Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 107-111  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
Trihalomethane Formation Potential in Rural  
Drinking Water: A Case Study Project of Seven  
Villages - Marvdasht Fars  
1
Ali Nasiri , Neamat Jaafarzadeh *, Tayebeh Tabatabaie , Fazel Amiri , Abdulrahim Pazira  
1
2
1
1
1Department of Environmental Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran  
Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran  
2
Received: 28/07/2019  
Accepted: 08/09/2019  
Published: 30/02/2020  
Abstract  
Trihalomethanes have been known as carcinogen material for human by IARC. Considering the Project of seven villages drinking  
water is supplied from the Droodzen dam and Groundwater and water disinfection with chlorine is performed, this study was carried out  
to determine THM concentrations in drinking water of Project of seven villages. In this descriptive-cross-sectional research, 32 samples  
were taken from different points of drinking water distribution system after the villages map meshing so that covers all parts of the  
system in Spring and Summer seasons in 2017. The reason for these two seasons been variations in the concentration of organic  
substances in water resources and consequently the concentration of THMs precursors produced and the effect of temperature on the  
formation of THMs. Gas chromatography technic was used in with electron capture detector for analyzing samples of THM for each of  
four components including Chloroform, Bromodichloromethane,Dibromocholoromethane and Bromoform. The average concentration  
of THMs in Spring for Chloroform, Bromoform Bromodichloromethane ,Dibromocholoromethane and THMs were  
2
2.25±7.98,11.42±3.90, 7.43±2.72 , 5.95±2.51 and 47.06±15.70 µg/Lit and in summer were 14.69±4.11,7.55±1.99, 4.93±1.51  
,
3.95±1.49 and 31.13±7.97 µg/Lit, respectively. Concentration of trihalomethanes and total trihalomethanes in Project of seven villages  
drinking water distribution system is lower than the national and international standards and the drinking water consumers arenot at risk  
of exposure to trihalomethanes.  
Keywords: Trihalomethanes, Village, Distribution network, Drinking water  
1
dibromochloromethane and dichlorobromomethane are  
1
Introduction  
regarded as the most famous THMs, among which chloroform  
is absorbed through mouth, breathing and cutaneous contact,  
while three other compounds are absorbed by digestive system  
Disinfection is considered as the most important and  
conventional water treatment process, which aims to remove  
bacterias, viruses and parasites [1, 3]. The various physical and  
chemical factors having their own advantages and  
disadvantages are used to disinfect drinking water. The criteria  
of selecting an appropriate disinfectant involve disinfecting  
power, producing facility, accessing, applying and un-  
disturbing water quality [4].  
Trihalomethane (THM) is regarded as one of water  
disinfection by-products since it is produced in chlorinated  
water by reacting natural organic materials such as humic and  
fulvic compounds and chlorine injected into water. A daily  
increase in applying chlorine in water treatment and abundance  
of natural organic material or those derived from discharging  
human and underground wastewater into water produce about  
[4]. Recent epidemiological studies have represented the  
abundant negative impacts of THMs including sudden  
abortion, birth defects, stillbirth, some effects in reproduction  
such as congenital abnormalities and damage to specific organs  
such as liver, kidney and nervous system and adverse impact  
on circulatory system [4]. Considering the health hazards of  
THMs, US EPA published rules for controlling TMHs in  
drinking waters (1979). Based on this rule, the maximum  
allowed value of total THMs in drinking water entitled mean  
annual value was 100 (μgr/L) which decreased to 80 (μgr/L)  
from 1998 to now [7]. Further, the institute of standards and  
industrial research of Iran, drinking water-physical and  
chemical specifications announced that the maximum of THMs  
concentration in 1997 is equal to 200 (μgr/L) chloroform [8].  
THMs concentration in drinking water is affected by some  
factors such as temperature, concentration and nature of natural  
organic material, consumed chlorine concentration, pH,  
bromide ion concentration and chlorine contact time with water  
7
80 by-products in water, of which halogen compounds are a  
main part. THMs are considered as one of the most important  
disinfection by-products [5], which are devoid of specific odor  
in water although they associate with physiological hazards [6].  
A group of researchers in United States environmental  
protection agency (US EPA), Switzerland and Netherlands  
found new compounds in chlorinated water, which had not been  
observed in drinking water earlier (1974). These compounds  
belonging to the family of chlorinated organic material were  
named trihalomethane (THMs) [5]. Chloroform, bromoform,  
[9, 12]. An addition of temperature results in increasing  
reaction rate and consequently chlorine consumption which  
leads to the enhancement of producing disinfection by-products  
[2, 13, 15].  
Corresponding author: Prof. Dr. Neamat Jaafarzadeh, Environmental Technologies Research Center, Ahvaz Jundishapur University  
of Medical Sciences, Ahvaz, Iran. E-mail: n.jaafarzade@yahoo.com and jaafarzadeh-n@ajums.ac.ir. Tel: 09163184501.  
107  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 107-111  
Based on the study of Fazli in Zanjan (2013), the mean  
concentration of total THMs were quantified in the winter and  
summer of 2013. Further, the mean concentration of  
times on each position. The water existing in tank was provided  
from Doroodzan dam and underground (well) waters, which  
were combined in the main tank. The parameters of  
temperature, pH, free residual chlorine and TOC were  
measured. Three positions were considered for sampling in  
order to study the change and value of THMs compounds in the  
steps of transfer and distribution network. First position was  
located in Kamar Zard village after the main tank. Regarding  
second position, it was placed within 15km distance from  
chlorination site and the main tank in Abbas Abad village, in  
which THMs concentration were measured to assess the role of  
water pipeline in THMs concentration. Finally, third position  
was located at the farthest point and within 25km distance in  
Majd Abad village.  
chloroform,  
bromoform,  
dibromochloromethane  
and  
dichlorobromomethane and total THMs in water distribution  
network during winter were determined as 4.7 ± 1.44, 4.72 ±  
1
.25, 3.08 ± 0.43, 1.98 ± 0.14 and 14.19 ± 3.09 (μgr/L) ,  
respectively, while their concentrations in summer were  
obtained as 4.21 ± 1.83, 4.71 ± 1.8, 3.65 ± 0.81, 2.22 ± 0.14  
and 14.81 ± 4.4 (μgr/L) , respectively, which were within the  
range suggested by the guideline of national and international  
standard [16]. According to Babaei (2011), total THMs  
concentration in Ahwaz during winter, spring and summer  
varied between 20.5-86 (μgr/L), 18.92-66.06 (μgr/L) and  
1
7.35-174.7 (μgr/L), respectively. Further, total THMs  
concentration was higher than the value allowed by EPA 80  
μgr/L) in six cases and that allowed by the institute of  
Recovery percentage (%R) and relative standard deviation  
(RSD) were used to validate the method of THMs  
measurement. Table 1 represents the values of %R and %RSD  
related to the method of THMs measurement which was used  
in the present study. Recovery percentage between 80-120% is  
considered as acceptable based on recommended standard  
method [33]. As shown in Table 1, the obtained recovery  
percentages were in the above-mentioned range. Thus, THMs  
measurement was regarded appropriate with respect to  
validation. Further, THMs measurement was proper with  
respect to accuracy since RSD less than 20% is considered as  
acceptable [33]. The data were analyzed by using the statistical  
tests of Kolmogorov-Smirnov test, PP plots and paired and one-  
sample t-tests. Figures 1 and 2 demonstrate the mean  
concentration of each THM and total THMs in the spring and  
summer of 2017 based on EPA standard.  
(
standards and industrial research of Iran and guideline of world  
health organization (WHO) in three cases [17]. Regarding the  
assessment of THMs concentration in the drinking water of  
Tehran city, Mazlomi et al. (2010) reported that despite pre-  
chlorination in input tank and mean residual chlorine in output  
tank, chloroform concentration in both tanks was equal to 0.94  
,
which was very less than the THMs concentration allowed in  
drinking water in Iran and WHO 2002 (μgr/L). Further, the  
maximum concentration of THM was determined in May [18].  
The present study was conducted during the spring and summer  
of 2017. To this end, three villages of Abbas Abad, Majd Abad  
and Kamar Zard with the total of nine stations were selected  
among the seven-village project of Marvdasht County in Fars  
province. Sampling was repeated three times on each village  
position and data were selected as maximum concentration.  
Drinking water tank involved a combination of Doroodzan dam  
and underground wells waters.  
3 Results  
The comparison of mean, standard deviation, range,  
minimum and maximum of 95% of changes in THMs  
concentration in the area under study is summarized in Tables  
2 and 3. Based on the results, the mean concentrations of  
2
Materials and Methods  
Regarding sample collection, 40ml glass Bottle having teflon  
doors were used. Before sampling, the dishes were completely  
chloroform,  
bromoform,  
dibromochloromethane  
and  
dichlorobromomethane in all samples during spring were  
obtained 22.25, 11.42, 5.95 and 7.43μgr/L, respectively, while  
their values in summer were 14.69, 7.55, 3.95 and 3.93μgr/L,  
respectively. Further, the mean concentration of total THMs  
was determined 47.06 and 31.13μgr/L in spring and summer,  
respectively. The THM concentrations related to two seasons  
of spring and summer were compared by using paired and one-  
sample t-tests (Tables 4 and 5), indicating that no significant  
difference was observed between total THMs concentration in  
spring and summer. As shown, the mean concentration of  
0
washed, placed for 3hr at 300 C to evaporate their organic and  
volatile materials perfectly and they reached room temperature  
in desiccator. Further, 20ml normal sodium thiosulfate (4 drops  
of 10% solution) was added into sampling dish to remove  
residual chlorine in water and prevent from forming THMs in  
sampling dish after sampling based on US EPA standard [19].  
Due to the volatility of THMs, no bubble or air should be in  
sample dish and its door should close completely during  
sampling [20]. Furthermore, the water tap of sampling area was  
left open for at least 5min in order to exit the stagnant waters  
existing within pipe and enter the water flowing within main  
pipes into sampling tap [20]. Sampling was iterated three times  
on each position having sampling tap. Thus, the sample-  
chloroform,  
bromoform,  
dibromochloromethane  
and  
dichlorobromomethane and total THMs in all samples were  
less than the allowed value suggested by EPA.  
o
containing dishes were stored at 4 C and transferred to  
4 Discussion  
laboratory for analyzing in order to determine sampling  
measurement. EPA method 7030 was used to prepare and  
extract volatile organic compounds from drinking water and  
EPA method 3260 was utilized for their recognition and  
measurement in order to measure THMs concentration.  
Regarding EPA method 3260, gas chromatography with mass  
spectrometric detection (CG-MS) was used [20].  
Some methods such as modified trapping [25, 26], direct  
liquid injection [27], dynamic headspace sampling [28], solid  
phase micro-extraction [29] and liquid phase micro-extraction  
Considering the results in Table 2, the minimum and  
maximum concentration of total THMs in the samples related  
to spring were determined 30 and 73 μgr/L, respectively, while  
these values in the samples of summer were 25 and 48 μgr/L,  
respectively. The maximum concentration of chloroform,  
bromoform,  
dibromochloromethane  
and  
dichlorobromomethanene among all samples related to the  
spring and summer of 2017 were obtained as 36.87, 17.89,  
11.03 and 12.29 μgr/L and 24.24, 11.87, 7.88 and 8.78 μgr/L,  
respectively. THMs concentration in two seasons of spring and  
summer was compared by using paired-sample t-test (Table 4),  
which represents an insignificant difference between total  
THMs concentration in spring and summer. Thus, no seasonal  
change was observed in the present study.  
[30, 32] were reported along with the conventional method of  
liquid-liquid extraction technique [21, 24]. Three villages of  
Abbas Abad, Majd Abad and Kamar Zard located in Marvdasht  
County of Fars province with the total of nine stations were  
selected for sampling. Further, sampling was repeated three  
108  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 107-111  
Based on one-sample t-test (Table 5) and comparison with  
total THMs concentration in two mentioned seasons, the mean  
concentration of total THMs in spring was different from EPA  
standard significantly (p<0.000). Further, the result was  
confirmed in summer. Fazli (2013) measured the mean  
concentration of total THMs in Zanjan during the winter and  
summer of 2013. Additionally, the mean concentration of  
± 4.4 μgr/L, respectively, which were within the range  
suggested by the guideline of national and international  
standard [16]. Mazlomi et al. (2010) assessed THMs  
concentration in the drinking water of Tehran city and found  
that despite pre-chlorination in input tank and mean residual  
chlorine in output tank, chloroform concentration in both tanks  
was equal to 0.94, which was very less compared to the THMs  
concentration allowed in drinking water in Iran and WHO 2002  
(μgr/L). Further, the maximum concentration of THM was  
obtained in May [18].  
chloroform,  
bromoform,  
dibromochloromethane  
and  
dichlorobromomethane and total THMs existing in water  
network during winter and summer were reported as 4.7 ± 1.44,  
4
.72 ± 1.25, 3.08 ± 0.43, 1.98 ± 0.14 and 14.19 ± 3.09 μgr/L  
and 4.21 ± 1.83, 4.71 ± 1.8, 3.65 ± 0.81, 2.22 ± 0.14 and 14.81  
Table 1: Values related to THMs measurement  
Std.  
Deviation  
Recovery  
percentages  
Std. Deviation Recovery percentages Parameters  
Parameters  
Bromodichloromethane,  
CHCl Br  
3
/55  
80/82  
83/35  
1/13  
4/67  
81/05  
87/73  
Chloroform, CHCl  
3
2
Dibromochloromethane,  
CHBr Cl  
2/23  
Bromoform, CHBr  
3
2
Table 2: Seasonal comparison of mean, standard deviation, minimum and maximum, and range of THMs concentration  
TTHM  
CHCl3  
12/15  
36/87  
22/25  
CHCl2Br  
4/9  
12/29  
7/43  
CHClBr2  
3/13  
11/03  
5/95  
CHBr3  
6/75  
17/89  
11/42  
Parameters  
Minimum  
Maximum  
period  
Spring  
3
7
0
3
4
3
7/066  
mean  
4
2
4
3
5
8
24/72  
10/53  
24/24  
14/69  
13/71  
8/1  
7/89  
2/63  
7/88  
3/95  
5/25  
11/14  
5/85  
11/87  
7/55  
Range  
Minimum  
Maximum  
mean  
3/51  
8/78  
4/93  
5/27  
Summer  
1/133  
23  
6/02  
Range  
Table 3: 95% Confidence Interval of the Difference THM concentration  
9
5% Confidence Interval of the  
95% Confidence Interval of the Difference  
Difference  
Summer  
Spring  
Lower limit  
6/71  
/45  
/12  
/08  
2/41  
Upper limit  
35/54  
8/65  
4/78  
5/77  
Lower limit  
38/36  
9/26  
4/55  
5/92  
Upper limit  
55/76  
13/59  
7/34  
8/94  
2
6
3
4
TTHM  
CHBr  
CHClBr  
TTHM  
CHBr  
CHClBr  
3
3
2
2
CHCl  
CHCl  
2
Br  
3
CHCl  
CHCl  
2
Br  
3
1
16/96  
17/83  
26/67  
Table 4: Comparison of THMs concentration by using paired-sample t-test  
Paired Differences  
9
5% Confidence Interval of the  
Difference  
Maximum  
TTHM  
Standard  
Deviation  
Std. Error  
Mean  
Sig. (2tailed)  
Mean  
Minimum  
17/54  
28/25  
29/30  
25/42  
CHCl  
CHCl  
3
2
20/62  
32/91  
34/14  
29/60  
8/25  
1/50  
2/28  
2/36  
2/04  
23/70  
37/58  
38/98  
33/79  
0/000  
0/000  
0/000  
0/000  
Br  
12/48  
12/96  
11/19  
CHClBr  
CHBr  
2
3
Table 5: Comparison of THMs concentration by using one-sample t-test  
Test Value = 80  
TTHM  
Std. Error  
Mean  
-61/52  
-73/81  
-75/04  
-70/50  
95% Confidence Interval of the Difference  
Sig. (2tailed)  
Minimum  
-64/26  
Maximum  
-58/79  
CHCl  
CHCl  
3
2
0/000  
0/000  
0/000  
0/000  
Br  
-74/75  
-75/89  
-71/86  
-72/87  
-74/19  
-69/15  
CHClBr  
CHBr  
2
3
109  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 107-111  
8
7
6
5
4
3
2
1
0
.E+01  
.E+01  
.E+01  
.E+01  
.E+01  
.E+01  
.E+01  
.E+01  
.E+00  
THMS  
CHCL3  
CHCL2Br  
CHCLBr2  
CHBr3  
EPA  
THM and EPA standard  
Figure 1: Mean concentration of THMs in spring based on EPA standard  
8
.E+01  
.E+01  
.E+01  
.E+01  
.E+01  
.E+01  
.E+01  
.E+01  
.E+00  
7
6
5
4
3
2
1
0
THMS  
CHCL3  
CHCL2Br  
CHCLBr2  
CHBr3  
EPA  
THM and EPA standard  
Figure 2: Mean concentration of THMs in summer based on EPA standard  
from drinking water through nanofiltration and air stripping  
packed-column. Iranian Journal of Water and Wastewater. 57:14-  
5
Conclusion  
Based on the results, the maximum concentration of  
chloroform, bromoform, dibromochloromethane and  
dichlorobromomethanene among all samples were measured as  
6.87 ± 7.32, 12.29 ± 2.51, 11.03 ± 2.27, 17.89 ± 3.62 and 73  
14.67 μgr/L, respectively, which are less than the allowed  
2
1(in Persian).  
4
.
Mohammadian Fazli, M., Mehrasbi, MR., Azari, Z., Nasiri,  
J.(2015). Evaluation of trihalomethanes (THMs) concentration in  
drinking water of Zanjan in 2013. Journal of Jiroft university of  
medical sciences. 2(1):85-93(in Persian).  
3
±
value suggested by EPA. Thus, there is no problem about high  
THM concentration in the drinking water distribution network  
of seven-village project and consumers do not face with the risk  
of these disinfection by-products.  
5. Fazlzadeh Davil, M., Mahvi, A., Mazloomi, S., Younesian, M.,  
Nazmara, S.(2011). Concentration of Trihalomethanes in Tehran  
drinking water. Journal of health. 2(2):45-52(in Persian).  
6
.
Luks-Betlej,  
K.,  
Bodzek,  
D.(2002).  
Occurrence  
of  
trihalomethanes, particularly those containing bromine, in Polish  
drinking waters. Polish Journal of Environmental Studies.  
11(3):255-60.  
References  
1
.
Bodzek, M., Waniek, A., Konieczny, K.(2002). Pressure driven  
membrane techniques in the treatment of water containing THMs.  
Desalination. 147(1-3):101-7.  
7. Singer PC, editor Formation and characterization of disinfection  
by-products.(1993). International Conference on the Safety of  
Water Disinfection, 1. ILSI Press.  
2
.
Mazloomi, S., Nabizadeh, R., Nasseri ,S., Naddafi, K., Nazmara,  
S., Mahvi, A.(2009). Efficiency of domestic reverse osmosis in  
removal of trihalomethanes from drinking water. Journal of  
8. Singer PC. Control of disinfection by-products in drinking  
water.(1994). Journal of environmental engineering. 120(4):727-  
44.  
environmental health science  
Persian).  
Samadi, MT., Nasseri, S., Mesdaghinia, A., Alizadefard,  
MR.(2006). A comparative study on THMS removal efficiencies  
&
engineering. 6(4):301-6 (in  
9. Agency USEP.(2006). National Primary Drinking Water  
Regulations: Stage 2 Disinfectants and Disinfection Byproducts  
Rule: Final Rule. Federal Register. 71(2):388-493.  
3
.
110  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 107-111  
1
1
0. Babcock DB, Singer PC.(1979). Chlorination and coagulation of  
humic and fulvic acids. JournalAmerican Water Works  
Association. 71(3):149-52.  
1. Nelson, L., Franklin, J., Joseph, A.(2009). Environemntal  
engineering: environmental health and safety for municipal  
infrastructure, land use and planning, and industry. sl. In:  
editor.^editors. ed.: John Wiley & Sons; p.  
trihalomethanes in flowing water. Journal of  
chromatographic science. 33(3):109-15.  
9. Cho, D-H., Kong ,S-H., Oh, S-G.(2003). Analysis of  
trihalomethanes in drinking water using headspace-SPME  
technique with gas chromatography. Water Research.  
2
37(2):402-8.  
1
1
1
1
1
1
2. Stevens, AA., Slocum, CJ., Seeger, DR., Robeck, GG.(1976).  
Chlorination of organics in drinking water. JournalAmerican  
Water Works Association.;68(11):615-20.  
3. Lekkas, T.(1996). Environmental engineering I: management of  
water resources. Univerity of the Aegean, Department of  
Environmental Studies, Mytilene, Greece.  
4. Pourmoghaddas, H., Stevens, AA.(1995). Relationship between  
trihalomethanes and haloacetic acids with total organic halogen  
during chlorination. Water Research. 29(9):2059-62.  
5. Williams ,DT., LeBel, GL., Benoit, FM.(1997). Disinfection by-  
products in Canadian drinking water. Chemosphere. 34(2):299-  
30. Vora-adisak, N., Varanusupakul, P.(2006). A simple  
supported liquid hollow fiber membrane microextraction  
for sample preparation of trihalomethanes in water  
samples. Journal of Chromatography A. 1121(2):236-41.  
3
1. Zhao, R-s., Lao, W-j., Xu ,X-b.(2004). Headspace liquid-  
phase microextraction of trihalomethanes in drinking water  
and their gas chromatographic determination. Talanta.  
62(4):751-6.  
3
2. Zhou, J., Liu, R., Song, G., Zhang ,M.(2009).  
Determination of carbamate and benzoylurea insecticides  
in peach juice drink by floated organic drop  
microextractionhigh performance liquid chromatography.  
Analytical Letters. 42(12):1805-19.  
3
16.  
6. Golfinopoulos, S., Kostopoulou, M., Lekkas ,T., editors.(1993).  
Detection of THMs in the Athens water supply. Proceedings 3rd  
Conference on Environmental Science and Technology, Vol. B.  
7. Golfinopoulos ,S., Kostopoulou, M., Lekkas, T., editors.(1996).  
Seasonal variation in trihalomethanes level in the water supply  
system of Athens. 6th International Conference on Environmental  
Contamination, Delphi, Greece.  
3
3. Pavón, JLP., Martín, SH., Pinto ,CG., Cordero, BM.(2008).  
Determination of trihalomethanes in water samples: a  
review. Analytica Chimica Acta. 629(1-2):6-23.  
1
1
2
8. LeBel, GL., Benoit, FM., Williams, DT.(1993). A one-year survey  
of halogenated disinfection by-products in the distribution system  
of treatment plants using three different disinfection processes.  
Chemosphere. 34(11):2301-17.  
9. Hsu ,C-H., Jeng ,W-L., Chang, R-M., Chien ,L-C., Han ,B-  
C.(2001). Estimation of potential lifetime cancer risks for  
trihalomethanes from consuming chlorinated drinking water in  
Taiwan. Environmental Research. 85(2):77-82.  
0. Fooladvand, M., Ramavandi ,B., Zandi ,K., Ardestani, M.(2011).  
Investigation of trihalomethanes formation potential in Karoon  
River water, Iran. Environmental monitoring and assessment.  
1
78(1-4):63-71.  
2
2
1. Golfinopoulos, SK., Lekkas, TD., Nikolaou ,AD.(2001).  
Comparison of methods for determination of volatile organic  
compounds in drinking water. Chemosphere. 45(3):275-84.  
2. HODEGESON ,J. (1990).Determination of chlorination  
disinfection by products and chlorinated solvents in drinking water  
by liquid-liquid extraction and gas chromatography with electron-  
capture detection. Environmental monitoring systems laboratory  
office of research and development. Method 551.  
2
2
3. Nikolaou, A., Golfinopoulos, S., Rizzo, L., Lofrano, G.,  
Lekkas, T., Belgiorno, V. (2005).Optimization of analytical  
methods for the determination of DBPs: Application to  
drinking waters from Greece and Italy. Desalination.  
176(1-3):25-36.  
4. Nikolaou, AD., Lekkas, TD., Golfinopoulos, SK.,  
Kostopoulou, MN.(2002). Application of different  
analytical methods for determination of volatile  
chlorination by-products in drinking water. Talanta.  
56(4):717-26.  
2
2
5. Allonier, A-S., Khalanski ,M., Bermond, A., Camel,  
V.(2000). Determination of trihalomethanes in chlorinated  
sea water samples using a purge-and-trap system coupled  
to gas chromatography. Talanta. 51(3):467-77.  
6. Zygmunt, B.(1996). Determination of trihalomethanes in  
aqueous samples by means of a purge-and-trap systems  
with on-sorbent focusing coupled to gas chromatography  
with  
electron-capture  
detection.  
Journal  
of  
Chromatography A. 725(1):157-63.  
2
2
7. Biziuk ,M., Namieśnik, J., Czerwiński, J., Gorlo, D.,  
Makuch, B., Janicki ,W., et al.(1996). Occurrence and  
determination of organic pollutants in tap and surface  
waters of the Gdańsk district. Journal of Chromatography  
A. 733(1-2):171-83.  
8. Wang, H-w., Simmons, MS., Deininger, RA.(1959).  
Application of dynamic headspace analysis for  
111