Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 1-5  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Sorption of Aspirin from Aqueous Solutions  
using Rice Husk as Low Cost Sorbent  
Abdoulaye Demba N’diaye * and Mohamed Sid’Ahmed Kankou 2  
1
1Laboratoire de Chimie, Service de Toxicologie et de Contrôle Qualité, Institut National de Recherches en Santé Publique, BP  
6
95, Nouakchott, Mauritanie  
2
Unité de Recherche Eaux Pollution et Environnement, Département de Chimie, Faculté des Sciences et Techniques, Université  
de Nouakchott Al-Aasriya, BP 880, Nouakchott, Mauritanie  
Received: 31/08/2019  
Accepted: 12/11/2019  
Published: 30/02/2020  
Abstract  
The Rice Husk (RH) was used as low cost sorbent for the removal of aspirin by sorption from aqueous solution. The RH was  
characterized by using the point of zero charge (pHpzc), Boehm titration and Fourier transform infrared spectroscopy (FTIR).  
Batch sorption experiments are intended to identify the adsorption isotherms of aspirin on the RH. The experimental data were  
2
fitted to the Langmuir and Freundlich isotherms. The Sum of the Squares of the Errors (SSE) and the correlation coefficient R  
between the calculated and the experimental data by nonlinear regressive analysis were used. The Langmuir model better  
-
1
described the isotherm data with the maximum Langmuir monolayer adsorption capacity was 47.03 mg g at pH 2. As a  
conclusion, RH could be one of the low cost and environmentally friendly sorbent.  
Keywords: Aspirin, Rice Husk, low cost sorbent, isotherms  
1
waste materials from forest industries have been used  
successfully as alternative to high cost commercial  
activated carbon [12].  
Therefore, in this study, a local agricultural, cheap,  
ecofriendly, abundant and solid waste material Rice Husk  
1
Introduction  
Aspirin or Acetylsalicylic acid is a non-steroidal anti-  
inflammatory drug used to treat pain, fever and  
inflammation [1] and prevention of first myocardial  
infarction, cardiovascular diseases, cancer and treatment of  
human immuno-deficiency virus infection [2].As a result,  
aspirin is also one of the most commonly detected  
pharmaceutical compounds in the environment [3-5].  
Several methods to treat pharmaceutical pollutants have  
been reported, such as via electrochemical advanced  
oxidation processes [6], photocatalysis [7], membrane  
filtration [8] and adsorption process [9; 10]. However the  
adsorption is seen as the most promising removal method  
because of its versatility in removing different pollutant and  
also its efficiency. In adsorption processes the cost of  
commercial activated carbons may be limiting, creating  
necessity to develop new materials with lower investment.  
An alternative is the utilization of agricultural residues  
directly as sorbents or as precursors to activated carbon  
synthesis, since these materials are inexpensive, or even  
free, available in large quantities and renewable [11]. Low-  
cost sorbents including raw agricultural solid wastes and  
(
RH) selected for the removal of aspirin from aqueous  
solution. The point of zero charge (pHpzc), Boehm  
titration, Fourier and transform infrared spectroscopy  
(
FTIR) analyses were performed. The equilibrium data  
were described by the Langmuir and Freundlich isotherm  
models with using the nonlinear method.  
2
Material and methods  
2
.1 Aspirin solutions  
All the solutions are prepared using pure aspirin and  
distilled water. The stock solution is prepared by adding  
00 mg of the active ingredient to 500 mL of distilled  
5
water. Other concentrations are prepared by dilutions of the  
stock solution and used to develop the standard curves. The  
physico-chemical properties of aspirin are given in table 1.  
Table 1: Physico- chemical properties of aspirin  
Chemical name  
Molecular formula  
Molecular weight (g mol )  
Water solubility (g L )  
pKa  
Acetylsalicylic Acid  
C H 0  
9 8 4  
180.16  
3.3 (20 °C)  
3.5 (25 °C)  
1.18  
Corresponding author: Abdoulaye Demba N’diaye,  
Laboratoire de Chimie, Service de Toxicologie et de  
Contrôle Qualité, Institut National de Recherches en Santé  
Publique, BP 695, Nouakchott, Mauritanie. E-mail :  
abdouldemba@yahoo.fr.  
-1  
-1  
Log Kow  
1
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 1-5  
2
.2 Preparation and characterization of RH  
The agricultural wastes, RH, are collected from the  
number of identical sites. The Freundlich model is  
commonly used to describe the adsorption characteristics  
for a heterogeneous surface [17]. The Langmuir and  
Freundlich models can be expressed as (2) and (3),  
respectively:  
south of Mauritania. RH was crushed, sieved, thoroughly  
rinsed with distilled water and then dried at 105 °C for 2 h  
until reaching a constant weight. Finally, the RH was  
powdered, sieved (< 100 µm) and stored in desiccator  
before use (figure 1).  
q K C  
e
(2)  
m
L
qe   
1
 K C  
L e  
1
e
/ n  
q  K C  
(3)  
e
F
where q  
m
and k  
L
are Langmuir constants related to  
adsorption capacity and affinity of the binding sites,  
respectively. k and n are Freundlich constants representing  
F
adsorption capacity and the energy of adsorption  
effectiveness, respectively.  
L
The factor of separation of Langmuir, R , which is an  
essential factor characteristic of this isotherm is calculated  
by using the relation (4):  
Figure 1: RH before and after grounding  
The point of zero charge (pHpzc) of the RH was carried  
out [13] and the surface area was obtained using Sears  
method [14]. The surface acidic and basic functional groups  
of the RH were determined by the acid-base titration  
method proposed by Boehm [15]. The samples of RH were  
analyzed by the Fourier transform infrared spectroscopy  
1
1k C )  
(4)  
R   
L
(
L 0  
where C  
and q  
0
is the higher initial concentration of aspirin, while  
m
is the Langmuir constant and the maximum  
(
FTIR) to determine the surface functional groups. The  
wavenumber scanning is in the range of 6504,000 cm .  
-1  
adsorption capacity respectively. The parameters indicate  
the shape of the isotherm as follows: R values indicate the  
type of isotherm. When R = 1 adsorption is linear; when 0  
< R < 1, it is favourable, when R = 0, it is irreversible,  
L
2
.3 Adsorption isotherms  
The sorption isotherms at ambient temperature (25 °C)  
L
L
L
are obtained by mixing (70 rpm), for 180 minutes, 0.5 g of  
sorbent with 50 mL of aspirin solutions with different  
L
while to be unfavorable, while when R > 1, it is  
unfavorable.  
-
1
The correlation coefficient R2 and the Sum of the  
Squares of the Errors (SSE) analysis is used to fit  
experimental data with isotherm using the Excel Solver  
determined by following equations (5) and (6),  
respectively:  
concentrations varying from 10 to 100 mg L . The pH of  
the solutions was adjusted using a pH-meter to constant  
values by drop-wise addition of 0.1 M HCl or 0.1 M NaOH  
solutions. At the end of each experiment the agitated  
solution mixture was micofiltered using micro filter and the  
residual concentration of aspirin was determined by High  
Performance Liquid Chromatography (HPLC). Mixture of  
acetonitrile-water (25:75 v/v) adjusted to pH 2.5 with  
phosphoric acid was used as a mobile phase at a flow rate  
2
q -q  
exp mod  
(5)  
2
R =100 1-  
2
q -q  
exp  
avr  
-1  
of 2 ml min [16] at a selected wave length of 222 nm.  
e
The adsorbed quantity at equilibrium (q ) is calculated  
according to the following equation (1):  
2
mod  
SSE=  
q  q  
exp  
(6)  
-1  
where qexp (mg g ) is equilibrium capacity from the  
experimental data, qavr is equilibrium average capacity from  
the experimental data and qmod is equilibrium from model.  
C Ce V  
   
i
m
(
1)  
q   
e
2
So that R  100 – the closer the value is to 100, the more  
where:  
perfect is the fit.  
-1  
-
-
-
-
-
q : quantity of aspirin per g of RH (mg g ),  
e
-1  
C
C
i
: initial solution concentration of aspirin (mg L ),  
3 Results and discussion  
-1  
e
: equilibrium solution concentration of aspirin (mg L ),  
3.1 Characterization of RH  
m: the RH weight (g),  
V: Volume of the solution (L).  
The physical and chemical characteristics of RH  
sorbent are described in table 2. The quantification of the  
RH sorbent by Boehm titration reveals that the sorbent has  
also the greatest content of acidic surface than the basic  
surface groups. The predominance of acidic surface is  
confirmed by pHpzc value of 5.8. The retention area for RH,  
without any thermal and /or chemical process, is found to  
Adsorption isotherm gives an idea about the feasibility  
of a sorbatesorbent system. In this work Langmuir and  
Freundlich models were tested for describing the  
experimental results. The Langmuir isotherm is valid for  
monolayer adsorption onto a surface containing a finite  
2
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 1-5  
2
1  
2
be 5.6 m g . To determine the surface functional groups  
of RH, its FTIR spectrum is obtained as shown in Figure 2.  
OH stretching of the hydroxyl of the alcohols groups and  
The values of R are compared, Langmuir isotherm are  
shown to have slightly higher than Freundlich isotherm.  
The lowest SSE value further confirmed the suitability of  
Langmuir model in describing the equilibrium data,  
suggesting the existence of monolayer adsorption of aspirin  
onto RH. Furthmore, it can be seen from table 3 that all  
-1  
bonded hydroxyl groups of cellulose: 2925 cm .  
Table 2: Physical characteristics of the RH  
Parameters  
values of K  
confirms that the adsorption of aspirin onto RH. It is  
interesting to note that the value of K < 0.1 is a sign of low  
L L  
, R and 1/n are in between zero and one. This  
Value  
pHpzc  
5.8  
-1  
L
Total surface acidity (meq g ) 0.600  
Total surface basicity (meq g ) 0.155  
Specific surface (m g )  
Particle size (µm)  
-1  
surface energy, which indicates stronger bonding between  
aspirin and RH sorbent.  
2
1  
5.6  
< 100  
3
,5  
3
The peak at 2854.3 cm1 was assigned to CH  
asymmetrical stretching of methyl groups on the surface of  
2,5  
2
-1  
RH adsorbent. Peak at 1743.9 cm (C =O stretching of  
-1  
Experimental data  
Langmuir  
COOH). The peak lying in the region of 1036.6 cm shows  
the presence of Si-O-Si linkages. The analysis of the FTIR  
spectrum showed the presence of carboxyl and hydroxyl,  
these functional groups may be the major sorption sites for  
aspirin removal.  
1
,5  
1
Freundlich  
0
,5  
0
0
10  
20  
30  
Ce (mg L-1  
40  
50  
60  
70  
)
Figure 4: Langmuir and Freundlich non linear for RH at pH 7  
4
3
2
1
0
,5  
3
,5  
2
Experimental data  
Langmuir  
,5  
1
Freundlich  
,5  
0
0
10  
20  
30  
40  
50  
60  
70  
Ce (mg L-1  
)
Figure 5: Langmuir and Freundlich non linear for RH at pH 12  
Figure 2: FTIR Spectrum of RH  
Table 3: Isotherm parameters with nonlinear methods  
3
.2 Adsorption isotherms  
The adsorption isotherm gives an idea of the  
Models  
pH  
2
7
12  
q
K
R
L
m
47.03  
0.0011  
0.90  
33.36 17.30  
0.00150.0038  
0.87 0.72  
equilibrium behavior of an aspirinRH system. Figures 3, 4  
and 5 shows the experimental equilibrium data and the  
predicted theorical isotherms for the sorption of aspirin  
onto RH at pH 2, 7 and 12, respectively. The values of  
isotherm parameters that are studied in this work are shown  
in Table 3.  
L
Langmuir  
SSE  
R (%)  
0.0055  
99.51  
0.81  
0.00180.0119  
99.97 99.81  
0.87 0.72  
2
1/n  
K
F
0.108  
0.104  
98.24  
0.077 0.154  
0.02420.1189  
99.52 98.01  
Freundlich  
SSE  
3
2
1
0
,5  
3
2
R (%)  
,5  
2
The best pH for the adsorption of aspirin is pH 2 which  
is the initial pH of aspirin without addition of NaOH. A  
decrease in adsorption was observed with an increase in  
Experimental data  
Langmuit  
,5  
1
-1  
pH. The adsorption capacity decrease from 47.03 mg g at  
Freundlich  
-1  
pH 2, to 33.36 and 17.30 mg g at pH 7 and 12. The same  
finding was reported from previous study where the  
adsorption of aspirin favours a more acidic solution [9; 10].  
The pHPZC is an important parameter for biosorbent to  
characterize the sensitivity to the pH and their surface  
charges. The pHpzc value is a key factor in the electrostatic  
,5  
0
0
10  
20  
30  
40  
Ce (mg L-1  
50  
60  
70  
)
Figure 3: Langmuir and Freundlich non linear for RH at pH 2  
3
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 1-5  
interactions between sorbate and sorbent. The pHPZC of RH  
was found to be 5.8. This means that at pH more than 5.8,  
the RH sorbent surface will be negatively charged. Aspirin  
is a weak acid (pKa = 3.5) and undergoes partial  
deprotonation in water to produce negatively charge ions  
[2] Ritu N., Asheesh S., Dinesh B. Aspirin: an overview of  
randomized controlled trials. Int J Res Pharm Sci, 2012; 2:53–  
6
7.  
3] Moliner-Martínez Y., Ribera A., Coronado E., Campíns-Falcó  
P. Preconcentration of emerging contaminants in  
[
environmental water samples by using silica supported Fe3O4  
magnetic nanoparticles for improving mass detection in  
capillary liquid chromatography. Journal of Chromatography  
A, 2011, 1218 (16), 22762283.  
(
figure 6). By increasing the pH of aspirin solution, the  
surface of RH and aspirin will be negatively charged  
resulting in electrostatic repulsion which hindered the  
adsorption [1; 18].  
[4] Tewari S., Jindal R., Kho Y. L., Eo S., Choi, K. Major  
pharmaceutical residues in wastewater treatment plants and  
receiving waters in Bangkok, Thailand, and associated  
ecological risks. Chemosphere, 2013, 91(5), 697704.  
[
5] Gumbi B. P., Moodley B., Birungi G., Ndungu P. G. Detection  
and quantification of acidic drug residues in South African  
surface water using gas chromatography-mass spectrometry.  
Chemosphere, 2017, 168, 10421050.  
[
6] Feng L., Van Hullebusch E. D, Rodrigo M.A , Esposito G.,  
Oturan M.A . Removal of residual anti-inflammatory and  
analgesic pharmaceuticals from aqueous sys- tems by  
Figure 6: Protonated (a) and unprotonated (b) aspirin structure [19]  
electrochemical advanced oxidation processes.  
A review.  
Chem Eng J., 2013; 228: 94464.  
Moreover, the interactions between sorbate-sorbent are  
strongly influenced by medium pH. Which explain RH  
adsorption drop from 47.03 mg g at pH 2 to 17.30 mg g  
[
7] Dalrymple OK, Yeh D.H., Trotz M.A. Removing  
pharmaceuticals and endocrine-disrupting compounds from  
wastewater by photocatalysis. J Chem Technol Biotechnol  
2007; 82: 12134  
[8] Yoon Y., Westerhoff P., Snyder S.A, Wert E.C, Yoon J.  
Removal of endocrine disrupting compounds and  
pharmaceuticals by nanofiltration and ultrafiltration  
membranes. Desalination, 2007; 202:1623  
9] Mukoko T., Mupa M., Guyo U., Dziike F. Preparation of Rice  
Hull Activated Carbon for the Removal of Selected  
Pharmaceutical Waste Compounds in Hospital Effluent.  
Mukoko et al., J Environ Anal Toxicol. 2015, S7  
[10] Wong S., Lee Y., Ngadi N., Inuwa I. M., Mohamed, N. B.  
Synthesis of activated carbon from spent tea leaves for aspirin  
removal. Chinese Journal of Chemical Engineering, 2018, 26  
-
1
-1  
at pH 12. The same finding was reported by Moreno-  
Castilla (2004) [20]. Best adsorption capacity obtained for  
-1  
RH occurred at pH 2 corresponding to 47.03 mg g .This  
value is inferior than that reported by Hoppen et al. (2018)  
[
21] for aspirin onto activated carbon of babassu coconut  
[
-1  
mesocarp with 72.441 mg g at pH 2. Value attained for  
RH is lower than that obtained by Ferreira et al. (2015) [22]  
for paracetamol adsorption with 64.75 mg g and 58.91 mg  
-1  
-
1
g
at pH 2 onto activated carbons of dende and babassu  
coconut mesocarp, respectively. Similarly, the capacity of  
aspirin adsorption onto RH is lower than that obtained by  
Portinho et al. (2017) [23] for caffeine adsorption with  
(5), 10031011.  
-1  
[11] Yahya M.A., Al-Qodah Z., Ngah C.W.Z. Agricultural bio-  
waste materials as potential sustainable precursors used for  
activated carbon production: a review. Renew. Sustain. Energy  
Rev.2015, 46, 218e235.  
[12] Ali I., Asim M., Khan T.A, Low cost adsorbents for the  
removal of organic 617 pollutants from wastewater, J.  
Environ. Manage. 2012, 113, 170183,  
13] Roudani A., Mamouni R., Saffaj N., Laknifli A., Gharby S.  
Faouzi A.. Removal of carbofuran pesticide from aqueous  
solution by adsorption onto animal bone meal as new low cost  
adsorbent. Chemical and Process Engineering Research,  
2014, 28  
6
8.633 mg g at pH 2 onto Grape Stalk. Like other  
pharmaceuticals, for to improve the retention capacity of  
aspirin, the setting up of activation processes (thermal and /  
or chemical) of the RH is necessary.  
4
Conclusions  
The aim of this study was to investigate the adsorption  
[
capacity of aspirin onto RH. The RH was characterized by  
using pHpzc, Boehm titration and FTIR. The isotherm data  
of aspirin retention give a good fit with Langmuir model  
and shows  
a
monolayer adsorption. The maximum  
[14] Yadav S., Tyagi D. K., Yadav O. P. Equilibrium and kinetic  
studies on adsorption of aniline blue from aqueous solution  
onto rice husk carbon. International Journal of Chemistry  
Research, 2011, 2 (3), 5964.  
-
1
adsorption capacity obtained for the RH is 47.03 mg g at  
pH 2. The present study showed that the powdered RH is a  
promising sorbent for the removal of aspirin from aqueous  
solution, since the raw material RH was easily available in  
large quantity and the treatment method of biomaterial  
seemed to be economical.  
[
15] Evangelin D.C, Naren S.V., Dharmendirakumar  
F., Comparison of the surface features of the three  
chemically modified silk cotton hull activated carbons. Orient.  
J. Chem.2012, 28 (4), 17611768.  
[
16] Franeta J. T., Agbaba D., Eric S., Pavkov S., Aleksic, M.,  
Vladimirov, S. HPLC assay of acetylsalicylic acid,  
paracetamol, caffeine and phenobarbital in tablets. IL  
Farmaco, 2002, 57 (9), 709713.  
References  
[
1] Azuma T., Arima N., Tsukada A., Hirami S., Matsuoka R.,  
Moriwake R., Ishiuchi H., Inoyama T., Teranishi Y., Yamaoka  
M., Mino Y., Hayashi T., Fugita Y., Masada, M. Detection of  
Pharmaceuticals and Phytochemicals Together with Their  
Metabolites in Hospital Effluents in Japan, and Their  
Contribution to Sewage Treatment Plant Influents. Science of  
the Total Environmental, 2016, 548-549, 189-197  
[
17] N’diaye A.D, Bollahi M.A., Kankou M.S.A. Sorption of  
paracetamol from aqueous solution using groundnut shell as a  
low cost sorbent. J. Mater. Environ. Sci., 2019, 10, 553-562  
18] Bernal V., Erto A., Giraldo L., Moreno-Piraján J.C. Effect of  
solution pH on the adsorption of paracetamol on chemically  
modified activated carbons, Molecules, 2017, 22 (7), 1032  
[
4
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 1-5  
[
19] Ribeiro A.V.F. N., Da Silva A.R., Ca Cunha T.P., Dos Santos  
R. T. L., De Oliveira J. P., Pereira E. V., Licinio M. V. V. J.,  
De Godoi Pereira M., Dos Santos A. V., Ribeiro J. N. Banana  
Peel for Acetylsalicylic Acid Retention. Journal of  
Environmental Protection, 2016, 7, 1850-1859  
[20] Moreno-Castilla, C. Adsorption of organic molecules from  
aqueous solutions on carbon materials. Carbon, 2004 42(1),  
8
394.  
[
21] Hoppen MI, Carvalho KQ, Ferreira RC, Passig FH, Pereira  
IC, Rizzo-Domingues RC, Lenzi MK, Bottini RC. Adsorption  
and desorption of acetylsalicylic acid onto activated carbon of  
babassu coconut mesocarp. Journal of Environmental  
Chemical Engineering. 2019 Feb 1;7(1):102862.  
[
[
22] Ferreira R.C., de Lima H.H.C., Cândido A.A., Couto Junior  
O.M., Arroyo P.A., de Carvalho K.Q.; Gauze G.F., de Barros  
M.A.S.D., Adsorption of paracetamol using activated carbon  
of dende and babassu coconut mesocarp, Int. J. of Biol.,  
Biomol., Agric., Food and Biotechnol. Eng., (2015), 9, 575-  
5
80.  
23] Portinho R, Zanella O, Féris LA. Grape stalk application for  
caffeine removal through adsorption. Journal of environmental  
management. 2017 Nov 1;202:178-87.  
5