

J. Environ. Treat. Tech. ISSN: 2309-1185

Journal web link: http://www.jett.dormaj.com

Maritime Technology and the Industrial Revolution

Andi Reni^{1*}, Sarifudlin Hidayat², Gita Widi Bhawika³, Elfrida Ratnawati⁴, Phong Thanh Nguyen^{5*}

¹Universitas Hasanuddin, Indonesia ²Master Program in Computer Science, Information System Technology, Budi Luhur University, Indonesia ³Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia ⁴Universitas Trisakti, Jakarta, Indonesia ⁵Department of Project Management, Ho Chi Minh City Open University, Vietnam

Abstract

Maritime stands to increase much from Industry 4.0, however innovation may not be the panacea it appears for wellbeing, security and ecological issues in the business. Industry 4.0 portrays the pattern toward expanding computerization and network, including advances, for example, web of things (IoT), artificial intelligence (AI), independent and unmanned innovation, and information examination. Innovations, for example, AI, augmented reality, IoT, AI and others are man-made, and their convenience still relies upon the individuals who configuration, produce and work them. There is a reasonable need to plan profoundly talented human capital in the marine business to work the innovations, apparatuses and frameworks that characterize Industry 4.0.

Keywords: Maritime, AI, IoT, Innovation, Industry 4.0

1 Introduction

It might be an immense industrial revolution that will make the world look like sci-fi movie of science fiction; AI, electric vehicles, quantum computing, automated container ships, biotechnology, 3D printing. Not long ago Inmarsat uncovered Fleet Data, an Internet of Things (IoT) administration, which will empower dispatch proprietors and administrators to get to and examine constant installed. This administration will help quicken the selection of IoT over the maritime industry (1).

In a general sense unique in relation to the third one, the fourth Industrial Revolution or Industry 4.0, carries exponential changes to the manner in which we live, work and identify with each other because of the selection of digital physical frameworks. It is set apart by developing innovation achievements in fields, including (2): (a) AI (artificial intelligence), (b) biotechnology, (c) 5G (fifthgeneration wireless technologies), (d) IIoT (The Industrial Internet of Things), (e) nanotechnology, (f) robotics, (g) fully autonomous vehicles, (h) quantum computing, (i) IoT (the Internet of Things), and (j) 3D Printing or additive

Corresponding author: (a) Andi Reni, Universitas Hasanuddin, Indonesia. E-mail: andireni@fe.unhas.ac.id. (b) Phong Thanh Nguyen, Department of Project Management, Ho Chi Minh City Open University, Vietnam. E-mail: phong.nt@ou.edu.vn.

manufacturing. Earth shattering maritime services and products of things to come are the drivers behind the inexorably fruitful maritime segment. The Maritime Knowledge Center (MKC) is an early case of the brilliant triangle being creative and innovative. Along these lines it had the option to vanquish the worldwide market. The Center likewise assumes a noteworthy job in fleshing out current approach for the top segments. It does as such by setting up connections among information and income. Medium-sized endeavors are significant players because of their particular aptitude and inventive information. Financial and social difficulties are joined in 4 high-need development subjects (3-5): (a) smart Ships, (b) winning at Sea, (c) smart Ports, and clean Ships.

Industry describes the trend toward increasing automation and connectivity, including technologies such as internet of things (IoT), artificial intelligence (AI), autonomous and unmanned technology, and data analytics. Technologies such as AI, virtual reality, IoT, machine learning and others are man-made, and their usefulness still depends on the people who design, produce and operate them.

There is a clear need to prepare highly skilled human capital in the marine industry to operate the technologies, machineries and systems that define Industry. Take working with real-time data, for example. Collecting data alone is not enough – the data needs to be analyzed and

interpreted to derive value and enable judgment calls that ensure systems are designed to provide safety and security of operations, optimal efficiency, compliance with rules and regulations and eventually generate profit for their companies. This requires trained people who are not only tech-savvy but have a range of soft skills such as analytical capabilities and critical thinking to draw value from data.

To this end, marine education and training institutes must review their curriculum to offer courses and programs relevant to the marine industry's current and future needs. Much work also needs to be done to educate the educators and increase their awareness of the usefulness of adopting Industry. There are several other areas that need to be looked into to foster industry players to embrace Industry.

- Competitive financing should be offered to those who want to digitalize by developing human capital or acquiring digital assets and systems.
- Stakeholders in the industry must establish and increase collaboration to share information, insights and ideas to boost adoption of Industry technologies.
- There must be a set of policies to create a conducive environment for players in the industry to adapt to the digital revolution.
- Companies must also change their strategies, organizational culture and mindset to deal with the disruptions and compete in the Industry realm.

2 Technologies to shake up maritime

Advances that could shake the maritime business can emerge out all things considered. However, the greatest hitters this year will be those that change its essence and digitalisation in the business. Here it consider the main 10 advancements that could, or should, carry positive impacts and operational advantages to delivery (6).

2.1 Artificial intelligence

Worldwide IT innovation is at a phase where automation systems and computers are winding up progressively intelligent. This takes AI into various headings and applications that will empower self-ruling surface vessels to explore without human collaboration. Knowledge is required for vessel PCs to comprehend the earth and maritime conditions they experience (6).

2.2 Block chain

This procedure innovation will alter supply chain logistics and payload exchange over maritime path. It is empowered by development in advanced monetary standards as techniques for acquiring items and exchanging load. This will create from a juvenile industry process towards a standard strategy for executing in global supply chains and maritime (7).

2.3 Robotics

Despite the fact that robotics technology research has

been performed for a long time, apply autonomy reception has not prospered in maritime. Be that as it may, with expanding enthusiasm for creating self-governing vessels, there will be more noteworthy requirement for mechanical autonomy. Taking people off boats prompts navigational issues, yet additionally adds difficulties to upkeep and other manual tasks, for example, line dealing with. Maybe robots can be worked to play out these activities with remote control help.

2.4 Virtual reality

Gamification procedures and Virtual reality are crawling into preparing innovation and delivery can anticipate that the principal business program should be accessible in 2018. AR and VR can likewise be utilized for ship plan and designing procedures by assessing ship insides, funneling necessities, electrical systems and work force developments in crises. VR is probably going to be presented on voyage ships for traveler diversion and for showing what ought to occur in crises. It might likewise move to seaward vessels and business shipping for comparative purposes (7).

2.5 Autonomous surface vessels

2018 will be the year that self-governing surface vessels will be shown and trialed. There were advancements in 2017 in exhibiting remotely controlled vessels yet this year, there will be vessels worked for testing the limits of self-ruling activities (8).

2.6 Augmented reality

Augmented reality is being created for maritime applications and has been shown on ship scaffolds and remote working focuses to convey various degrees of data to end-clients. Moves Royce is utilizing AR innovation in its remote working focus demonstrator in Copenhagen, Denmark. The primary AR application on a business ship is probably going to come in 2018 (8).

2.7 Deep learning

Computers are getting more astute IT giants and smarter, for example, Amazon and Google, are utilizing further degrees of AI to comprehend their segments better. These organizations are winding up increasingly keen on transportation and moving their advancements to the area (9).

2.8 Cyborg crew

An improvement in wearable innovation has created strategies for individuals to screen their own wellbeing and execution, for example, pulse, gathered advances or sugar levels. This innovation can be reached out to give this kind of data to bosses, something that ship managers ought to be keen on. Taking this innovation a phase further could be the implantation of checking sensors to give wellbeing and execution information progressively (10).

2.9 Drones

Classification social orders are creating techniques for utilizing flying independent art, or drones, to help surveyors on ships. Drone innovation as of now exists and business units are prepared for use, however they should be solidified for oceanic applications. Automatons can give data to surveyors from hard to-arrive at zones on boats and seaward structures. Business ramble based reviews will be embraced (11).

2.10 Industrial IoT

Internet of things (IoT) is making advances into transportation with liner administrators especially keen on utilizing this innovation for compartment following and reefer checking (12).

3 Result And Discussion

Marine training and education organizations must survey their educational plan to offer courses and projects pertinent to the marine business' present and future needs. Much work additionally should be done to instruct the teachers and increment their consciousness of the handiness of embracing Industry 4.0. There are a few different zones that should be investigated to cultivate industry players to grasp Industry 4.0.

- There must be a lot of approaches to make a helpful domain for players in the business to adjust to the computerized transformation.
- Organizations should likewise change their methodologies, organizational culture and attitude to manage the interruptions and contend in the Industry 4.0 domain.
- Partners in the business must build up and increment joint effort to share data, bits of knowledge and thoughts to support selection of Industry 4.0 advancements.
- Aggressive financing ought to be offered to the individuals who need to digitalize by creating human capital or gaining advanced resources and frameworks.

3.1 Jobs that will be in demand in industry of maritime

6.1 3d Printing Technician

The 3d printing business sector is developing quickly. Numerous undertakings have demonstrated the capability of utilizing 3D printing strategies to deliver vessel parts; think about the WAAM peller, the primary 3d printed ship propeller. A great many new openings are being made around the 3D printing industry as this innovation gets advanced.

3.1.1 Ship Automation Specialist

Completely Integrated Automation and Totally Integrated Power ideas not just lessen part life-cycle expenses and increment levels of framework dependability and security, yet in addition advance the ship configuration, building and frameworks reconciliation stages. Architects, programming designers and mechanics who can chip away at the new innovation are as of now progressively popular.

3.1.2Cyber Security Specialist

The cyber security emergency is more widespread than any other time in recent memory, particularly with regards to sea. Maersk and Clarksons cyber occurrences during 2017 fill in as models. Transportation organizations procure people in charge of planning, testing, actualizing and observing safety efforts for their frameworks so as to avoid potential cyber-attacks.

3.1.3Energy Efficiency Optimization Specialist

A progression of guidelines started an ecological edge which requires consistent activities and endeavors and made positions, for example, natural administrators and agents, vitality proficiency specialists, work force for the development of new kind of motors, new sorts of energizes and a great deal of other related activities

3.1.4 Data Protection Specialist

Personal data protection necessity is among the most recent advancements in the transportation business. New methods and advancements, extra law-based notification to guarantee representatives' privileges have been at the cutting edge of consistence.

4 Conclusion

A few later maritime accidents recommend that advanced innovation once in a while can make it hard for sailors to explore securely. An audit of the writing additionally demonstrates that the mechanical cures intended to forestall maritime mishaps now and again can be incapable or counterproductive. To get why, issue situated ethnography was utilized to gather and examine information on how sailors comprehend their work and their apparatuses. Mariners to a great extent need to perform reconciliation work themselves since machines can't impart in manners mariners see as helpful. What designers and makers incorporate into screens or frameworks isn't generally what the sailors would pick. There are different sorts of 'mistakes' mariners need to adjust to. Fundamentally, they emerge from clashes between worldwide level headedness and nearby reasonability.

References

- Singer CJ, Williams TI. A history of technology. Clarendon Press,; 1954.
- Jin Z, Sulligoi G, Cuzner R, Meng L, Vasquez JC, Guerrero JM. Next-generation shipboard dc power system: Introduction smart grid and dc microgrid technologies into maritime electrical netowrks. IEEE Electrification Magazine. 2016 May 30;4(2):45-57.
- King J. Technology and the seafarer. Journal for Maritime Research. 2000 Dec 1;2(1):48-63.
- Rodrigue JP, Comtois C, Slack B. Transportation and spatial cycles: evidence from maritime systems. Journal of transport geography. 1997 Jun 1;5(2):87-98.
- Beaumont P. Cybersecurity Risks and Automated Maritime Container Terminals in the Age of 4IR. InHandbook of Research on Information and Cyber Security in the Fourth Industrial Revolution 2018 (pp. 497-516). IGI Global.
- Amatori F, Bugamelli M, Colli A. Technology, firm size, and entrepreneurship. InThe Oxford Handbook of the Italian Economy Since Unification 2013.
- 7. O'Brien P. Provincializing the first industrial revolution.
- Alderton T, Winchester N. Globalisation and deregulation in the maritime industry. Marine policy.

- 2002 Jan 1;26(1):35-43.
- Solesvik MZ, Westhead P. Partner selection for strategic alliances: case study insights from the maritime industry. Industrial Management & Data Systems. 2010 Jun 29;110(6):841-60.
- Bankole OA, Lalitha VM, Khan HU, Jinugu A. Information technology in the maritime industry past, present and future: focus on lng carriers. In2017 IEEE 7th International Advance Computing Conference (IACC) 2017 Jan 5 (pp. 759-763). IEEE.
- Keceli Y. A proposed innovation strategy for Turkish port administration policy via information technology. Maritime Policy & Management. 2011 Mar 1;38(2):151-67.
- 12. Heine IM. The US Maritime Industry in the National Interest.
- Makris S, Xanthakis V, Mourtzis D, Chryssolouris G.
 On the information modeling for the electronic operation of supply chains: a maritime case study. Robotics and Computer-Integrated Manufacturing. 2008 Feb 1;24(1):140-9.
- Daud Norzaidi M, Choy Chong S, Intan Salwani M, Lin B. The indirect effects of intranet functionalities on middle managers' performance: Evidence from the maritime industry. Kybernetes. 2011 Mar 15;40(1/2):166-81.