Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 196-201  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
Power Losses in the Engine-Transmission  
Installation of the Mobile Unit under Probabilistic  
Load Conditions  
1
2
Ramazan Yusupov *, Vil Yusupov  
1
Russian State Agrarian University  Moscow Timiryazev Agricultural Academy, Moscow, Russia  
2
Goryachkin Institute of Mechanics and Energetics, 127550, Timiryazevskaya st. 49, Moscow, Russia  
Received: 27/05/2019 Accepted: 01/10/2019 Published: 30/03/2020  
Abstract  
The article reviewed a method for assessing the influence of a probabilistic load on the amount of energy loss in an engine-  
and-transmission unit (ETU) of a mobile aggregate. The method is based on the usage of a random processes theory. The random  
process is a sum of harmonic components with a random initial phase and constant amplitude. The image of the random process  
corresponds to an arcsine distribution, in which the normal distribution law is approximated by an arc sine function. A peculiarity  
is that the approach allows you to obtain characteristics that reflect the dependence of the energy performance of the engine-and-  
transmission installation on the frequency of oscillations of the rotational speed of the crankshaft of an internal combustion  
engine. The frequency characteristics of the mathematical expectation of the effective power of the internal combustion engine,  
dissipative losses in the dynamic systems of the internal combustion engine and transmission are obtained as a result of all  
calculations. We propose a generalized criterion to assess the energy efficiency of a mobile unit under the influence of a  
probabilistic load.  
Keywords: engine-and-transmission unit (ETU), random processes theory, internal combustion engine, dynamic systems,  
mathematical expectation  
1
maximum power received during the operation of the engine  
1
Introduction  
with a variable load, to the maximum power received during  
standard brake tests. It has been established that the main  
reason for reducing the energy performance of the engine is  
the fluctuation of the angular velocity of the crankshaft, and  
these fluctuations, in turn, are determined by the reduced  
moment of inertia, the degree of unevenness of the moment  
of resistance, the degree of insensitivity of the regulator, and  
the adaptability coefficient of the IC engine.  
Following studies of numerous authors were aimed at a  
deeper study of the processes occurring in the IC engine  
under the unsteady nature of the load (6, 7, 8, 9, 10, 11), to  
search for ways to improve engine efficiency (l, 2, 7, 12, 13,  
Over recent years through studying the energy indicators  
of machine-tractor aggregates, the probability-statistical  
characteristics of random processes interacting with both  
power transmission and the engine are widely used (l, 2, 3,  
4
). The approach allows us to evaluate the energy  
performance of the machine-tractor aggregate (MTA) in  
conditions close to real. Common to all tractor vibrations is  
that the energy of only one source is expended on their  
excitation and maintenance - the engine. So, the level and  
intensity of all vibrations accompanying the operation of the  
tractor affect its energy performance, and, consequently,  
productivity and fuel savings.  
Based on (В.Н. Болтинский) V.N. Boltinskiy’s  
theoretical and experimental studies, engine power and  
economic indicators, due to load fluctuations, decrease,  
compared to the indicators when loading with a constant  
torque (5). He introduced the concept of engine power  
utilization coefficient, which is equal to the ratio the  
1
5, 16, 17), on the methods development for assessing and  
forecasting the main technical and economic indicators of IC  
engine (l, 11, 13, 18, 19, 29). In most works it is noted that  
one of the main reasons for the decline in engine performance  
is the non-linearity of its regulatory characteristic (l, 6, 12,  
2
1, 22), and in this regard, negative phenomena are observed  
more significantly, the closer the IC engine load to the  
nominal, the less adaptability coefficient, the greater the  
amplitude of the oscillations, the smaller the reduced moment  
of inertia. Due to the fact that the efficiency of the IC engine  
Corresponding author: Ramazan Yusupov, Russian State  
Agrarian University Moscow Timiryazev Agricultural  
Academy. Email: unoreen@psu.edu.sa.  
1
96  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 196-201  
under the unsteady nature of the load is largely determined by  
its dynamic qualities, scientific research aimed at creating  
mathematical models has been developed (11, 23, 24, 25).  
With their help, transient processes are studied during faults  
and load shedding, and, based on frequency methods,  
technical and economic indicators of IC engine in dynamic  
modes (4, 11).  
Mathematical method in the form of linear and nonlinear  
differential equations is widely used in these works. Some  
authors focus on the frequency method using statistical  
models of random processes as an input signal (4, 18, 23).  
The unsteady nature of the load influences the energy  
processes in the engine-transmission installation as a whole.  
Due to fluctuations in the rotational speed of the shafts,  
additional power losses due to friction and slipping in  
kinematic pairs are formed. The nature of the losses has  
received a fairly complete interpretation in the works (20,  
systems composed of components of a different physical  
nature (electrical, hydraulic, mechanical).  
In general, from a review of analytical methods for  
studying the dynamic properties of power transmission, it can  
be concluded that the scope of existing methods is limited to  
one specific physical nature (mechanical, hydraulic,  
electrical). It can be noted as a drawback that they do not  
consider complex dynamic systems consisting of a set of  
heterogeneous elements.  
The features of power transmissions of various physical  
nature and the related features of the methods do not allow  
the use of the latter as universal ones in substantiating the  
rational type of continuously variable transmission (33-37).  
The analysis of trends in modern tractor engineering  
allows us to conclude that one of the main goals of improving  
tractors as the main energy tools for mobile crop production  
is to increase their productivity. Therefore, the industry has  
developed a direction of research work related to the search  
for ways to more fully load the diesel engine, to improve the  
dynamics of the tractor in operating conditions and, in  
general, to increase the fuel economy and productivity of the  
MTA. Currently, the following paths have been identified:  
the introduction of progressive power transmissions, the  
correction of the static and dynamic characteristics of internal  
combustion engines. It implies stepless hydrodynamic,  
hydrostatic, electric transmissions and an increase, within the  
limits of the steepness of the corrector, of the speed  
characteristic of the internal combustion engine.  
According to experts, the situation in the field of  
improving the manufactured equipment and developing  
promising modifications of tractors and agricultural machines  
can be seriously improved by providing designers and  
researchers with universal engineering methods for  
calculating the energy and dynamic indicators of MTA,  
which are invariant to the physical heterogeneity of the  
mechanisms of the unit, allowing for their static and. dynamic  
characteristics, speed and load conditions of the machine-  
tractor unit and ultimately, giving the opportunity at the  
design stage of new technology to obtain reliable  
comprehensive information about the MTA indicators of  
interest in the probabilistic nature of the external load.  
2
6).  
The next group of theoretical methods is associated with  
the study of mathematical models composed of equations  
describing equivalent circuits of dynamic systems. The first  
theoretical works devoted to the study of the dynamic  
properties of mechanical systems, based on the principles and  
principles adopted in electrical engineering, appeared in the  
3
0s (27, 28, 29, 30, 31). These studies substantiate the  
possibility of using electromechanical analogies when  
considering issues related to the study of oscillatory processes  
in mechanical systems. This approach made it possible to  
transfer to the ready-made mechanical system a number of  
conclusions obtained in some well-developed branches of  
electrical engineering (for example, in the theory of four-  
terminal networks, in the theory of electric filters, etc.). In the  
papers under consideration, the concept of equivalent circuits  
is given and methods for constructing them are shown. The  
equivalence of two systems - electrical and mechanical - is  
justified by the identity of the Lagrange equations presented  
in generalized coordinates. From them equations are derived  
that describe mechanical systems and are similar to  
Kirchhoff's equations. So, for example, an electric circuit  
composed of inductance L, capacitance C and resistance R is  
described by the equation of the second Kirchhoff law.  
Similarly, a mechanical system is described by equations  
obtained on the basis of the de Alambère principle. These  
works give an idea of the fundamental possibilities of an  
approach based on the formation and study of equivalent  
circuits of mechanical systems.  
The analysis of technological processes carried out both  
on industrial and agricultural machine-tractor aggregates  
suggests that the maximum spectral density of load  
fluctuations falls precisely on the low-frequency region.  
In (32), there is a classification of processes occurring in  
a dynamic system. High-frequency vibrations seem to be  
associated with individual mechanical links, which constitute  
a separate type element through hard links. It is argued that  
low-frequency oscillations occur in a system of typical  
elements and cause fluctuations in the speed of rotation of the  
shafts. A common drawback of all the theoretical works  
discussed above is that they do not reveal at all or weakly  
reveal the questions of studying the dynamic properties of  
Let us give a physical interpretation to the procedure for  
calculating the energy indicators of a machine-tractor unit  
using the spectral density of a random process. As is known,  
spectral density is a function that characterizes the frequency  
distribution of elementary dispersions (38). From here, in  
accordance with (39), one can proceed to the frequency  
distribution of the amplitudes of harmonic processes:  
ΔА(ɷ) = √ꢀꢁ ꢂꢃꢄ .  
(1)  
So, the input variables in a random process obeying the  
arcsine distribution can be represented by a set of amplitudes  
of harmonic oscillations distributed over a frequency (Figure  
1
), and then it is legitimate to talk about the frequency  
characteristics of the mathematical expectation of the  
effective power of the internal combustion engine and other  
indicators. M - dependence of the torque on the shaft of an  
k
internal combustion engine (ICE) on the speed of rotation of  
the shaft; N is the dependence of the effective power on the  
k
1
97  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 196-201  
ICE shaft on the shaft rotation speed; M(M ) and M(N ) are  
k
e
2 Research Methods  
We consider the non-normalized spectral density of the  
ICE crankshaft rotational speed as the frequency distribution  
of harmonics dispersions (38), use the provisions of (l) to  
determine the amplitudes of harmonic vibrations for different  
frequencies  
the dependences of the mathematical expectations of the  
torque and the effective power of the internal combustion  
engine on the shaft rotation speed; φ(n) - normal and arcsine  
distribution laws of  
a random process and harmonic  
components with a random initial phase and constant  
amplitude; n(t) is a random process of the speed of rotation of  
the ICE shaft; n(t)k are the harmonic components of the  
random process of the speed of rotation of the ICE shaft.  
вал  
ΔΩ(ɷ) = √ꢀꢁꢂꢃꢇ  
.
(2)  
Substituting (2) into the expression for calculating the  
expectation value of the effective ICE power under the  
assumption of the arcsine distribution of a random function of  
rotation speed (l), we get  
This distinguishes the technique considered in the work  
from that described in (l).  
ꢖꢗ  
[
M ( )](ɷ) = 0.5[ ꢌ + ꢌ ꢐ ꢑꢒꢓꢎ (ꢔꢌꢄ ꢂꢃ)]- х  
(
3)  
[
ꢛꢜꢅ ꢛꢞꢒꢟꢜꢂꢠꢃ ꢂꢃꢄ]ꢘꢡꢢꢣꢤꢥꢂꢅꢖꢅꢄ  
х
ꢠꢅꢂꢃꢄ  
ꢙ  
+
ꢂꢨꢌ  ꢌ ꢄ√ꢂꢔꢌꢄ ꢂꢃꢄ ꢩ ꢂꢌ ꢩ ꢌ ꢄ .  
ꢏꢧ  
Let’s look onto the methodology for determining, based  
on the obtained frequency response, the integral value of the  
mathematical expectation of the effective power of the  
internal combustion engine.  
1
. The relation is determined to determine the frequency  
response of the expectation value of power loss  
[
M )](ɷ) =  ꢩ ꢪꢫꢂꢈ ꢄꢬꢂꢃꢄ.  
(4)  
2
. By integrating the frequency response (4), we get the  
mathematical expectation of the total power loss  
M (Δ ) =  ꢪꢫꢂꢔꢈ ꢄꢂꢃ ꢄꢔꢃꢬꢭ  
(5)  
ꢍꢮꢗ  
K is a harmonic order.  
. The expectation value of the effective power of the  
3
internal combustion engine is calculated, corresponding to the  
influence of the spectrum of speed fluctuations  
M ( ) =   M (Δ ).  
(6)  
Numerous experimental and theoretical studies (40, 41,  
2) suggest that vibrational processes cause additional  
dissipative losses in a dynamic system. From the theory of  
oscillations (41, 42) it is known that dissipation losses due to  
4
Fig.1: Engine performance under spectrum exposure harmonic  
vibrations of the crankshaft rotation speed  
the action of harmonic oscillations on  
determined from the relation  
a
system are  
(7)  
We note one more difference, namely, that as an input  
function on the cranked shaft of the ICE, we do not consider  
the torque, as in (l), but the rotation speed. This step  
corresponds to the methodology for the formation of a  
mathematical model of the engine-transmission installation as  
a whole. And above it is shown that a mathematical model is  
formed for the condition of impact on the input of a dynamic  
system of rotation speed fluctuations.  
ꢔꢈ ꢯ ꢌꢰꢫꢱꢲꢳꢴ,  
Ω is rms-speed for one period of oscillation,  
М is a same torque.  
If ɷ is an instantaneous state of velocity, the root-mean-  
is  
square will be:  
1
98  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 196-201  
ꢝ  
e1 is the elasticity compliance in the dynamic system of a  
ꢠꢅ  
ꢻꢏ  
Ω =  ∫ ꢃ ꢷꢸ = ꢵ  
∫ ꢳꢹꢺ ꢂꢃ ꢸꢄꢷꢸ =  
.
(8)  
(9)  
ꢤꢣ  
heat engine; Ɣ - mechanical conductivity, characterizes the  
1
speed loss in the same place; Ɣ23 - mechanical conductivity,  
the reciprocal of the mechanical resistance, characterizes the  
Similar for torque  
loss of torque in the same place; J is the moment of inertia of  
1
the engine flywheel and the translationally and rotationally  
moving masses rigidly connected with it; Ɣ45 - mechanical  
conductivity, characterizes the speed loss in the dynamic  
systems of the first and second converters; e23  elastic  
coupling compliance in dynamic systems of the first and  
second transducers; Ɣ67 - mechanical conductivity, the  
reciprocal of the mechanical resistance, characterizes the loss  
ꢂꢠꢽꢄꢝ  
ꢠꢽ  
ꢻꢏ  
M = ∫ ꢼ ꢷꢸ =ꢵ  
∫ ꢳꢹꢺ ꢂꢃ ꢸꢄꢷꢸ=  
T is the period of harmonic oscillation,  
ΔΩ, ΔM are the amplitudes of the oscillations of speed  
and torque,  
m is the instantaneous value of the torque,  
 is the angular frequency of oscillations.  
Theoretical studies performed by a number of authors  
suggest that the above reasoning can be applied to random  
functions with sufficient accuracy. In this case, the standard  
deviations can be obtained from the relations  
of torque to the dynamic system of the second converter; J is  
2
the moment of inertia of the translationally and rotationally  
moving masses rigidly connected with the second transducer;  
Ɣ - mechanical conductivity of the engine slipping section;  
8
Ɣ - a parameter reflecting the resistance of an external load.  
el  
In order to establish how losses are distributed between  
the internal combustion engine and the transmission, we find  
the corresponding coefficient and call it the coefficient of the  
level of losses in the tractor transmission. We will again use  
the equivalent circuit. It is convenient here to turn to some  
provisions of the theory of electric circuits (42). In  
accordance with them, the ratio of power on any part of the  
circuit to the total power supplied to the input of the dynamic  
system is equal to the ratio of the resistances (conductivities)  
of the corresponding sections.  
ꢽ  
ꢯ √ꢿꢂꢫꢄ,   √ꢿꢂꢌꢄ  
(10)  
and to determine the amplitudes of the oscillations  
acceptable ratio  
ΔM =  ꢾ,  
ΔΩ =  ꢾꢅ  
.
(11)  
Under the probabilistic nature of the external load, power  
losses in the dissipative elements of the engine-transmission  
installation of the mobile unit can be found by the expression  
ведущее колесо  
For our case, we can write:  
ꢠ꣝ꢂꢃ꣙  
꣜ꢉ꣓꣙  
= λ(ɷ),  
(15)  
ꢠ꣝ꢂꢃ꣙꣚꣛  
꣜ꢉ꣓꣙꣚꣛  
ΔNꢂꢃꢄ=√ꢿꢂꢫꢄD(Ω) ꢾꢂꢃꢄꢾꢂꢃꢄcosφ(ɷ),  
(12)  
Y - mechanical conductivity of a dynamic ICE system,  
e
Yeti - mechanical conductivity of the MTA dynamic  
system, found when calculating the angle of phase shift from  
14)  
ꢂꢃꢄꢭ ꢾꢂꢃꢄ are normalized spectral densities of  
processes on the driving-wheel (leading wheel) of the tractor  
φ(ɷ) - phase angle between torque and speed at a fixed  
harmonic.  
Let’s find an expression for calculating the phase shift at  
a fixed harmonic. We will use the equivalent circuit of the  
engine-transmission installation (Fig.2). Full mechanical  
conductivity of the ETI dynamic system.  
(
ꢛ꣉ꢃꢉꢪꢢ꣋ꢣꢂꢃꢄꢛ꣉ꢣꢤꢥ꣌ꢂꢃꢄꢬ  
Y
= ꣇  
.
(16)  
e
ꢛ꣉ꢃꢪꢢ꣋ꢣꢂꢃꢄꢛ꣉ꢣꢤꢥ꣌ꢂꢃꢄꢬꢂꢛ꣉ꢃꢄꢛꢗ  
If we know λ(ɷ), the components of losses in the internal  
combustion engine and transmission are calculated. So the  
losses in the engine are determined by the ratio  
ꢔꢈꢂꢃꢉ  
17)  
ꢔꢈꢂꢃꢤ  
λ(ɷ),  
(
transmission losses  
ꢔꢈꢂꢃ ꢔꢈꢂꢃ ꢪ꣞ ꢩ ꣟ꢂꢃꢄꢬ .  
Fig.2: Equivalent circuit of the tractor engine-transmission  
installation  
(18)  
ꢛ꣉ꢃꢉꢪꢢ꣋ꢣꢂꢃꢄꢛ꣉ꢣꢤꢥ꣌ꢂꢃꢄꢬ  
We express the components of the power loss in the ETI  
in relative terms. The relative amount of losses in the ICE  
Y =  ꢐ ꣉ꢃ꣊  ꣇  
,
0
ꢏ꣈  
ꢛ꣉ꢃꢪꢢ꣋ꢣꢂꢃꢄꢛ꣉ꢣꢤꢥ꣌ꢂꢃꢄꢬꢂꢛ꣉ꢃꢄꢛꢗ  
(
13)  
ꢉ꣐ꢤ  
ꢯ ꣑ ꢐ ꣑  
.
ꢠ꣝ꢂꢃ꣙  
ꢉꣅ  
ꢂ꣍ꢛ꣉ꢃꢄꢛꢗ  
ꢂꢃꢄ = 1 -  
(19)  
Phase angle  
And in transmission  
꣙꣚꣛  
ꢉ꣐ꢤ  
ꢯ ꢊ꣖ꢱꢸ꣗ ꣜  
(14)  
ꢠ꣝ꢂꢃ꣚꣠  
.
ꢉ꣓꣙꣚꣛  
ꢂꢃꢄ = 1-  
(20)  
1
99  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 196-201  
To estimate the losses caused by the impact on the  
dynamic system of a set of harmonics, we integrate relations  
Frequency response of the ICE effective power factor  
(
3.64) and (3.65):  
ꢪꢽꢂ꣝ꢄꢬ ꢂꢃꢄ  
ꢂꢃꢄꢉ  
=
.
(21)  
 ∑ ꢔꢈꢂ ꢄ ꢔꢃ ,  
ꢔꢈ  ∑  
(23)  
(24)  
꣄ꢮꢗ  
꣄ ꢉ  
ꢔꢈꢂꢃꢔꢃ ,  
꣄ꢮꢗ  
The convenience of the obtained coefficients lies in the  
fact that with their help it is possible to compare the levels of  
all loss components and formulate a generalized criterion that  
allows us to evaluate the effectiveness of the engine-  
transmission installation as a whole  
k is a harmonic order.  
3
Conclusions  
1
. A random process following the normal distribution  
law can be described by an arcsine distribution.  
. Input variables in a random process following the  
krit(ɷ) =  ꢂꢃꢄ ꣡ ꢂꢃꢄ ꣡ꢂꢃꢄ  max.  
꣝ꢉ  
(22)  
2
normal distribution law can be represented by a set of  
harmonic oscillations with a random initial phase and  
constant amplitude, i.e. following the arcsine distribution.  
Example of calculating energy losses of tractor engine-  
transmission installation  
3
. Under the probabilistic nature of the external load, the  
mathematical expectation of the effective ICE power and  
power loss in the dissipative elements of the engine-  
transmission installation of the mobile unit can be reflected in  
the frequency characteristics.  
4
. It is possible to establish the frequency range of load  
oscillations on the driving wheels of the mobile unit based on  
the analysis of the data of frequency characteristics. It  
significantly affects the effective power of the ICE and the  
amount of dissipation loss in dynamic systems of the engine  
and transmission.  
5
. Modeling the dynamic system of the engine-  
transmission installation of a mobile unit can be carried out  
on the basis of equivalent circuits, allowing calculations  
using methods that have been widely used in the theory of  
electrical engineering.  
References  
1
.
Ageev LE. Basics of calculating the optimal and permissible  
operating modes of the MTA. - L. Kolos. 1978:296 p.  
2
.
Iofinov SA, Aranovsky MM, Theoretical foundations of the  
computerization of tractor energy. Tehn. in agriculture.  
1
990;5:13-16.  
3
4
.
.
Lurie AB. Statistical dynamics of agricultural aggregates. - M.:  
Kolos. I981: 382 p.  
Yusupov RH. Coordination of subsystems of a tractor engine-  
transmission installation according to dynamic characteristics.  
Sat. scientific tr. Tajik Agricultural Institute. I991:135-143.  
Boltinsky VN. Tractor engine operation under unsteady load. -  
M.: Selkhozgiz. 1949:216 p.  
5
6
.
.
Kuznetsov AP. On the operation of the engine D ~ 130 on the  
overload branch in an unsteady mode. Tr. in-that. CHIMESH.  
Fig.3: Performance characteristics of DET-250М2 tractor with  
electric transmission when working with a cultivator V = 3,8I km/h  
1
967; 28:15-18.  
7
8
9
.
.
.
Popov VN. Ways to increase the efficiency of power utilization  
of tracked tractor engines in agriculture: Abstract. doc. tech.  
Sciences, Chelyabinsk. 1974:49 p.  
Popov VN, Gusyatnikov VA. Test results of the D-130 engine  
under unsteady load. Tractors and agricultural machinery.  
S(ɷ) is the abnormal spectral density of the rotational  
speed of the crankshaft of an internal combustion engine  
(
ICE); M(N ) is the mathematical expectation of the effective  
e
power of the internal combustion engine;  
1
964;7:28-33.  
A(ɷ) is an amplitude-frequency characteristic of the  
transfer function of the tractor engine-transmission  
installation;  is energy loss due to the variable  
Svirshchevsky AB. Investigation of the influence of the flow  
characteristics engine performance of the tractor during its  
operation with an unsteady load: Abstract. Cand. tech. sciences. -  
M. 1969:21p.  
component of the load in the transmission; ꢔꢈ energy losses  
due to the variable component of the load in the engine; σ(ɷ)  
is the normalized spectral density of the rotational speed of  
the crankshaft of an internal combustion engine.  
10. Berdnikov VV. Applied theory of hydraulic circuits. - M.:  
Mechanical Engineering. 1980:192 p.  
2
00  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 196-201  
1
1
1. Yuldashev AK. The dynamics of the working processes of the  
engine of machine-tractor units. - Kazan: Tatar Book Publishing  
House. 1980:143 p.  
2. Ageev LE, Burm AK. Assessment of the regulatory  
characteristics of tractor engines with probabilistic-statistical  
criteria. Sat. scientific Tr. / LSHI. 1978;350:37-41.  
34. Yusupov RH. Determination of filtering properties of drives of  
mobile technological units. Development and improvement of  
drives of agricultural machinery: Abstract. doc. All-Union  
Scientific and Technical. conf. - M.: 1982:101-103.  
35. Yusupov RH, Dovzhik VL. Energy method for determining the  
elasticity of elastic coupling in the electric or hydraulic  
1
1
3. Ageev LE, Shkrabak BC, Morgulis-Yakushev VY. Heavy duty  
agricultural tractors. - L.: Agropromizdat. 1986: 415 p.  
4. Dyachkov EA. Optimization of combining the characteristics of  
the engine and torque converter of an agricultural tractor.  
Tractors and agricultural machines. 1989;3:28-31.  
5. Zlotnik MI, Kavyarov IO. Transmissions of modern industrial  
tractors. - M.: Mechanical Engineering. I971: 248 p.  
6. Itkin BA. Investigation of the influence of the degree of  
components of MTA power transmissions. Scientific. tr /  
CHIMESH. 1982:60-63.  
36. Sveshnikov AA. Applied methods of random functions. - M.:  
Nauka.1968:464 p.  
37. Banach LY. The method of separation of movements in the  
simplification of dynamic systems. Vibration protection of the  
human operator and vibrations in machines. - M: Nauka.  
1977:331-335.  
1
1
transparency of the power transmission of  
agricultural tractor on engine operation under unsteady load:  
Abstract. Cand. tech. sciences. - M. 1969: 22 p.  
a
caterpillar  
38. Wulfson II. Oscillations of machines with cyclic mechanisms. -  
L.: Mechanical Engineering. 1990:309 p.  
39. Kowalski MZ. The dynamics of cars.  
1989:263 p.  
- L.: Engineering,  
1
1
1
2
2
2
7. Sabantsev GA. Optimization of tractor engine loading at variable  
load. Tractor power engineering in crop production: Collection  
of scientific. tr. - M .: VIM. 1988;116:138-146.  
40. Zwick BD, Stepanov VE, Zazulya AN. Engine power  
consumption for own ETI vibrations (for example, the K-70I  
8. Shegalin SI.  
operating modes. Tractors and agricultural machinery.  
985;9:46-49.  
9. Yusupov RH. Interaction of elements of the tractor engine-  
transmission system. - Krasnoyarsk: publishing house Krasn.  
Univ. I991:100 p.  
0. Morozov AH. Fundamentals of the theory of high-speed modes  
of MTA: Abstract. Doctor. tech. sciences. Volgograd. 1972: 43  
p.  
1. Yuldashev AK, Galeev GG. On the dynamic characteristic of the  
fuel-supply equipment of a tractor diesel. Izvestiya Vuzov Ser.  
Engineering. 1972;1:75-77.  
A
probabilistic assessment of tractor engine  
tractor with a PTK-9-35 plow). Tractors and agricultural  
machinery. 1983;M2:7-8.  
41. Neumann LR, Demirchyan KS. Theoretical foundations of  
electrical engineering. - L.: Energoizdat. 1981:536 p.  
42. Fundamentals of the theory of oscillations. Migulin VV,  
Medvedev VI, Mustel ER, Parygin VN.- M.:Nauka. 1988:392 p.  
1
2. Vulakh GY, Khamidulin MS. About the dependence of the  
engine speed and the moment of resistance of an industrial  
tractor in the form of a transfer function. Problems of design and  
study of tractors and tractor engines, - Chelyabinsk. 1972:44-53.  
2
3. Morozov BI, Sazonov AI. Methodology for obtaining a  
mathematical description of the transient state of internal  
combustion engines. Automotive. Scientific and technical  
collection. 1969;2:18-22.  
2
2
4. Boltinsky VN. Tractor engine power under unsteady load.  
Mechanization and Electrification of Socialist Agriculture.  
1
959:13-16.  
5. Belov AI. Drawing up electrical circuits equivalent to  
mechanical oscillatory systems. Journal of Technical Physics.  
1
935;9:I545-I55I.  
2
2
6. Varshavsky LA, Fedorovich V. Electric analogies. Bulletin of  
the electrical industry. 1936;3:51-63.  
7. Esafov N, Theodorchik K. On the question of constructing  
models of oscillatory systems. Journal of Technical Physics.  
1
938;8(17):C.I557-I56I.  
2
2
8. Theodorchik K. Two systems of electromechanical analogies in  
terms of equations. Lagrange motion. Journal of Technical  
Physics. 1938;8(18):C. I652-I658.  
9. Yuriev MY. On the calculation of mechanical oscillatory  
systems using equivalent electrical circuits. Electricity.  
1
933;6:39-46.  
3
3
3
0. Khitrik VE. To the study of oscillations in machine units with  
mechanisms of periodic action. Machine Science. 1974;6:33-40.  
1. Yusupov RH. To the question of a comparative study of power  
transmission. Scientific. tr. /CHIMESKH. 1979;154(2):43-44.  
2. Yusupov RH, Dovzhik VL. On the issue of a comparative  
assessment of hydromechanical transmission schemes in terms  
of mass. Scientific. tr, / CHIMESKH. 1980;165:39-46.  
3
3. Yusupov RH. A generalized methodology for researching the  
joint operation of a diesel engine and power train. Integrated  
Electrification Program Decision Factor: Tez. doc. scientific  
production conf. Kiev. 1982:33-34.  
2
01