2020, Volume 8, Issue 1, Pages: 119-124  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
Roles of Institutional Quality on the Relationship  
between Tourism and Economic Development in  
Malaysia  
Hui Shan LEE*, Sin Yee LEE, Wai Mun HAR  
Universiti Tunku Abdul Rahman, Faculty of Accountancy and Management, Bandar Sungai Long; Email: hslee@utar.edu.my  
Received: 12/08/2019  
Accepted: 28/09/2019  
Published: 30/02/2020  
Abstract  
This research intends to examine the roles of institutional quality on tourism-led growth and growth-led tourism hypothesis in Malaysia  
in both short run and long run analysis. This study uses yearly data from 1996 to 2015 to verify whether institutional quality significantly  
affects the relationship between tourism and economic growth in Malaysia. It provides a comprehensive dataset by investigating all the  
institutional quality dimensions including control of corruption, government effectiveness, regulatory quality, rule of law, voice and  
accountability, political stability and absence of violence in addition to the aggregate value and average value of these dimensions. The  
findings provide empirical supports that institutional quality such as control of corruption and government effectiveness do play important  
roles in the tourism and economic growth in Malaysia. In this essence, any policy planning that enhances the corruption and government  
effectiveness of Malaysia could promote the tourism development and economic growth in Malaysia.  
Keywords: Institutional quality; tourism; economic growth; tourism-led growth; growth-led tourism.  
1
article is to investigate the roles of institutional quality on the  
relationship between tourism and economic development in  
Malaysia.  
1
Introduction  
At this new era, tourism has become one of the rapidly  
growing services sectors of the world. This has prompted the  
Malaysian government to set tourism as a key sector for  
invigorating Malaysia's long-term economic growth.  
Specifically, the 11th Malaysia Plan (2015-2020) has identified  
the tourism sector as one of the National Key Economic Areas  
The tourismgrowth hypothesis has been long debated in the  
literature. Although there are many studies of the relationship  
between tourism and economic growth from a range of  
perspective, the direction of its causality remains an unsolved  
conundrum. Scholars suggested that economic growth induces  
tourism development, because the high growth countries have  
many business and working opportunities, while others studies  
took the view that tourism Granger-causes economic growth  
from the gain in foreign exchange and the creation of  
employment to the host countries. From the existing researches,  
several studies have been conducted to analyse the role of  
tourism in economic growth. Generally, the causal relationship  
between tourism and economic growth in Malaysia remains a  
controversial subject. Interestingly, at this juncture, only (17, 3,  
(
NKEAs) for transforming Malaysia into a high income nation  
by 2020. In 1995, only 600 thousand foreign workers in  
Malaysia were illegal (18, 9). The number subsequently  
increased to 2.1 million as observed during the implementation  
of the Illegal Immigrant Comprehensive Settlement Programme.  
In view of these counterfactual data, doubts have arisen  
regarding the appropriateness of emphasising on tourism as a  
key sector for driving long-term economic growth in order to  
attain the high income status by 2020. As not all tourist arrivals  
involve genuine tourists, higher rates of arrivals do not  
necessarily mean higher rates of tourism earnings. In fact,  
UNWTO (2012) noted that Malaysia's ranking in terms of  
tourism earnings was much lower than the ranking by tourist  
arrivals. In view of these reservations, there is an urgent need for  
a more accurate empirical assessment of the actual impact of  
tourism on Malaysia's economic growth (5). Furthermore, the  
important question is, how Malaysian policy makers address the  
institution-related issues to attract a more consistent tourism  
arrival to Malaysia? By looking at the institutional trend in  
Malaysia from 1996, Malaysia achieved a higher institutional  
quality index in year 2005 at an average value of 0.4741 but  
started to decrease to 0.3844 in 2015 which was much lower than  
the value in 1996 at 0.4360. Therefore, the objective of this  
14) that examine the issues of institutional quality in the theory  
of tourism and economic growth theory. Hence, this study aims  
to investigate the stability of the tourismgrowth nexus with the  
roles of institutional quality for Malaysia.  
The Malaysian economy has undergone various phases of  
change from the primary sector to the manufacturing and  
services sectors. Coupled with some prudent policies and  
practical development planning, the economy has been growing  
steadily. However, the global crisis in the 1980s has awakened  
the government of the importance of the tourism industry in  
creating employment opportunity and stimulating economic  
growth. The Malaysian Tourism Promotion Board was  
established to promote the tourism industry and stimulate the  
numbers of international visitor arrivals to Malaysia (12, 19).  
Corresponding author: Hui Shan LEE, Universiti Tunku Abdul Rahman, Faculty of Accountancy and Management, Bandar Sungai  
Long. Email: hslee@utar.edu.my.  
119  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 119-124  
Malaysia is proud and honoured to be nominated once again in  
the prestigious World Travel Awards Asia & Australasia 2017.  
Since 2015, both Malaysia and Tourism Malaysia have won  
is also important to achieve encompassing and sustainable  
progress in tourism and economic growth. Furthermore, Cao  
(2015) suggests that a more effective institutional arrangement  
and government’s responsibilities are needed to plan for a  
sustainable tourism development. Institutional perspective has  
emerged in the early 2000s, but still remains relatively  
conceptually underdeveloped within the tourism field. Majority  
of the studies limit their analysis by only linking the quantitative  
macroeconomics variables in estimating the tourism-growth  
relationship, we take our analysis one step further by  
investigating the role of qualitative macroeconomic perspective  
namely quality of institutions to investigate the relationship in  
between tourism and economic growth (16). Unlike the earlier  
studies, we contribute to the literature by analysing the role of  
tourism in Malaysia's economic growth based upon the  
characteristics of institutional quality. Various econometric  
approaches are employed in this study.  
Asia’s Leading Destination’ and ‘Asia’s Leading Tourist  
Board’ awards respectively for three consecutive years. This  
remarkable record has sparked the interest of researchers to  
investigate the tourism industry in Malaysia. Motivated by the  
aforementioned shortcomings, the goal of this paper is to  
investigate the impact of tourism expansion on Malaysia's  
economic growth in a bilateral framework with the roles of  
institutional quality. Unlike the earlier studies, we contribute to  
the literature by analysing the role of tourism in Malaysia's  
economic growth based upon institutional quality. Various  
econometric approaches are employed in this study.  
2
Literature Review  
The growth in international tourism has taken place around  
The rest of this paper is organised as follows. The next  
section will explain the data and methodology. Section 3 will  
discuss the econometric procedures followed. The empirical  
findings will then be presented in Section 4 followed by  
conclusion in Section 5.  
various activities over the years: leisure, business, medical,  
cultural, adventure, wellness, sports, religious, wildlife and  
ecotourism. The United Nations has reported that this growth  
has achieved the US $1 trillion mark, thus leading tourism  
become an engine of development for many small economies  
and a viable sector for developed economies. The literature has,  
without a doubt, captured the different facets of the growing  
importance of the tourism industry. Past literature on the impact  
of tourism on growth generally find a positive association  
between tourism and the economic growth rate.  
For the validation of tourism-led growth hypothesis, it has  
been confirmed by the studies (4, 18, 6, 7, 1, 2, 13). In the study  
by Bouzahzah and El Menyari (2013), they only find tourism-  
led growth hypothesis is valid in the short run, but only  
unidirectional for growth-led tourism in the long run. (18)  
validate that tourism-led growth hypothesis exist in Malaysia  
both short run and long run. (11) also find that tourism-led  
growth hypothesis in ASEAN-5 countries with public  
intervention is needed to provide a better tourism facility to  
enhance the economic growth. A new finding by (7) propose that  
different conditions of tourism development such as will lead to  
various consequences on the tourismgrowth nexus.  
3 Methodology  
This study employs annual time series data from 1996 to  
2015 extracted from The World Bank (economic growth and  
tourism indicators). The institutional quality data is obtained  
from Worldwide Governance Indicators. The economic growth  
is determined by Gross Domestic Product (GDP) and number of  
tourists’ arrival (TA) is the proxy for tourism variable. The  
institutional quality variables consist of a comprehensive dataset  
by investigating all the institutional quality dimensions  
including control of corruption (CC), government effectiveness  
(GE), regulatory quality (RQ), rule of law (RL), voice and  
accountability (VA), political stability and absence of violence  
(PS) in addition to the aggregate value of institutional quality  
(AggIQ) and average value of institutional quality (AveIQ).  
GDP and TA are transformed into natural logarithm to induce  
immobility in the varience-covarience matrix.  
Apart from that tourism-led growth hypothesis, Cheam et al.  
2013) find significant growth-led tourism hypothesis in  
First, we apply the standard augmented Dickey-Fuller  
(ADF) unit root test and Philip-Perron (PP) unit root test to  
determine the stationery characteristics of all the variables.  
Then, we proceed to use Johansen Juselius test to examine is  
there any cointegration among the variables (10). This is to  
determine the presence of long-run equilibrium relationships  
amongst economic growth, tourism and institutional variables  
with the advantage of this method is not sensitive to the choice  
of the dependent variable because it treats all variables as  
endogenous. If a set of variables are cointegrated, one should use  
the Vector Error Correction Model (VECM) because it takes  
into account the short-run and long run elements. The VECM  
model in this study can be written as:  
(
Malaysia (16). The interesting finding from this research is that  
they focus on the triangular casual relation in between tourism  
and economic growth with other macroeconomics variables  
such as education, physical capital, government tourism  
expenditure and exports. Additionally, (2) find that there is  
positive link between the extent of tourism specialization and  
economic growth in cross sectional countries analysis from 1980  
to 2002. Their research claim that limited data in institutional  
quality could lead to significant measurements errors to even  
more bias. Recommendation from (15) apart from  
infrastructural, and innovation capabilities, institutional quality  
120  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 119-124  
Where lagged dependent variables added into the equations  
to remove serial correlation and to ensure that the disturbances  
terms are white noise. j is the optimal lag length determined by  
the Akaike's Information Criterion (AIC). Nevertheless, in the  
absence of cointegration, one can only discover the short-run  
causal relationship using the first difference VAR model (8).  
Lastly, the causal relationship between tourism and economic  
growth in Malaysia will be ascertained by the Granger causality  
test to investigate the variables constitute unidirectional or  
bidirectional relationship. This allows us to assess both long-run  
growth that interacted by CC is not being examined, CC shows  
a negative relationship. Whereas, when economic growth and  
CC are the explanatory variables for tourism, both are showing  
positive results indicate that better economic growth and better  
CC will enhance tourism. In this essence, a better economic  
growth implies that the infrastructure is better and control on  
corruption is effective thus attracting more tourists to visit  
Malaysia.  
Similar to CC, GE also presents a negative relationship to  
economic growth but a positive connection with tourism.  
Therefore, it is concluded that better institutional quality such as  
control of corruption and government effectiveness could  
enhance the tourism growth in Malaysia.  
To examine the granger causality of tourism, economic  
growth and institutional quality, the results are report in Table 6  
to Table 13 Since CC and GE postulate cointegrationg  
relationship with tourism and economic growth, the ECT terms  
are illustrated in Table 6 and Table 7 respectively. The negative  
and significant ECT in Table 6 suggests that the dynamic  
movement of economic growth will converge in the long run. In  
the short run, CC will enhance economic growth but no  
influence to the tourism. This suggest that lesser corruption  
issues in the short run will enhance economic growth in the short  
run.  
Table 7 illustrates that in the dynamic changes in tourism  
and government effectiveness in the short run will converge in  
the long run due to their ECT are negative signs and significant.  
In the short run, tourism does end government effectiveness  
have no impact towards economic growth. However, economic  
growth does postulates positive impact towards tourism in the  
short run. This scenario could be due to higher government  
spending to improve the facilities in Malaysia could encourage  
more tourists to visit Malaysia.  
2
and short-run causality, respectively, on the  
-test of the  
lagged first differenced terms for each right-hand-side variable  
and the t-test of the error correction term.  
4
Results and Findings  
Table 1 presents the unit root test of all the variables, at the  
constant with trend model, both ADF and PP tests show that all  
variables are stationery at I(1). Moving to the Johansen Juselius  
test, only control of corruption (CC) and government  
effectiveness (GE) indicate existence of cointegration with the  
tourism and growth variables, thus the results are shown in Table  
2
and 3 To conserve space, other institutional variables such as  
RQ, RL, VA, PS, AggIQ and AveIQ which do not provide  
significant cointegration relationship are not reported.  
Since CC and GE show cointegration relationship, the  
cointegrating eigenvectors for the long run relationship with  
tourism and economic growth are reported in Table 4 and Table  
5
respectively. From Table 4, tourism does postulate significant  
impact to economic growth in the long run. Economic growth  
also demonstrates positive effect to tourism in the long run. CC  
illustrates a positive relationship to tourism but indicates a  
negative relationship to economic growth. This can be explained  
by when impacts of economic growth are explained by tourism  
and CC only, there might be other variables which explain the  
Table 1: Test for Unit Root  
ADF Unit Root  
Philip-Perron  
Unit Root  
ADF Unit Root Philip-Perron  
Unit Root  
Constant Without Trend  
Level  
Constant With Trend  
1 Difference  
st  
lnGDP  
lnTA  
CC  
GE  
RQ  
RL  
VA  
PS  
AggIQ  
-0.395800  
-3.291638**  
-1.676164  
-1.440448  
-2.321654  
-2.044815  
-3.360832**  
-2.568126  
-2.259321  
-2.259321  
-0.424737  
-3.682459**  
-4.406163***  
-3.104560**  
-3.605434**  
-4.658225***  
-3.875050***  
-4.095500***  
-3.885472***  
-3.936403***  
-3.936403***  
-3.633142**  
-4.537979***  
-3.553353**  
-3.648954**  
-4.813245***  
-3.866856***  
-5.633263***  
-3.934728***  
-3.936403***  
-3.936403***  
-1.162021  
-1.736840  
-4.626090***  
-2.321654  
-2.296039  
-3.135401**  
-2.663822*  
-2.369351  
-2.369351  
AveIQ  
Note: The values represent the t-statistics. *, **, *** denote significant at 10%, 5%, 1% respectively.  
Table 2: Result of Multivariate Cointegration Test (Institutional variable: Control of Corruption)  
Hypothesis Ho:  
rank=r  
r=0  
r=1  
Maximum Eigenvalue  
Test Statistic  
21.40214**  
3.573887  
2.451131  
Trace  
95%  
Test Statistic  
27.42715  
6.025017  
2.451131  
95%  
21.13162  
14.26460  
3.841466  
29.79707  
15.49471  
3.841466  
r=2  
Table 3: Result of Multivariate Cointegration Test (Institutional variable: Government Effectiveness)  
Hypothesis Ho:  
rank=r  
r=0  
r=1  
Maximum Eigenvalue  
Test Statistic  
21.20651**  
15.59802**  
2.978351  
Trace  
95%  
Test Statistic  
37.78288**  
18.57637**  
2.978351  
95%  
21.13162  
14.26460  
3.841466  
29.79707  
15.49471  
3.841466  
r=2  
121  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 119-124  
Among the other institutional variables such as RQ, RL, VA,  
AggIQ and AveIG, all of these variables do not postulate  
relationship with tourism and economic in both long run and  
short run. However, political stability does enhance tourism in  
the short run. This implies that Malaysia could attract more  
tourists if the political environment in Malaysia is stable. From  
Table 8 to 13, the results proven that tourism does improve the  
economic growth in the short run. This is because the spending  
by the tourists could boost the output in Malaysia. In Table 11,  
a better political stability will enhance both tourism and  
economic growth.  
control of corruption and government effectiveness are very  
important to support tourism and economic growth in the long  
run. If the political stability is disrupted, it will reduce the tourist  
into Malaysia as the tourists are concern with the safety issue.  
The message underlying this finding is that governments in  
Malaysia must do more to combat corruption, and to maintain  
the government effectiveness in addition to sustain a good  
political stability environment. This is to take place in  
conjunction with investing in projects that improve the  
attractiveness of Malaysia to the outside world at the same time  
improving institutional quality. This paper shows that tourists  
have a higher propensity to visit a county with higher standards  
of institutional quality.  
Table 4: Cointegrating eigenvectors (Institutional variable:  
Control of Corruption)  
lnGDP  
1.00  
lnTA  
0.806***  
CC  
Table 5: Cointegrating eigenvectors (Institutional variable:  
Government Effectiveness)  
-
-0.8033**  
(-2.051)  
CC  
0.997**  
(2.327)  
lnGDP  
-1.244***  
(-3.990)  
(
6.590)  
lnGDP  
-1.00  
lnTA  
GE  
lnTA  
1.00  
lnGDP  
1.241***  
1.005***  
(4.580)  
lnGDP  
0.995***  
(4.719)  
lnTA  
-4.159***  
(-5.782)  
GE  
4.140***  
(6.613)  
lnGDP  
-0.24**  
(-2.129)  
-
(
7.697)  
lnTA  
-1.00  
CC  
1.00  
lnTA  
1.002***  
-
(
3.877)  
GE  
-
1.00  
0.242**  
(
2.363)  
5
Conclusion  
This study shows that tourism does augment economic  
growth in Malaysia both in long run and short run. Furthermore,  
Table 6: Granger Causality Results based on VECM (Institutional variable: Control of Corruption)  
Independent Variables  
Dependent  
2
ECTt-1  
st  
-
statistics of lagged 1 differenced term [p-value]  
coefficient  
(t-ratio)  
-0.4533***  
(-3.8370)  
-0.0172  
(-0.296)  
-0.113  
(-1.076)  
Variable  
ΔlnGDP  
ΔlnGDP  
ΔlnTA  
0.647266  
[0.4211]  
ΔCC  
4.716913**  
[0.0299]  
0.075278  
[0.7838]  
--  
--  
ΔlnTA  
ΔCC  
0.556770  
0.4556]  
0.141386  
0.7069]  
[
--  
3.030391*  
[0.0817]  
[
Note: *** and ** denotes significant at 1% and 5% significance level, respectively. The figure in the parenthesis (…) denote as t-statistic and the figure in  
the squared brackets […] represent as p-value.  
Table 7: Granger Causality Results based on VECM (Institutional variable: Government Effectiveness)  
Independent Variables  
Dependent  
2
ECTt-1  
st  
-
statistics of lagged 1 differenced term [p-value]  
coefficient  
(t-ratio)  
0.174  
(1.977)  
-1.557**  
(1.627)  
Variable  
ΔlnGDP  
ΔlnGDP  
ΔlnTA  
2.613412  
[0.1060]  
ΔGE  
0.272189  
[0.6019]  
2.242519  
[0.1343]  
--  
ΔlnTA  
ΔGE  
3.331547*  
0.0680]  
0.204626  
0.6510]  
[
--  
0.138545  
[0.7097]  
-0.648***  
(-2.569)  
[
--  
Note: *** and ** denotes significant at 1% and 5% significance level, respectively. The figure in the parenthesis (…) denote as t-statistic and the figure in  
the squared brackets […] represent as p-value  
122  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 119-124  
Table 8: Granger Causality Results based on VECM (Institutional variable: Regulator Quality)  
Independent Variables  
Dependent  
2
st  
statistics of lagged 1 differenced term [p-value]  
-
Variable  
ΔlnGDP  
ΔlnTA  
ΔGE  
ΔlnGDP  
4.318458**  
[0.0377]  
1.805528  
[0.1790]  
0.079685  
[0.7777]  
-
-
ΔlnTA  
ΔRQ  
1.284248  
0.2571]  
0.126601  
0.7220]  
[
--  
0.009790  
[0.9212]  
[
--  
Note: *** and ** denotes significant at 1% and 5% significance level, respectively. The figure in the parenthesis (…) denote as t-statistic and the figure in  
the squared brackets […] represent as p-value  
Table 9: Granger Causality Results based on VECM (Institutional variable: Rule of Law)  
Independent Variables  
Dependent  
2
st  
statistics of lagged 1 differenced term [p-value]  
-
Variable  
ΔlnGDP  
ΔlnTA  
ΔRL  
ΔlnGDP  
5.334201**  
[0.0209]  
0.611726  
[0.4341]  
2.102049  
[0.1471]  
-
-
ΔlnTA  
ΔRL  
0.589312  
0.4427]  
0.170929  
0.6793]  
[
--  
0.527344  
[0.4677]  
[
--  
Note: *** and ** denotes significant at 1% and 5% significance level, respectively. The figure in the parenthesis (…) denote as t-statistic and the figure in  
the squared brackets […] represent as p-value  
Table 10: Granger Causality Results based on VECM (Institutional variable: Voice and Accountability)  
Independent Variables  
Dependent  
Variable  
ΔlnGDP  
ΔlnTA  
2
st  
statistics of lagged 1 differenced term [p-value]  
-
ΔlnGDP  
ΔlnTA  
ΔVA  
3.831068**  
[0.0503]  
0.465908  
[0.4949]  
0.855037  
[0.3551]  
--  
1.208866  
0.2716]  
0.289298  
0.5907]  
[
--  
ΔVA  
0.644012  
[0.4223]  
[
--  
Note: *** and ** denotes significant at 1% and 5% significance level, respectively. The figure in the parenthesis (…) denote as t-statistic and the figure in  
the squared brackets […] represent as p-value  
Table 11: Granger Causality Results based on VECM (Institutional variable: Political Stability)  
Independent Variables  
Dependent  
Variable  
ΔlnGDP  
ΔlnTA  
2
st  
statistics of lagged 1 differenced term [p-value]  
-
ΔlnGDP  
ΔlnTA  
ΔPS  
5.972970**  
[0.0145]  
1.053734  
[0.3046]  
4.054670**  
[0.0440]  
--  
3.792975*  
0.0515]  
8.157524***  
0.0043]  
[
--  
ΔPS  
8.531746***  
[0.0035]  
[
--  
Note: *** and ** denotes significant at 1% and 5% significance level, respectively. The figure in the parenthesis (…) denote as t-  
statistic and the figure in the squared brackets […] represent as p-value  
123  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 119-124  
Table 12: Granger Causality Results based on VECM (Institutional variable: Aggregate Institutional Quality)  
Independent Variables  
Dependent  
2
st  
statistics of lagged 1 differenced term [p-value]  
-
Variable  
ΔlnGDP  
ΔlnGDP  
ΔlnTA  
5.450132**  
[0.0196]  
ΔAggIQ  
0.672155  
[0.4123]  
0.558975  
[0.4547]  
-
-
ΔlnTA  
1.810409  
[0.1785]  
--  
ΔAggIQ  
1.489952  
2.101577  
[0.1471]  
[0.2222]  
--  
Note: *** and ** denotes significant at 1% and 5% significance level, respectively. The figure in the parenthesis (…) denote as t-statistic and the figure in  
the squared brackets […] represent as p-value  
Table 13: Granger Causality Results based on VECM (Institutional variable: Average Institutional Quality)  
Independent Variables  
Dependent  
2
st  
statistics of lagged 1 differenced term [p-value]  
-
Variable  
ΔlnGDP  
ΔlnGDP  
ΔlnTA  
5.450132**  
[0.0196]  
ΔAveIQ  
0.672155  
[0.4123]  
0.558975  
[0.4547]  
-
-
ΔlnTA  
1.810409  
0.1785]  
1.489952  
0.2222]  
[
--  
ΔAveIQ  
2.101577  
[0.1471]  
[
--  
Note: *** and ** denotes significant at 1% and 5% significance level, respectively. The figure in the parenthesis (…) denote as t-statistic and the figure in  
the squared brackets […] represent as p-value  
1
1
1
1
3. Lopes IM, Oliveira P. Evaluation of the Implementation of the  
General Data Protection Regulation in Health Clinics. Journal of  
Information Systems Engineering & Management. 2018;3(4):28.  
4. Luo F, Moyle BD, Bao J, Zhong Y. The role of institutions in the  
production of space for tourism: National Forest Parks in China.  
Forest Policy and Economics. 2016;70, 47-55.  
5. Peterson RR, Cardenas D, Harrill R. Tourism as a catalyst for  
economic development in Latin America: setting an agenda for  
policy and research. Tourism analysis. 2014;19(1):117-122.  
6. Pussyrmanov N, Rystina I, Bulegenova B, Askeyeva G, Gabdulina  
B. President Nursultan Nazarbayevs program article “The course  
towards future: Modernization of public consciousness”–ideology,  
value and political aspects. Opción. 2018;34(85-2):824-837.  
7. Ruhanen L, Char-lee JM. Location, Location, Location’—The  
Relative Importance of Country, Institution and Program: A Study  
of Tourism Postgraduate Students. Journal of Hospitality and  
Tourism Management. 2010;17(1):44-52.  
References  
1
.
Ameen AM, Ahmed MF, Hafez MAA. The Impact of Management  
Accounting and How It Can Be Implemented into the  
Organizational Culture. Dutch Journal of Finance and Management.  
2
018;2(1):02.  
2
.
Piotrowski JM, Arezki MR, Cherif R. Tourism Specialization and  
Economic Development+ L4183: Evidence from the UNESCO  
World Heritage List (No. 9-176). International Monetary Fund.  
2
009.  
3
4
5
.
.
.
Balli F, Balli HO, Louis RJ. The impacts of immigrants and  
institutions on bilateral tourism flows. Tourism Management.  
2
016;52:221-229.  
Bouzahzah M, El Menyari Y. International tourism and economic  
growth: the case of Morocco and Tunisia. The Journal of North  
African Studies. 2013;18(4):592-607.  
Cao X. Challenges and potential improvements in the policy and  
regulatory framework for sustainable tourism planning in China: the  
case of Shanxi Province. Journal of Sustainable Tourism.  
1
1
1
8. Tang CF, Tan EC. Does tourism effectively stimulate Malaysia's  
economic growth?. Tourism management. 2015;46: 158-163.  
9. Tayebiniya NK, Khorasgani NS. The Relationship Between  
Workplace Spirituality And Job Performance Among Staff Of Azad  
2
015;23(3):455-476.  
6
7
.
.
Li CC, Mahmood R, Abdullah H, Chuan OS. Economic growth,  
tourism and selected macroeconomic variables: A triangular causal  
relationship in Malaysia. Margin: The Journal of Applied Economic  
Research. 2013;7(2):185-206.  
Chiu YB, Yeh LT. The threshold effects of the tourism-led growth  
hypothesis: Evidence from a cross-sectional model. Journal of  
Travel Research. 2017;56(5):625-637.  
Islamic University, Iran. Humanities  
Reviews. 2018;6(1):14-18.  
&
Social Sciences  
8
9
.
.
Granger CW. Some recent development in a concept of causality.  
Journal of econometrics. 1988;39(1-2):199-211  
Haghshenas S, Iravani MR, Nasrabadi HAB. Study Of Effective  
Factors On Job Satisfaction Of Omid Hospital Staff In Isfahan City.  
UCT Journal of Management and Accounting Studies.  
2
015;3(1):15-17.  
1
0. Johansen S, Juselius K. Maximum likelihood estimation and  
inference on cointegrationwith applications to the demand for  
money. Oxford Bulletin of Economics and statistics.  
1
990;52(2):169-210.  
1
1
1. Kadir N, Karim MZA. Tourism and economic growth in Malaysia:  
Evidence from tourist arrivals from ASEAN-S countries. Economic  
research-Ekonomska istraživanja. 2012;25(4):1089-1100.  
2. Lean HH, Tang CF. Is the tourismled growth hypothesis stable for  
Malaysia? A note. International Journal of Tourism Research.  
2
010;12(4):375-378.  
124