Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 336-345  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
Removal Pharmaceutical Pollutants by  
Adsorption Competitive using Powdered  
Activated Carbon CAP (F400)  
Abdelkarim Mellah1 , Djamila Harik1  
.2*  
1
National Polytechnic School, Environmental Sciences and Technology Laboratory, Algiers, Algeria  
2
Scientific and Technical Research Centre for Arid Areas (CRSTRA), Biskra  
Received: 03/11/2019  
Accepted: 14/12/2019  
Published: 20/02/2020  
Abstract  
The aim of this study is to assess the competitive adsorption of two pharmaceutical products, phenobarbital and ibuprofen using  
powdered activated carbon (PAC) F400. The adsorption tests were carried out in batch experiments. The kinetic adsorption results  
1
1  
showed that the PAC adsorbs good lipophilic ibuprofen with an adsorption capacity reaching 101.46 mg g against 63.46 mg g  
of phenobarbital. The adsorption capacity was negatively influenced by the presence of both adsorbates compared to their individual  
adsorption onto PAC. logkow, pKa values, and molecular weights played a crucial role on the adsorption capacities of the target  
compounds onto PAC. The results obtained show that the adsorption of both pharmaceuticals follows a pseudo-second order model  
through a complex process including connecting layer and intra-particle diffusion in micropores. According to the results, the  
isotherm models of Langmuir, Freundlich, and Temkin fit well the experimental data for each selected pharmaceuticals. The b  
T
values show that the competitive adsorption process of each pharmaceutical is a physisorption without formation of links.  
Keywords: Adsorption; Phenobarbital; Ibuprofen; PAC, Kinetics; Isotherms  
Introduction1  
Pharmaceuticals play  
decade [3, 10-12]. Many specialized research has been  
reported in that field using several technologies of removal  
pharmaceuticals such as activated sludge systems [13-16],  
electro-coagulation coupled electro-flotation process [17],  
membrane bioreactors [15, 18, 19], photocatalytic oxidation  
processes [19,20], advanced oxidation processes [21-23],  
magnetic ion-exchange resins [24], and adsorption [25].  
In the present research we studied the efficacy of the  
competitive adsorption of ibuprofen and phenobarbital as  
products largely used in the world form water using the  
powder activated carbon F400, in order to study the effect of  
the simultaneous presence of two drug molecules.  
1
a dominating role in the  
improvement of quality and life expectancy of the  
populations. Every year, thousands of tons of pharmaceutical  
compounds are utilized in human medicine and veterinary  
[
1]. Many drug molecules were detected in the different  
effluents of the aquatic environments [2]. Pharmaceuticals  
have been developed to have effects on the human organism  
for treating diseases; therefore, their disposal in the  
environment may cause harm to humans, plants, and animals  
even at very low concentrations [3-6]. They can be  
eliminated via the urine without transformation [7]. Thus,  
they can present a considerable risk because of their direct  
toxicity and their effects cumulative or synergistic with other  
micropollutant. Many drugs have biological effects in the  
organism not targeted such as certain synthetic hormones on  
the fish [8, 9].  
In recent years, their impact on the environment has  
become a scientific and public health concern, and are the  
matter of significant attention with respect to their  
environmental fate, the circumstances of their contact with  
the organisms and their toxicological risks during the last  
2 Materials and methods  
2.1 Materials  
The activated carbon used PAC F400 is presented in the  
form of a powder with a size granulometry of 50 µm. PAC  
F400 is prepared by activation of bituminous oil under high  
temperature in the presence of oxygen. It exhibits a  
microporous structure with a variable specific surface area  
2
1  
1  
of 10501200 m g , iodine index of 1050 mg g and acid  
1
function of surface 0.23 mEq g [26].  
Corresponding author: Abdelkarim Mellah, National Polytechnic School, Environmental Sciences and Technology Laboratory,  
Algiers, Algeria. E-mail: karim.epa2008@hotmail.fr.  
3
36  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 336-345  
Table 1: Physico-chemical properties of the pharmaceuticals  
a
Mwb  
Compounds  
Ibuprofen  
Molecular formula  
Chemical structure  
w
pKa  
4.91  
logkow  
C
13  
H
18  
O
2
206.28 206.28  
3.97  
Phenobarbital  
C
8
H
9
NO  
2
232.23 232.23  
.3;11.8  
1.47  
PSA = Polar Surface Area  
a
1  
Sw = Water solubility (mg L ) at 25 °C  
b
1  
Mw = Molecular weight (g mol )  
It is recommended to use clarifiers to increase the time  
The residual pharmaceutical concentration was  
determined by HPLC (Waters 600 Controller, iodine bar  
detector: DAP Waters 2996) using column Nucleosil5 C18,  
of contact between PAC and water [27]. Before each use,  
PAC undergoes dehydration in the oven at 105 °C during 12  
hours. All the chemicals and reagents used in the study are  
all of analytic grade. Phenobarbital [5 -éthyl- 5phényl -  
,4,6(1H, 3H, 5H) - pyrimidine trione and ibuprofen [acide  
±) 2 - (4 - isobutyphényl) propionique] were supplied by  
SigmaAldrich, Germany. The physico-chemical  
characteristics and the structural formulas of both  
pharmaceuticals are shown in Table 1. The pharmaceutical  
solutions were prepared in ultrapure water (Millipore Milli-  
Q Direct 8 Water Purification System).  
i
L=250 mm, d =4.6 mm (OSI) at a wavelength of 210 nm for  
phenobarbital and 220 mn for ibuprofen. The developed  
conditions of analysis allowed the separation of the peaks of  
two molecules with very reasonable retention times (3.0 and  
4.0 minutes respectively for phenobarbital and ibuprofen),  
which allow the analysis of a great number of samples per  
1
(
1
day. Chromatograms of a solution containing 8 mg L of  
each product are presented on Figure 1. Spectra UV relating  
to each peak is presented on Figure 2.  
A volume of 20 µL of the filtrate injected by the injection  
loop is pulled by the mobile phase made up of a mixture  
methanolwater (75:25, V : V). The mobile flow phase is  
fixed at 1 ml min . Detection takes place in the field of UV,  
the quantification and the qualification of the molecules  
were carried out with the wavelengths corresponding to the  
maximum of absorption in this field.  
The retention times characteristic of the molecules allow  
their identification. The method of the compared injections  
(external calibration) and the determination of the  
chromatographic peak area are used for quantify the residues  
of the studied molecules.  
2
.2 Adsorption experiments  
For the purpose of our different studies, stock solutions  
1
were prepared for the tow selected pharmaceutical products:  
ibuprofen and phenobarbital, at a concentration of 1.0 g L  
1  
in the methanol. From these solutions, solutions were  
prepared with the desired concentration. All solutions were  
prepared with ultrapure water at pH = 67. Adsorption  
experiments were carried out using a batch experimental  
process. The adsorption kinetic experiments were first  
performed in order to determine the necessary time to reach  
the equilibrium (teq). Then, equilibrium tests were executed  
to determine the adsorption isotherms. All experiments were  
performed in duplicate by incubation under constant shaking  
3 Results and discussion  
3.1 Kinetics of adsorption  
2
00 rpm, at a constant temperature of 21 ± 2 °C using a  
magnetic stirrer (Fisher bioblock scientific), with a known  
mass of the PAC of 40 mg L in ultrapure water. The initial  
concentration of the pharmaceuticals in ultrapure water is 8  
The influence of the agitation time on the mixed  
1  
adsorption of phenobarbital and ibuprofen at an initial  
1
concentration of 8 mg L by PAC F400 at a concentration  
1  
1  
mg L .  
of 40 mg L is presented in Figure 3. The adsorbed amount  
can be calculated based on the Eq. (1):  
2
.3 Sample analysis  
To evaluate the residual concentrations of phenobarbital  
푞 = (퐶 − 퐶 )푉/ 푚  
(1)  
0
e
and ibuprofen (Cr), we developed the operating conditions  
for the proportioning of these two molecules by High-  
performance liquid chromatography (HPLC). This method  
was already validated in our laboratory. The protocol  
followed for this validation was inspired by that used in the  
Center of Expertise in Environmental Analysis of Quebec  
where q  
e
is the adsorption capacity at the equilibrium, C  
0
is the initial concentration of the adsorbate in the solution, m  
is the mass of the adsorbent and V is the volume of the  
solution.  
[65].  
3
37  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 336-345  
-
1
Figure 1: Chromatograms of a solution made up of the mixture of phenobarbital and ibuprofen at concentration of 8 mg L to λ = 210 nm  
In the present study, the adsorbed quantity of individual  
pharmaceutical was clearly higher than that obtained for  
1
40  
120  
00  
mixed substrates solution, which proved visibly  
a
competitive adsorption existing between the target  
compounds in this research as shown in Figure 2. The  
adsorption process of phenobarbital in mixture is not fast.  
1
8
6
0
0
1
Indeed, only 23% equivalent of 45.24 mg  
g
of  
phenobarbital is adsorbed after 5 min, while the slope  
becomes very weak with the approach of equilibrium after  
1
1
80 min indicating a quantity adsorbed of 63.46 mg g  
40  
Ibuprofen mixed  
equivalent of 32% of the quantity presents initially as shown  
in Figure 2. The adsorbed quantity of ibuprofen in binary  
mixture was very quickly reaching a rate of 31% after 5 min,  
Phenobarbital mixed  
Ibuprofen individual  
Phenobarbital individual  
2
0
0
1
which is equivalent of 62.22 mg g and pseudo-equilibrium  
is established after 180 min with an adsorption percentage  
0
100  
200  
t (min)  
300  
400  
1
rate of 51% equivalent of 101.46 mg g . The mechanism of  
the binary mixture adsorption is probably influenced by the  
pKa and logkow of the substrates competing for the limited  
adsorption sites. The dissociation of the electrolyte  
substrates is governed by the pKa [28]. The pKa of  
phenopbarbital (7.3; 11.8) indicated that it would remain at  
molecular form over the operation. This property resulted  
good competitive adsorption with ibuprofen. The logkow is  
considered, as well, as a significant factor for the adsorption  
capacity evaluation, in which the pharmaceutical pollutants  
with higher logkow values should have a higher adsorption  
affinity towards PAC [29].  
Therefore, the adsorbed quantity of ibuprofen was higher  
than that obtained with phenobarbital. Phenobarbital  
presents the lowest logkow value, which indicates that is the  
most hydrophilic compound among the tow selected  
pharmaceuticals. However, logkow played out a crucial role  
in controlling the adsorbed quantity in the competitive  
adsorption of pharmaceuticals. At neutral pH, ibuprofen  
exists in non-polar state, whereas the phenobarbital is  
dissociated into anions. The PAC surface is principally non-  
polar, which facilitates to adsorb non-polar molecules [30].  
Some reported works confirm the low adsorption capacity of  
PAC towards phenobarbital, such as the works mentioned  
above, of Cooney using the activated carbons Instachar and  
Liquichar to adsorb phenobarbital [31], and the reported  
work of Papciak and co-workers about adsorption of  
ibuprofen onto Norit SA super and Carbopol MB5 [32].  
Figure 2: Adsorption Kinetics of ibuprofen with phenobarbital  
mixed and individual expressed as quantity adsorbed (mg g ) by  
1  
PAC F400 at 20 ± 2 °C in ultrapure water at pH = 6.6 ± 0.2  
1  
1  
(C (pharmaceutical) = 8 mg L ; C(PAC) = 40 mg L  
0
The difference in the adsorption capacity for both  
pharmaceuticals at equilibrium could be related to  
competitive adsorption on the sites of PAC. Similar results  
were reported by Weber and co-workers [33], were studied  
the influence of solute size and molecular configuration in  
which they found a relation between the speed of adsorption  
and the molar mass. Hydrophobic phenobarbital exhibits a  
higher molar mass and bit large molecular structure  
compared to lipophilic ibuprofen, its adsorption get  
equilibrium a bit slightly with less adsorption capacity than  
ibuprofen. In addition, the least soluble compounds are  
adsorbed more easily and the structure of the carbonaceous  
chain plays a significant role in the case of competitive  
adsorption. The molecules containing of the unsaturated  
connections are more easily adsorbed than the molecules  
with saturated connections (electronic exchanges) [34].  
Carvalho and co-workers were reported similar times of  
equilibrium in their study adsorption of ibuprofen onto  
powdered activated carbons prepared from cork waste [35].  
3.1.1. Kinetics the pseudo-first order  
The Lagergren model governing the pseudo-first-order  
adsorption kinetics is the most widely used in its linearized  
form as shown the Eq. (2) [66]:  
3
38  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 336-345  
ln(푞 − 푞 ) = ln(푞 ) − 퐾 푡 /2.3ꢁ3  
(2)  
where q  
e
and q  
t
are the quantities of aqueous solution  
e
t
1
adsorbed out in mg g at equilibrium and at moment t, K  
2
is  
and q  
t
are the amounts of solute adsorbed in mg g  
1
the speed constant of the pseudo-second order (g mg min–  
1  
where q  
e
1
at equilibrium and at time t, respectively, and K  
1
is the  
pseudo-first-order rate constant (min ). The graphs given by  
plotting ln(qe ) as a function of time are presented in Figure  
for the adsorption of ibuprofen and phenobarbital at an  
). The initial velocity of the adsorption h is given in this case  
1
by the Eq. (4):  
q
t
= 퐾 푞e  
(4)  
3
1  
initial concentration of 8 mg L on PAC at a concentration  
1  
The graphs given by plotting t/q  
the adsorption of ibuprofen and phenobarbital at an intial  
concentration of 8 mg L by PAC (F400) at a concentration  
of 40 mg L are presented in Figure 4. The linear adjustment  
of the experimental values obtained during the kinetic  
adsorption tests for the pseudo-second order model were  
t
as a function of time for  
of 40 mg L . The pseudo first-order kinetic parameters are  
presented in Table 2. A wide variance can be observed  
between experience and theory using the Lagergren model  
1  
1  
2
and the correlation coefficient (R ) values for the pseudo-  
first-order kinetic model were 0.872 and 0.860 for  
phenobarbital and ibuprofen, respectively, indicating that the  
Eq. (2) does not adequately describe the adsorption  
processes of ibuprofen and phenobarbital onto PAC.  
2
given coefficients of correlation R very close to the unit  
showing that this model is in perfect agreement with the  
obtained experimental values. Some works were reported  
that pseudo-second order is adequate to describe the  
adsorption of ibuprofen and phenobarbital onto activated  
carbons [35, 39-42]. The calculated q  
and 76.92 mg  
6
5
4
3
2
1
0
Ibuprofen  
1
phenobarbital  
e
values of 125 mg g  
Linear (Ibuprofen)  
Linear (phenobarbital)  
1  
g
of ibuprofen and phenobarbital,  
y = -0.0066x + 4.0407  
R² = 0.8609  
respectively, according to the pseudo-second order kinetic  
model of the adsorption by PAC (F400) agreed well with the  
experimental data as shown in Table 3. According to these  
results, the ibuprofen presents an initial velocity h of 12.5  
1
1  
1  
1  
mg g min higher than 6.21 mg g min of phenobarbital.  
y = -0.006x + 3.641  
R² = 0.8725  
6
Ibuprofen  
Phenobarbital  
Linear (Ibuprofen)  
Linear (Phenobarbital)  
y = 0.0133x + 0.1611  
R² = 0.9976  
5
4
3
2
1
0
0
100  
200  
300  
400  
t (min)  
Figure 3: Pseudo-first order kinetics results on the removal of  
ibuprofen (λ = 220 nm) mixed with phenobarbital (λ = 210 nm), by  
PAC (F400) at 21 °C in ultrapure water at pH 67,  
1 1  
0
(C (pharmaceutical) = 8 mg L ; C(PAC) = 40 mg L )  
y = 0.0081x + 0.0804  
R² = 0.9981  
3
.1.2 Kinetics the pseudo-second order  
The pseudo-second order model is suggested by certain  
authors as being adapted to describe certain kinetics of  
adsorption [36-38], it is especially used in the following  
linearized form as it shown by the Eq. (3):  
0
100  
200  
300  
400  
t (min)  
Figure 4: Pseudo-second order kinetics results on the removal of  
ibuprofen (λ = 220 nm) mixed with phenobarbital (λ = 210 nm), by  
PAC (F400) at 21 °C in ultrapure water at pH 67,  
e
푡/푞 = 1/퐾 푞 + 푡/푞  
(3)  
t
e
1 1  
0
(C (pharmaceutical) = 8 mg L ; C(PAC) = 40 mg L ).  
1  
Table 2: Pseudo-first order kinetic parameters for mixed ibuprofen and phenobarbital at an initial concentration of 8 mg L by PAC ( F400) at a  
concentration of 40 mg L at 21 °C and pH=67  
1
-
1
R2  
e,exp (mg g1)  
q
e,calc (mg g1)  
k
1
(min )  
q
Phenobarbital  
Ibuprofen  
0.013  
0.014  
0.872  
0.860  
74.45  
124.31  
38.13  
56.82  
= 8 mg L by PAC (F400) at concentration of 40  
0
e exp (mg g1) e calc (mg g1)  
1
Table 3: Pseudo-second order kinetic parameters for ibuprofen mixed with phenobarbital at C  
mg L at 21 °C and pH=67  
1
K
2
(g mg h )  
1
1  
h (mg g min )  
1  
1  
2
R
q
q
Phenobarbital  
Ibuprofen  
0.0010  
0.0008  
6.21  
12.5  
0.997  
0.998  
74  
124  
76.92  
125  
3
39  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 336-345  
The low speed of phenobarbital in mixture may be due  
to the influence of the competition phenomenon, which  
negatively affect its adsorption [34], and the lipophilic  
ibuprofen would be adsorbed more quickly thus occupying  
the sites and reducing the adsorption of phenobarbital  
indicating a good affinity to PAC than phenobarbital.  
the sites of PAC [52]. Therefore according to our study,  
ibuprofen diffuses more easily onto the PAC. The results  
suggested that organic PAC adsorbent could serve as a good  
adsorbent for lipophilic organic pharmaceutical pollutants  
[53].  
1
1
40  
20  
3
.1.3 Intra-particle diffusion  
The intra-particle diffusion of the adsorbates into  
adsorbents during the process of adsorption is explored to  
understanding the stage which controls the speed of  
adsorption [43], using the Eq. (5):  
100  
80  
q
t =  
K
p
t1/2  
(5)  
where q  
t
is the adsorbed quantity per unit mass of adsorbent  
60  
1  
at time t (mg g ) and K  
p
is the intra-particle velocity constant  
1  
1/2  
(
mg g min ). According to the plotted data of the intra-  
40  
1
/2  
particle diffusion model (Figure 5) q  
t
versus t exhibits  
Ibuprofen  
multilinear plots, where two steps could be influencing the  
process. The plots for the adsorption of ibuprofen and  
2
0
0
Phenobarbital  
1  
phenobarbital at an intial concentration of 8 mg L by PAC  
1
(
F400) at a concentration of 40 mg L do not result in a  
0
5
10  
15  
20  
linear relationship passing via the origin, but multimodal  
graphs with two distinct regions, indicating that intra-  
particle diffusion is affected by more than one process [44].  
The plotted curves of the mixed pharmaceuticals were  
presented the existence of two stages. In the first stage, both  
ibuprofen and phenobarbital diffuse through the solution to  
the external surface of the adsorbent. The second stage  
relates to the equilibrium stage, in which the intra-particle  
diffusion starts to slow down and level out [45, 46]. Thus, in  
order to calculate the speed constants of diffusion of each  
stage, the linear regression is applied to each section. The  
coefficient of diffusion was also calculated for each element  
using the Eq. (5). The multilinearity of the curves of the  
intra-particle diffusion is described in the literature for many  
couples adsorbate-adsorbent such us cations natural metal-  
materials [47], diuron and metribuzine-activated carbon  
t1/2 (min1/2)  
Figure 5: Intra-particle diffusion model for the adsorption kinetics  
of the mixed ibuprofen (λ= 220 nm) and phenobarbital (λ= 210 nm)  
by PAC (F400) at 21 °C in ultrapure water at pH 67,  
1 1  
0
(C (pharmaceutical) = 8 mg L ; C(PAC(F400)) = 40 mg L )  
3.2 Modeling of the isotherms  
Equilibrium adsorption isotherms are the most  
commonly data used to understand the adsorption  
mechanisms, in which many isotherm models are available.  
In this study, the three most used models in literature were  
tested: the isotherms of Langmuir [54], Freundlich [55], and  
Temkin [56].  
3.2.1 Langmuir isotherm  
The Langmuir isotherm model [54] for the adsorption of  
[
48]. Only one part is regarded as limiting factor speed in a  
mixed ibuprofen and phenobarbital at an initial  
concentration of 8 mg L by PAC (F400) at varying  
concentrations was tested using the Eq. (6) in its linear form:  
1  
particular field of time [49].  
The intra-particle parameters are presented in Table 4.  
2
The values of the correlation coefficients R for the intra-  
particle diffusion model of WeberMorris obtained for the  
mixed pharmaceuticals are all above 0.901 indicating that  
the intra-particle model fits well the obtained experimental  
values. The slope of the linear part indicates the speed of  
adsorption; and the weakest slope corresponds to the slowest  
process of adsorption noting that the least soluble  
compounds are adsorbed more easily.  
퐶ꢃ/푞 = 퐶ꢃ/푞 + 1/ 푏  
(6)  
where q is the adsorbed amount of solute per unit weight of  
e
1  
adsorbent at equilibrium (mg g ), C is the concentration of  
the solute at the equilibrium in the bulk solution (mg L ),  
e
1  
1  
q is the maximum adsorption capacity (mg g ), and b is the  
m
1  
constant related to the free energy of adsorption (L mg ).  
The values of the intra-particle velocity constants kp1  
and kp2 showed that the first stage due to the external mass  
transfer is the fastest followed by the slowest intra-particule  
diffusion stage confirmed by kp1 > kp2. Lipophilic ibuprofen  
characterized by its high logkow of 3.97 than 1.47 of  
phenobarbital was presented a highest initial velocity, that  
can be explained by the good affinity of organic adsorbents  
towards lipophilic adsorbates [29, 50, 51]. The adsorption of  
both mixed pharmaceutical products supposed competing on  
The graphs fitting C /q as a function of C is presented in  
e
e
e
Figure 6. The Langmuir isotherm constants b, 1/b, q and  
max  
2
the correlation coefficients R are presented in Table 5.  
The Langmuir isotherm model for the adsorption of  
mixed ibuprofen and phenobarbital onto PAC (F400) fits  
well the experimental data (Figure 6) based on the relatively  
2
high values of correlation coefficient R 0.983 and 0.960 for  
phenobarbital and ibuprofen, respectively (Table 5).  
3
40  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 336-345  
1  
Table 4: Intra-particle diffusion parameters for the mixed ibuprofen and phenobarbital at an initial concentration of 8 mg L by PAC (F400) at a  
concentration of 40 mg L at 21 °C and pH=67  
1
p1 (mg g min1/2  
1
)
R2  
k
p2 (mg g1 min1/2  
)
R2  
k
Phenobarbital  
Ibuprofen  
3.116  
7.899  
0.948  
0.969  
1.228  
0.065  
0.902  
0.973  
1
capacities towards ibuprofen arriving to 1000 mg g than  
0
0
0
0
.035  
.03  
.025  
.02  
.015  
.01  
Phenobarbital  
Ibuprofen  
Linear (Phenobarbital)  
Linear (Ibuprofen )  
1  
phenobarbital with 333.3 mg g highlighting well the  
y = 0.0036x + 0.0037  
R² = 0.9837  
0
competitive  
adsorption  
between  
both  
selected  
pharmaceuticals. The b factor relates to the dissociation  
constant of the adsorbate determined for the ibuprofen is  
.25 L mg (b<1) showing the good affinity of PAC (F400)  
1
0
0
towards ibuprofen compared to phenobarbital [60].  
y = 0.0017x + 0.0074  
R² = 0.9604  
3
.2.2 Freundlich isotherm  
0
Freundlich isotherm [55] presents an empirical model  
for multilayer and heterogeneous adsorption sites. Its linear  
form is commonly given by the Eq. (7):  
.005  
0
ln(푞 ) = ln푘 + 1/푛ln(퐶 )  
(7)  
e
e
0
2
4
6
8
C (mg L1)  
e
where q  
e
is the adsorbed amount of solute per unit weight of  
Figure 6: Langmuir isotherm of adsorption of ibuprofen (λ= 220 nm)  
mixed with phenobarbital (λ= 210 nm) by PAC (F400) at different  
1  
adsorbent (mg g ), C is the concentration of solute at  
equilibrium in the bulk solution (mg L ), Kf is the  
Freundlich constant indicative of the relative adsorption  
capacity of the adsorbent (mg g ), and 1/n is the  
heterogeneity factor.  
e
1  
1  
concentrations C(PAC) =20280 mg L , at 21 °C in ultrapure water  
1  
0
at pH 67, (C (pharmaceutical) = 8 mg L )  
1  
These results were confirmed by Morley and co-werkers,  
who indicated that Langmuir fits well their result of  
adsorption of ibuprofen onto activated carbon F400 [57].  
Carvalho and co-werkers have as well reported that  
Langmuir model fits best their results of adsorption onto  
activated carbons CAC and CPAC compared to Freundlish  
model [35]. Papciak and co-workers were furthermore  
reported that Langmuir fits well the results of adsorption of  
ibuprofen onto Norit and Carbopol [32].  
The Freundlich isotherms are presented in Figure 7 by  
e e  
fitting ln(q ) as a function of ln(C ) for the adsorption of  
ibuprofen and phenobarbital at an initial concentration of 8  
1  
mg L by PAC (F400) at different concentrations. Straight  
lines are obtained with origin lnK and slope 1/n. The  
Freundlich isotherm parameters K , 1/n, n and the correlation  
F
F
2
coefficients R are presented in Table 6. The values of the  
coefficients of correlation (R ), 0.908 and 0.954 for the  
2
Some works were indicated that Langmuir isotherm fits  
very well the results of phenobarbital adsorption onto  
activated carbons such us the adsorption onto activated  
charcoal reported by El-Mabrouk and co-workers [58], and  
onto activated carbons like SuperChar, Darco KB-B, Norit  
B Supra, Norit USP XX by Wurster and co-woerkers [59].  
Langmuir fits best the results of adsorption of phenobarbital  
onto activated carbon Norit USP XX, Ch3J, and MI in which  
adsorption of the mixed phenobarbital and ibuprofen,  
respectively indicate that Freundlich isotherm model seems  
good to adjust the obtained experimental results. Morley and  
co-workers had reported that Freundlich model fits well their  
results about adsorption of ibuprofen onto activated carbon  
F400 [57]. Papciak and co-workers were furthermore  
reported that Freundlich isotherm fits well the results of  
adsorption of ibuprofen onto Norit and Carbopol [32]. The  
application of the Freundlich isotherm model for the  
adsorption of ibuprofen onto activated carbons F300 by  
OciepaKubicka and co-workers showed a best fitting of this  
model [61].  
2
presented a high R of 0.99, followed by Temkin and then  
Freundlich models according to Gallardo and co-workers  
[
41].  
The calculated values of maximum adsorption capacities  
max) show that the PAC (F400) exhibits better adsorption  
(
q
Table 5: Langmuir isotherm parameters for adsorption of mixed ibuprofen and phenobarbital at initial concentration of 8 mg L1 by PAC (F400)  
at different concentrations at 21 °C and pH=67  
R2  
q
(mg g )  
-1  
b (L mg1)  
1/b (mg L1)  
m
Phenobarbital  
Ibuprofen  
0.983  
0.960  
333.33  
1000  
1
0.14  
1
7
3
41  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 336-345  
Table 6: Freundlich isotherm parameters for adsorption of ibuprofen and phenobarbital at initial concentration of 8 mg L1 by PAC (F400) at  
different concentrations, at 21 °C, and pH=67.  
K
F
1/n  
0.425  
0.583  
n
2.35  
1.72  
R2  
0.908  
0.954  
0
0
.575 1 0.425  
g L  
Phenobarbital  
Ibuprofen  
137.14 mg  
123.10 mg  
.417 1 0.583  
g
L
7
6
5
4
3
2
1
and phenobarbital have been presenting a values of  
y = 0.5838x + 4.8132  
R² = 0.9542  
1  
adsorption energy variation b  
T
of 17.92 and 29.85 kJ mol ,  
respectively, indicating a physical adsorption [46,62,63].  
The positive values of the adsorption energy variation b  
Table 7) indicate an endothermic adsorption process [64].  
T
y = 0.4255x + 4.9215  
R² = 0.9082  
(
4
3
3
00  
50  
00  
y = 136.41x + 98.297  
R² = 0.924  
Phenobarbital  
250  
y = 81.933x + 131.52  
R² = 0.8615  
Ibuprofen  
2
2
1
1
00  
50  
00  
50  
0
0
0
0.5  
1
1.5  
2.5  
Ln (Ce)  
Phenobarbital  
Ibuprofen  
Figure 7: Freundlich isotherm of adsorption of mixed ibuprofen (λ=  
20 nm) and phenobarbital (λ= 210 nm) by PAC (F400) at different  
2
1  
concentrations C(PAC) =20280 mg L , at 21 °C in ultrapure water  
1  
0
at pH 67, (C (pharmaceutical) = 8 mg L )  
0
0.5  
1
1.5  
2
2.5  
Ln (Ce)  
The calculated values of Freundlich constant (1/n) 0.425,  
and 0.583 for phenobarbital and ibuprofen, respectively, are  
less than 1, indicating that the adsorption of the selected  
drugs is favorable. A high adsorbent capacities were  
Figure 8: Temkin isotherm of adsorption of mixed ibuprofen (λ= 220  
nm) and phenobarbital (λ= 210 nm), by PAC (F400) at different  
1  
concentrations C(PAC) =20280 mg L at 21 °C in ultrapure water  
1
at pH 67, (C (pharmaceutical) = 8 mg L )  
0
0
.507 1 0.493  
g L  
indicated by the K values 137.14 mg  
0.257  
L
F
, 123.10  
0
.743  
1  
mg  
g
for phenobarbital and ibuprofen,  
respectively.  
4 Conclusion  
The adsorption processes of tow pharmaceuticals,  
ibuprofen and phenobarbital onto PAC were evaluated in  
ultrapure water. The PAC F400 can effectively eliminate the  
pharmaceutical pollutants from the water. logkow, pKa  
values, and molecular weights were affected the adsorption  
capacities of the trajet compounds onto PAC. Non-polar  
ibuprofen had have a good adsorption capacity compared to  
phenobarbital. Activated carbon had had a less affinity to  
soluble organic compounds. Competitive adsorption  
influenced negatively on the kinetics of the pharmaceuticals.  
The kinetic of pseudo-second order appears more suitable  
model to describe the competitive adsorption process. The  
investigation results are best described by the Langmuir  
model for both ibuprofen and phenobarbital, followed, in  
decreasing order, by the Freundlich and Temkin models.  
This study carried out on a synthetic water and for two  
molecules, gave very promising results as for the possibility  
of eliminating the residues of pharmaceutical products from  
water. It would be interesting to continue this research by  
studying the behavior of other pharmaceutical molecules and  
especially to apply it in real waters (rejections of  
manufacturing plant of drugs, drinking water…) to seek and  
eliminate the residues of pharmaceutical products which can  
harm human health.  
3
.2.3 Temkin isotherm  
The derivation of the Temkin isotherm model presumes  
that the diminution of the adsorption heat is linear rather than  
logarithmic, as applied in the Eq. (7) of Freundlich model.  
The Temkin isotherm is mostly presented in its form given  
by the Eq. (8) [56]:  
푞 = (푅푇/푏 )log퐴 + (푅푇/푏 )log퐶  
(8)  
where: T is the temperature (°K); R is the universal gas  
constant (8.314 J mol K ); b  
heat of adsorption (J mol ), and A is the Temkin isothermal  
constant (L g ).  
1  
1  
T
is the constant relative to the  
1  
1  
The application of the Eq. (8) of Temkin isotherm model  
e e  
is presented in Figure 8 by fitting q as a function of ln(C )  
for the adsorption of ibuprofen and phenobarbital at an intial  
concentration of 8 mg L by PAC (F400) at different  
concentration. The adsorption isotherms derived from the  
experimental data for each of the tested adsorbate and  
adsorbent are presented in Table 7. According to the  
1  
2
correlation coefficient values R of 0.861 and 0.924 for  
ibuprofen and phenobarbital, respectively, the Temkin  
isotherm model for the adsorption of selected  
pharmaceuticals by PAC (F400) do not fit well the  
experimental data (Figure 8). The adsorption of ibuprofen  
3
42  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 336-345  
Table 7: Temkin isotherm parameters for adsorption of mixed ibuprofen and phenobarbital at an initial concentration of 8 mg L by PAC (F400)  
1
at different concentrations at 21 °C and pH=67.  
1
1  
R2  
b
T
(kJ mol )  
A (L g )  
Phenobarbital  
Ibuprofen  
29.85  
17.92  
4.98  
2.06  
0.924  
0.861  
challenges. Journal of Environmental Management.  
Acknowledgements  
2
009;90:23542366  
The authors would like to acknowledge the Laboratory  
of Environmental Sciences and Technology (LSTE) of the  
National Polytechnic School (ENP) for the support during  
the conduct of this study.  
1
1
1. Chritensen FM. Pharmaceutical in the invironment -A human  
risk? Reg. Toxicol. Pharmacol. 1998;28:212221.  
2. Schulman LJ. Sargent EV. A Humain Health Risk Assessment  
of Pharmaceuticals in the Aquatic Environmen. Hum. Ecol.  
Risk. Assess. 2002;8:657680.  
1
3. Jelic A, Gros M, Ginebreda A, Cespedes-Sanchez R, et al.  
Occurrence, partition and removal of pharmaceuticals in  
sewage water and sludge during wastewater treatment. water  
research. 2011;45:11651176  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission,  
14. Nakada N, Tanishima T, Shinohara H, Kiri K, Takada H.  
Pharmaceutical chemicals and endocrine disrupters in  
municipal wastewater in Tokyo and their removal during  
activated sludge treatment. Water Research. 2006;40:3297–  
manipulation of figures, competing interests and compliance  
with policies on research ethics. Authors adhere to  
publication requirements that submitted work is original and  
has not been published elsewhere in any language.  
3
303.  
1
5. Radjenovic J, Petrovic M, Barcelo D. Fate and distribution of  
pharmaceuticals in wastewater and sewage sludge of the  
conventional activated sludge (CAS) and advanced membrane  
bioreactor (MBR) treatment. Water Res. 2009;43:83141.  
6. Carvalho PN, Pirra A, Basto M, Clara P. Activated sludge  
systems removal efficiency of veterinary pharmaceuticals from  
slaughterhouse wastewater. Environ. Sci. Pollut. Res.,  
Competing interests  
The authors declare that there is no conflict of interest  
that would prejudice the impartiality of this scientific work.  
1
Authors’ contribution  
All authors of this study have a complete contribution  
for data collection, data analyses and manuscript writing.  
2
013;20:87908800.  
17. Zaidi S, Chaabane T, Sivasankar V, Darchen A, et al. Electro-  
coagulation coupled electro-flotation process: Feasible choice  
in doxycycline removal from pharmaceutical effluents. Arabian  
Chemistry.  
2015.  
References  
1
2
3
.
.
.
Xu Y, Liu T, Zhang Y, Ge F, Steel RM, Sun L. Advances in  
technologies for pharmaceuticals and personal care products  
removal. J Mater Chem. 2017;5:1200112014.  
18. Kovalova L, Siegrist H, Singer H, Wittmer A, McArdell CS.  
Hospital wastewater treatment by membrane bioreactor:  
performance and efficiency for organic micropollutant  
elimination. Environ. Sci. Technol., 2012;46:15361545.  
19. Martinez F, López-Muñoz MJ, Aguado J, Melero JA. Coupling  
membrane separation and photocatalytic oxidation processes  
for the degradation of pharmaceutical pollutants. Water Res.,  
2013;47:56475658.  
20. Rizzo L, Merica S, Guidab M, Kassinosc D, Belgiornoa V.  
Heterogenous photocatalytic degradation kinetics and  
detoxification of an urban wastewater treatment plant effluent  
contaminated with pharmaceuticals. Water Research.  
2009;43:40704078.  
21. Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual  
pharmaceuticals from aqueous systems by advanced oxidation  
processes. Environment International. 2009;35:402417.  
22. Esplugas S, Bila DM, Krause LGT, Dezotti M. Ozonation and  
advanced oxidation technologies to remove endocrine  
disrupting chemicals (EDCs) and pharmaceuticals and personal  
care products (PPCPs) in water effluents. Journal of Hazardous  
Materials. 2007;149:631642.  
23. An T, Yang H, Li G, Song W, Cooper WJ, Nie X. Kinetics and  
mechanism of advanced oxidation processes (AOPs) in  
degradation of ciprofloxacin in water. Applied Catalysis B:  
Environmental. 2010;94:288294.  
Stülten D, Zühlke S, Lamshöft M, Spiteller M. Occurrence of  
diclofenac and selected metabolites in sewage effluents. science  
of total environment. 2008;405:310316.  
,
Evgenidou EN, Konstantinou IK, Dimitra A, et al. Occurrence  
and removal of transformation products of PPCPs and illicit  
4
5
.
.
Margot J, Rossi L, Barry DA, Holliger C. A review of the fate  
of micropollutants in wastewater treatment plants.WIREs  
Water. 2015;2:457487.  
Bergman A, Heindel J, Jobling S, Kidd KA, Zoeller RT. State  
of the Science of Endocrine Disrupting Chemicals - 2012.  
IOMC  
- Inter-Organization Programme for the Sound  
Management of Chemicals. 2013.  
6
.
Halling-Sprensen B, Nielsen N, Lanzky PF, Ingerslev F, et al.  
Occurrence, fate and effects of pharmaceutical substances in the  
environment. A review Chemosphere. 1998;36:357393.  
Dorosz P. Practical Guide to medicines Ed. Maloine. 2008.  
Hilton MJ, Thomas KV, Ashton D. Targeted monitoring  
program for pharmaceuticals in the aquatic environment. R&D  
Technical Report P6-012/06/TR. UK Environment Agency.  
Bristol, UK, 2003.  
7
8
.
.
9
1
.
Kolpin DW, Furlong ET, Meyer MT, Thurman EM, et al.  
Pharmaceuticals, hormones and other organic wastewater  
24. Jiang M, Yang W, Zhang Z, Yang Z, Wang Y. Adsorption of  
three pharmaceuticals on two magnetic ion-exchange resins.  
Journal of Environmental Sciences. 2015; 31:226234.  
25. Domínguez JR, González T, Palo P, et al. Removal of common  
pharmaceuticals present in surface waters by amberlite XAD-7  
acrylic-ester-resin: influence of pH and presence of other drugs.  
Desalination. 2011;269:231238.  
contaminants in US streams 19992000: national  
a
reconnaissance. Environ Sci Technol. 2002;36:12021211.  
0. Kümmerer K. The presence of pharmaceuticals in the  
environment due to human use present knowledge and future  
3
43  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 336-345  
2
6. Ayele J, Leclerc V, Coullault P. Efficiency of three activated  
carbon for the adsorption of atrazine and diuron-use of some  
models. J Water SRT-Aqua. 1998;47:4145.  
carbon derived from steam pyrolysis of rice straw. Journal of  
Hazardous Materials. 2007;147:633643.  
46. Hamadaoui O, Chiha M. Removal of methylene blue from  
aqueous solutions by wheat bran. Acta Chimica Slovenica.  
2007;54:407418.  
47. Gherbi N. Experimental study and identification process of  
retention of metal cations by natural materials. PhD thesis.  
University of Constantine. 2008.  
48. Boucif A. Study of the coadsorption of two pesticides (duiron  
and metribuzin) on powdered activated carbon. Memory  
Magister. ENP. Algiers. 2009.  
49. Cheung WH, Szeto YS, McKay G. Intraparticle diffusion  
processes during acid dye adsorption onto chitosan.  
Bioresource Technology. 2007;98:28972904.  
50. Huijuan L, Ruihua D, Jiuhui Q, Jia R. Preparation and  
characterization of a novel adsorbent for removing lipophilic  
organic from water. Science in China Ser B Chemistry.  
2005;48:600604.  
51. Chitour CE. Physico-chimique des surfaces. vol 2. édition OPU.  
1992.  
52. Yaacoubi A, Ayele J. Sorption of atrazine and diuron activated  
carbon powder in the presence of surfactants, calcium ions and  
dichromate. Test modeling. Journal of Water Science.  
1999;12:389406.  
2
2
7. Lenntech. Water treatment and air. 2004.  
8. Baccar R, Sarra M, Bouzid J, Feki M, Blanquez P. Removal of  
pharmaceutical compounds by activated carbon prepared from  
agricultural by-product. Chem Eng J. 2012;212:310317.  
9. Mohamed EF, Andriantsiferana C, Wilhelm AM, Delmas H.  
Competitive adsorption of phenolic compounds from aqueous  
solution using sludge-based activated carbon. Environ Technol.  
2
3
3
3
2
011; 32:13251336.  
0. Bo L, Gao N, Liu J, Gao B. The competitive adsorption of  
pharmaceuticals on granular activated carbon in secondary  
effluent. Desalination and Water Treatment. 2016; 57:17023–  
1
7029.  
1. Cooney DO. In Vitro Adsorption of Phenobarbital,  
Chlorpheniramine Maleate, and Theophylline by Four  
Commercially Available Activated Charcoal Suspensions.  
Journal of Toxicology: Clinical Toxicology. 1995;33:213217,  
2. Puszkarewicz A, Kaleta J, Papciak D. Application Of Powdery  
Activated Carbons For Removal Ibuprofen From Water.  
Journal of Ecological Engineering. 2017; 18:169177.  
3. Weber WJ, Smith EH. Activated carbon adsorption: the state of  
the art. Studies in Environmental Science. 1986;29:455492.  
4. Gendrault Derveaux S. Etude d’un traitement combiné bio-  
physico-chimique pour la décontamination des eaux polluées en  
atrazine. Thèse de Doctorat: Ecole Doctorale Chimie Procédés  
et Environnement de Lyon, France. 2004.  
3
3
53. Akhtara J, Aishah SAN, Shahzadb K. A review on removal of  
pharmaceuticals from water by adsorption. Desalination and  
Water Treatment. 2015;57:119.  
54. Langmuir I. The constitution and fundamental properties of  
solids and liquids. J Am Chem Soc. 1916;38:22212295.  
55. Freundlich HMF. über die adsorption in lösungen. zeitschrift  
für physikalische chemie. 1906;57:385470.  
3
5. Mestre AS, Pires J, Nogueira JMF, Carvalho AP. Activated  
carbons for the adsorption of ibuprofen. Carbon. 2007;45:1979–  
1
988.  
3
3
6. Quek SY, Wase DAJ, Forster CF. The use of sago waste for the  
sorption of lead and copper. Water SA. 1998;24:251256.  
7. Repo E. EDTA- and DTPA- Functionalized Silica Gel and  
Chitosan Adsorbents for the Removal of Heavy Metals From  
Aqueous Solutions. Lappeenranta University of Technology.  
Thesis. 2011.  
56. Temkin MJ, Pyzhev V. Kinetics of ammonia synthesis on  
promoted iron catalysts. Acta physicachi. 1940;12:217256.  
57. Delgado LF, Charles P, Glucina K, Morlay C. Adsorption of  
Ibuprofen and Atenolol at Trace Concentration on Activated  
Carbon. Separation Science and Technology. 2015;50:1487–  
1496.  
3
3
8. Ho YS, McKay G. Kinetic model for lead (II) sorption on the  
peat. Science and Technology. 1998;16:243255.  
58. Javaidx KA, El-Mabrouk BH. In Vitro Adsorption of  
Phenobarbital onto Activated Charcoal.  
Pharmaceutical Sciences. 1983;72:1.  
Journal of  
9. Porkodi K, kumar kv. Equilibrium, kinetics and mechanism  
modeling and simulation of basic and acid dyes sorption onto  
jute fiber carbon: eosin yellow, malachite green and crystal  
violet single component systems. Journal of hazardous  
59. VanDer Kamp KA, Qiang D, Aburub A, Wurster DE. Modified  
Langmuir-like Model for Modeling the Adsorption from  
Aqueous Solutions by Activated Carbons. Langmuir.  
2005;21:217224.  
4
4
Adsorption of ibuprofen from aqueous solution on chemically  
surface-modified activated carbon cloths. Arabian Journal of  
Chemistry. 2017;10:35843594.  
1. Mafull CAR, Llopiz JC, Cerveto AI, Hotza D, et al. Adsorción  
de fenobarbital en carbones activados comerciales. Equilibrio  
cinético e isotermo de adsorción/Adsorption of phenobarbital  
onto commercials activated carbon. Kinetic and equilibrium  
isotherm studies. Revista cenic ciencias químicas. 2014;45:1  
2. Mestre AS, JNogueira MF, Parra JB, Carvalho AP, Ania CO.  
Waste-derived activated carbons for removal of ibuprofen from  
solution: Role of surface chemistry and pore structure.  
Bioresource Technology. 2009;100:17201726.  
3. Ho YS, Wase DAJ, Forster CF. Kinetic studies of competitive  
heavy metal adsorption by sphagnum moss peat. Environ  
Technol. 1996;17:7177.  
4. Lopicic ZR, Stojanovic MD, Markovic SB, Milojkovic JV, et  
al. Effects of different mechanical treatments on structural  
changes of lignocellulosic waste biomass and subsequent Cu(II)  
60. Bembnowska A, Pelech R, Milchert E. Adsorption from  
aqueous solutions of chlorinated organic compounds onto  
activated carbons. Colloid and Interface Science.  
2003;265:276282.  
61. Lach J, Szymonik A, Ociepa-Kubicka A. Adsorption of selected  
pharmaceuticals on activated carbons from water. E3S Web of  
Conferences 44. 00089 (2018)  
62. Dada AO, Olalekan AP, Olatunya AM, Dada O. Langmuir,  
Freundlich, Temkin and DubininRadushkevich Isotherms  
Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid  
Modified Rice Husk. IOSR Journal of Applied Chemistry  
(IOSR-JAC). 2012;3:3845.  
63. Aarfane A, Salhi A, El Krati M, Tahiri S, Monkade M, et al.  
Etude cinétique et thermodynamique de l’adsorption des  
colorants Red195 et Bleu de méthylène en milieu aqueux sur les  
cendres volantes et les mâchefers (Kinetic and thermodynamic  
study of the adsorption of Red195 and Methylene blue dyes on  
fly ash and bottom ash in aqueous medium). J Mater Environ  
Sci. 2014;5:19271939.  
4
4
4
64. Ghogomu JN, Noufame TD, Ketcha MJ, Ndi NJ. Removal of  
Pb(II) ions from aqueous solutions by kaolinite and  
metakaolinite materials. British Journal of Applied Science &  
Technology. 2013;3:942961,  
4
5. Daiffullah AAM, Yakout SM, Elreefy SA. Adsorption of  
fluoride in aqueous solutions using KMnO-4 modified activated  
3
44  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 336-345  
6
6
5. CEAEQ. Protocol for the validation of an analytical chemistry,  
laboratory accreditation program for environmental analysis.,  
Available at:  
www.ceaeq.gouv.qc.ca/acreditation/dr12vmc.pdf, 2002.  
6. Lagergren S, Zur theorie der sogenannten adsorption geloster  
stoffe kungliga svenska vetenskaps akademiens. Handlingar.  
1
898;24:139.  
3
45