  
values of the indexes I1 (0.6289), I3 (0.3732), I9 (0.4606), low  
values at indexes I2 (0.2247), I8 (0.1345), I10 (0.241) and  
smallest values of the indexes I4, I11.  
Ural Federal district (0.4781  4th place) had the highest  
values of the indexes I1 (1.000), I3 (1.000), I6 (1.000), I12  
Central FD  
I1  
1
I14  
I2  
0,8  
0,6  
0,4  
0,2  
0
I13  
I3  
(
1.000), very high values of the index I4 (0.9514), I9 (0.9173),  
I12  
I4  
I5  
average values of the indexes I7 (0.3381), I13 (0.4863) and the  
lowest values at indexes I2, I5, I8, I10, I11, I14.  
Russian Federation (0.4594 5th place) (Fig. 2) had a high  
index value  I9 (0.7205), the average values of the indexes I1  
I11  
I10  
I6  
(
0.3451), I2 (0.5618), I3 (0.3081), I4 (0.6518), I5 (0.5838), I6  
I9  
I7  
(0.3167), I7 (0.3952), I8 (0.5614), I10 (0.3554), I12 (0.4874),  
I13 (0.5092), I14 (0.6354) and zero value of the index I11.  
I8  
Siberian Federal district (0.4371 6th  
place) was  
Figure 1: Components of the index "fixed assets and investments" in  
the Central Federal district in 2017  
characterized by the highest values of the indexes I2 (1.000),  
I4 (1.000), high index values  I5 (0.800), I8 (0.8421), I9  
(
0.8819), the average value of the indexes I12 (0.3057), low  
In third place was the far Eastern Federal district (0.5383)  
which had the highest values of the index I7 (1.000), I13  
index values I1 (0.1519), I3 (0.1807), I6 (0.1512), I7 (0.200),  
I10 (0.2349), I13 (0.1475), I14 (0.224) and zero value of the  
index I11.  
(
1.000), I14 (1.000), a very high value of the index I5 (0.9514),  
1
44  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 140-147  
In seventh place is the Southern Federal district, which had  
a value of analyzed index "fixed assets and investments" equal  
UrFD, I7  FEFD, I8  NWFD, I9  PFO, I10  NCFD, I12 –  
UrFD, I13  FEFD, I14  once the FEFD.  
0
.4084 that was due to the very high value of the index I7  
Minimum index values were in the following Federal  
districts: I1  from NCFD, I2  in the UrD, I3  NCFD, I4 –  
FEFD, I5  in the UrFD, I6  NCFD, I7  have a PFD, I8  in  
the UrFD, I9 SFD, I10 UrFD, I12 NCFD, I13 is also from  
the NCFD, I14 UrFD.  
(
(
(
(
0.9667), high index values I5 (0.8919), I10 (0.8373), I14  
0.8333), the average values of the indexes I2 (0.3708), I4  
0.5587), low index values I1 (0.1826), I3 (0.1542), I6  
0.1857), I8 (0.2632), I12 (0.2017), I13 (0.2717) and zero  
index values I9, I11.  
3
Results and Discussion  
Analysis of the state and processes occurring in the field  
Russian Federation  
of fixed assets and investments, allows us to draw the  
following conclusions.  
I1  
0
0
0
,8  
,6  
,4  
During the analyzed period (2005 - 2017) the greatest  
growth of the integrated index of fixed assets and investments  
was observed in the Southern Federal district-0.1471 (table. 3).  
Further located: North-Western Federal district  0.1399, far  
Eastern Federal district  0.0855, Central Federal district –  
I14  
I2  
I13  
I3  
I12  
0,2  
0
I4  
I5  
0
0
.0557, Russian Federation 0.040, Siberian Federal district –  
.0153, North Caucasian Federal district 0.0151, Privolzhsky  
I11  
Federal district  0.0052. At the same time, the decrease in the  
analyzed indicator was noted only in the Ural Federal district  
I10  
I6  
(-0.0839).  
I9  
I7  
I8  
Privolzhsky FD  
Figure 2: Components of the fixed assets and investments index in  
the Russian Federation in 2017  
I1  
1
I14  
I2  
0
0
0
,8  
,6  
,4  
Privolzhsky Federal district (0.3609 - 8th place) (Fig. 3)  
had the highest value of the index I9 (1.000), a high value of  
the index I2 (0.764), the average values of the indexes I4  
I13  
I3  
I12  
I11  
0,2  
0
I4  
I5  
(
0.5789), I8 (0.6433), I10 (0.3012), I14 (0.4635), low values  
of the indexes I1 (0.1767), I3 (0.1515), I5 (0.2865), I6  
0.1664), I12 (0.2878), I13 (0.2326) and zero index values I7,  
I11.  
(
I10  
I6  
In ninth place is the North-Caucasian Federal district  
0.3065) had the maximum index value of I10 (1.000), high  
value of the index I2 (0.736), average values of the indexes I4  
0.5547), I5 (0.5297), I9 (0.4016), I14 (0.651), low index  
(
I9  
I7  
I8  
(
values  I7 (0.1952), I8 (0.2222) and zero values for the  
indexes I1, I3, I6, I11, I12, I13.  
Figure 3: Components of the index "fixed assets and investments" in  
the Privolzhsky Federal district in 2017  
The maximum index value I1 in 2017 was characterized  
by UrFD, I2  SibFD, I3  UrFD, I4  SibFD, I5  CFD, I6 –  
Table 3: Indexes of fixed assets and investments in the Federal districts of the Russian Federation  
2
005  
2010  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
Federal districts  
0
,4194  
0,3943  
0,4011  
0,4368  
0,45  
0,4888  
0,4147  
0,4436  
0,4594  
Russian Federation  
Central  
0
0
0
,5667  
,4467  
,2613  
0,4573  
0,5033  
0,4804  
0,4758  
0,5416  
0,5269  
0,5622  
0,5086  
0,5942  
0,5478  
0,5478  
0,4436  
0,5615  
0,6259  
0,6224  
0,5866  
North-Western  
Sothern  
0,3597  
0,3397  
0,3001  
0,2721  
0,3799  
0,3467  
0,4538  
0,315  
0,3739  
0,3455  
0,2561  
0,3267  
0,3013  
0,2838  
0,4084  
0,3065  
The North Caucasian  
0,2914  
Privolzhsky  
Ural  
0,3557  
0,335  
0,5848  
0,4661  
0,5589  
0,3195  
0,5736  
0,4225  
0,6835  
0,3524  
0,5887  
0,4616  
0,578  
0,387  
0,5418  
0,4381  
0,5903  
0,4485  
0,5958  
0,469  
0,3963  
0,5299  
0,3666  
0,593  
0,3572  
0,5473  
0,4186  
0,5729  
0,3609  
0,4781  
0,4371  
0,5383  
0
,562  
Siberian  
0
0
,4218  
,4528  
Far-Eastern  
0,6153  
1
45  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 140-147  
In turn, the relative increase in the analyzed index was  
observed in the southern Federal district  56.3%. It was  
followed by the North-Western Federal district  31.32%, the  
far Eastern Federal district  18.88%, the Central Federal  
district  9.83%, Russian Federation  9.54%, the North  
Caucasian Federal district  5.18%, the Siberian Federal  
district  3.63%, Privolzhsky Federal district  1.46%. The  
decrease in relative indicators was characterized by the Ural  
FD - (-14.93%).  
the nature of investment processes in the Russian Federation  
do not allow to draw a conclusion about the predominance of  
the reindustrialization vector in this sphere of social  
production.  
There are a number of Federal positive trends in this area,  
which are associated with the positive dynamics of financial  
indicators of fixed assets and investments and their estimated  
values per capita. Taken in isolation from qualitative physical  
indicators, they can lead to the formation of a distorted vision  
of the state of the Foundation of the economic system and its  
transformation, which retains the degradation dynamics and  
essence. In this regard, it can be stated that reindustrialization  
as a systemic process has not yet manifested itself properly. It  
should be noted that a number of enterprises have significantly  
upgraded their own fixed assets, and, as a rule, declared  
investments are directed to the modernization of fixed assets.  
However, a positive vector has not yet been formed in the  
General body of statistical information. However, a significant  
impact on these indicators has a high inertia of the processes  
of updating fixed assets.  
The maximum value of the integrated index of fixed assets  
and investments was noted in 2017 in the Central Federal  
district  0.6224. Next is the North-Western Federal district –  
0.5866, far Eastern Federal district  0.5383, Ural Federal  
district  0.4781; Russian Federation  0.4594; Siberian  
Federal district  0.4371, Southern Federal district  0.4084,  
Privolzhsky Federal district is 0.3609, North Caucasian  
Federal district  0.3065.  
By the way, in 2005, the maximum of the analyzed  
indicator was noted as the same in the Central Federal district  
0.5667, followed by the Ural Federal district  0.562, far  
Eastern Federal district 0.4528, North-Western Federal  
district  0.4467, Siberian Federal district  0.4218, Russian  
Federation  0.4194, Privolzhsky Federal district is 0.3557,  
North Caucasian Federal district  0.2914, Southern Federal  
district 0.2613.  
0
,5  
,45  
,4  
0,35  
,3  
,25  
,2  
10  
9
8
7
6
5
4
3
2
1
0
0
0
During the analyzed period (2005-2017), the growth of the  
occupied place was noted in the NWFD-by two positions  
0
(
from 4 to 2 place), the SFD also by two positions (from 9 to  
0
0
0
7
place) and in the Russian Federation as a whole  from 6 to  
0
5
place. The decrease in occupied space occurred in such  
,15  
0,1  
,05  
0
districts as North Caucasian Federal district (from 8 to 9  
place), PFD 7 to 8 place SibFD from 5 to 6 place, and UrFD  
2 in 4th place. The position remained unchanged at the CFD  
(
1st place) and the FEFD (3rd place).  
In the first quadrant (an increase in the absolute figure –  
2005  
2010  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
the growth in occupied space) was part of the Russian  
Federation  0.040 and 1, respectively, of the CFD  0.0557  
and 0 NWFD  0.1399 and 2, SFD  0.1471 and 2, FEFD –  
Integral indexof fixed assets and investments  
Rating  
Figure 4: Integral index of fixed assets and Russian rating of the  
Privolzhsky Federal district  
0.0855 and 0. In the second quadrant (the increase of the  
absolute indicator of the decline in occupied space) was  
included NCFD  0.0151 and -1, and SibFD  0,0153 and -1.  
In the third quadrant (decrease in absolute value  decrease in  
occupied space) was UrFD (-0.0839 and -2). In the fourth  
quadrant (absolute decline increase in occupied space), there  
were no districts  
PFD during the analyzed period was located in the second  
quadrant, since in the Volga region there was an increase in the  
absolute value of the integral index and a decrease in the  
occupied place (0.0052 and -1) (Fig. 4).  
Based on the analysis of the integral index of fixed assets  
and investments, the following main conclusions can be  
drawn. First, the distribution of the Russian Federal districts  
according to this index demonstrates a certain stability. The  
North-Western and Southern Federal districts rose by two  
positions, the Russian Federation as a whole  by one. On the  
other hand, the North Caucasian, Privozhskyl and Siberian  
Federal districts fell by one position, and the Ural Federal  
district fell by two positions. The Central and far Eastern  
Federal districts retained their first and third places,  
respectively. Secondly, the growth of the analyzed integral  
index was observed in all Russian Federal districts, with the  
exception of the Ural Federal District, which indicates a certain  
improvement in the state and dynamics of fixed assets and  
investments in the Russian economy.  
4
Conclusions  
The assessment of the potential of reindustrialization of the  
Russian Federation, carried out on the basis of the analysis of  
4 indexes obtained by rationing the basic indicators  
1
characterizing the state of fixed assets and investments for the  
period 2005-2017, indicates the presence of certain problems  
in this area. At the same time, the structure of fixed assets and  
Thus, the economic policy currently being implemented in  
the Russian Federation does not yet fully contribute to  
reindustrialization, namely, the renewal of fixed assets on a  
1
46  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 140-147  
qualitatively new, modernization basis. The approved  
methodology can be used to assess the potential of  
reindustrialization for individual Russian regions and their  
totality.  
14. Maltsev AA, Mercier-Suissa C, Mordvinova AE. Interpretation of  
the term “reindustrialization” in the conditions of globalization.  
Economy of Region. 2017;13(4):1044-1054.  
1
5. Mazur OA. Reindustrialization of the Russian economy as a  
condition of expanded reproduction of the total employee. Theory  
and philosophy of economy. 2012;1(73):1420.  
5
Acknowledgements  
16. Miller J, Walton T, Kovacic W, Rabkin J. Industrial policy:  
reindustrialization through competition or coordinated action?  
Yale Journal on Regulation. 1984;2(1):137.  
The article has been prepared with the support of the Grant  
of the Russian Foundation for Humanities in the framework of  
the research and development project «The integrated  
development potential reindustrialization of the territories of  
the Russian Federation in conditions of the adverse effects of  
environmental factor » No. 170200401.  
1
7. Mlody M. Reindustrialisation of the European Union member  
states in the context of reshoring. International Business and  
Global Economy. 2016;35(1):455-467.  
1
1
8. Nawratek K. Urban Re-indastrialization. California: Punctum  
Books. 2017.  
9. Pakhomova NV, Rikhter KK, Malyshkov GB. Inclusive  
sustainable growth: priorities, indicators, international  
experience, potential for alignment with the reindustrialization  
model. Problems of modern economy. 2014;3(51):15-24.  
0. Romanova OA. Industrial policy priorities of Russia in the context  
of challenges of the fourth industrial revolution. P.2. Economy of  
Region. 2018;14(3):806-819.  
References  
1
2
3
.
.
.
Akberdina VV, Korovin GB. The trajectory of the new  
industrialization of the Russian regions. Regional Economy:  
theory and practice (Rus.). 2016(1):424.  
Borunov SD. Russian economic system: the future of high tech  
material production. Economic Revival of Russia. 2014;2(40):5-  
2
2
2
2
1. Silin YaP, Animitsa EG, Novikova NV. Regional aspects of new  
industrialization. Economy of Region. 2017;13(3):684-696.  
2. Sukharev OS. Reindustrialization of Russia. Opportunities and  
restrictions]. Economist. 2013;3:612. (In Russ.).  
3. Sumina EV. Innovative advantages of a region under re-  
industrialization. Actual problems of economics and law.  
1
7.  
df. (Date of access: 10.05.2019)  
Communication from the commission to the European parliament.  
Communication from the commission to the European parliament,  
the council, the European economic and social committee and the  
committee of the regions. For a European Industrial Renaissance.  
Danilov IP, Mikhajlova SYu. Methodological aspects of  
determining the regional potential of re-industrialization. Bulletin  
of Chuvash State University. 2016;3:28-31.  
4
.
2
015;2:109117.  
2
2
2
2
4. The Reindustrialization of the United States. Euler Hermes  
Economic Outlook. Paris: Euler Hermes. 2013.  
5. Willy C. The Re-Industrialization of the United States?  
Wirtschaftspolitische Blätter. 2013;60(2):297312.  
6. Zhidkikh AA. The regions and the policy of re-industrialization  
of the Russian economy. ETAP. 2016;2:18-33.  
7. Zhironkin SA. Kolotov KA. Research methodology of neo-  
industrial import substitution in the Russian economy. Bulletin of  
Baikal State University. 2016;26(5):713722.  
5
6
.
.
Danilov IP, Ladykova TI, Morozova NV, Krasnov АG. Problems  
in the assessment of potential re-industrialization in the Russian  
Federation and the Volga Federal district. Oeconomia et Jus.  
Date of access: 10.05.2019)  
(
7
.
Gagarina GYu, Chaiynikova LN. The influence of the region on  
the reindustrialization of the Russian economy (on the example of  
the Volga Federal district). Management of economic systems:  
electronic journal]. 2015;9(81). URL: http://uecs.ru/uecs-81-  
12015. (Date of access: 10.05.2019)  
8
9
.
.
Glushakova OV, Mikhailov VV. Reindustrialization and new  
economy: does Russia have a chance to succeed?. Finance and  
credit. 2017;23(1):19-37.  
Heymann E, Vetter S. Europe’s re-industrialisation. The gulf  
between aspiration and reality. Frankfurt am Main: Deutsche  
Bank AG, DB Research. 2013 Nov 26.  
1
1
0. Hospers G. Restructuring Europe’s Rustbelt. The Case of the  
German Ruhrgebiet. Intereconomics. 2004;3:147156.  
1. Kalinina GV, Vanulin AN, Egorova GN. Development of  
methods for identifying signs of reindustrialization of the Russian  
economy on the example of the Volga Federal district regions.  
Bulletin of Chuvash State University. 2014;3:165-171.  
1
1
2. Kokovikhin АYu, Kansafarova TА, Sharapova NV. New  
industrialization: the skills gap and labour market institutions.  
2
017;3:64-75.  
1
47