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Abstract 
Cyanobacteria produce toxins that affect animals and human’s health. Therefore, modeling concentration of this type of algae 

is necessary. This study employs artificial neural network (ANN) modeling method to simulate the cavitation mechanism by 

ultrasonic irradiation on cyanobacteria concentration variation in treated water. The proposed model used parameters such as power 

intensity, frequency and the time of ultrasound irradiation as input variables. The results showed that proportional value of 

cyanobacteria concentration to the initial concentration (C/C0). The data obtained from a laboratory experiment and number of data 

in the existed study was not enough for ANN modeling, the data expanded to 7280 data sets from the original 28 data sets obtained 

by the experimental study. A feed-forward learning algorithm with 20 neurons in the first (hidden) layer and one neuron in the 

second layer was developed with the MSE value equals to 2.72×10-5. Model results were used for predicting the cell density value. 

Furthermore, a novel formulation was presented to correlate the C/C0 values with the cell density. To verify the accuracy of the 

ANN and developed equation, the value of cell density was predicted by studies performed by other researchers. In this case the 

MSE was 1.55×10-4. 
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1 Introduction1 
Cyanobacteria affect animals and human’s health due to 

poison production. The presence of this type of algae in 

nutrient-rich drinking water reserves has adverse effects in 

terms of taste, smell and health (Leclercq et al., 2014). 

Hence, it is necessary worldwide to control the blooms of 

algae and to remove the garbage before the distribution of 

water in an appropriate manner in accordance with the WHO 

guidelines and customer expectations (Leclercq et al., 2014).  

Today, ultrasonic devices have various applications in 

different fields of science, industry, medical practice and so 

forth (Sharma et al., 2011). One of the innovative techniques 

for improvement of water/wastewater treatment process is 

the application of ultrasonic waves; that does not require the 

addition of oxidants or catalyst and does not generate 

additional waste streams as compared to adsorption or 

ozonation processes (Zhang et al., 2009; Wang and Yuan 

2016). The ultrasonic method is known to have a detrimental 

effect on the structure and function of organisms (Hongwei 
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et al., 2004). Therefore, ultrasonic irradiation, due to its 

advantages, including safety, cleanliness and energy 

conservation, can be a suitable way to reduce pollution in 

aquatic resources containing harmful algae. Only a few 

researches have been developed since cyanobacterial bloom 

control by ultrasound is a fairly new field. Moreover, the 

ultrasonic process is not affected by the toxicity and low 

biodegradability of compounds (Fu et al., 2007). Ultrasound 

waves affect larger molecules faster than smaller ones 

(Yamamoto et al., 2015). The ultrasonic method uses 

electrical energy to induce physical, chemical and biological 

treating effects as shown in Fig.1 (Kasaai, 2013). Sound 

waves with a frequency between 20 KHz to 200 MHz are 

called ultrasonic waves. When an ultrasonic wave enters a 

liquid, it can cause cavitation (Wu et al., 2012). Fig.2 

illustrates the ultrasonic range due to its applications. In 

addition, bloom-forming cyanobacteria participate in 

diverse consortia, and symbioses with a broad array of 

microorganisms, higher plants and animals, which help 
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alleviate environmental stresses and limitations (Pilli et al., 

2011; Rajasekhar et al., 2012). In this study, the apparent gap 

between experimental data and modeling, by trying to 

determine if artificial intelligence models can predict 

cavitation mechanism for inhibiting algal growth. According 

to the best author’s knowledge, artificial neural network 

modeling and network performance evaluation are not 

considered in order to determine the cavitation mechanism 

by ultrasonic irradiation to control cyanobacterial citrate 

growth. 

 

 
Figure 1: Physical, chemical and biological effects of electrical 

energy (Kasaai, 2013) 

 

 
Figure 2: Diagram of the ultrasonic range (Wu et al., 2012) 

 

2 Material and Methods 
Three ultrasonic devices, two beaker systems (operating 

at 200 kHz and 1.7 MHz, respectively) and one horn system 

(operating at 20 kHz), are employed in this study. The 

ultrasonic generator designed in our laboratory consists of a 

voltage-controlled oscillator (VCO) (Zhang et al., 2009), 

power amplifier, matched impedance and feedback unit. The 

ultrasound at 20 kHz was emitted from a titanium horn 

dipped into the cyanobacterial suspension, and the ultrasonic 

at higher frequencies (200 kHz and 1.7 MHz) was emitted 

from the piezo-electric discs of lead zirconate titanate fixed 

on the underside of the beaker reactors with epoxy. Each 

frequency required a specific emitter. Their ultrasonic 

powers dissipated in the medium were measured 

calorimetrically (Paerl, 2018). The volume of ultrasonic 

reactors was 1200 and 800 ml cyanobacterial suspension that 

was filled in experiments (Lee et al., 2002; Ma et al., 2005).  

Cyanobacteria, or blue-green algae, occur worldwide often 

in calm, nutrient-rich waters. Some species of cyanobacteria 

produce toxins that affect animals and humans. People may 

be exposed to cyanobacteria toxins by drinking or bathing in 

contaminated water. The most frequent and serious health 

effects are caused by drinking water containing toxins or by 

ingestion during recreational water contact like swimming. 

Cyanobacteria can also cause problems for drinking water 

treatment systems. Therefore, studying and modeling the 

concentration of this type of algae is necessary to prevent its 

adverse effects on humans and animals. 

 

2.1 Cavitation process 

When a liquid is sonicated, dissolved gas molecules are 

entrapped by micro-bubbles that grow and expand upon 

rarefaction of the acoustic cycle; these micro-bubbles then 

release extreme temperatures upon adiabatic collapse (Hao 

et al., 2004; Lin et al., 2008). The process is based on the 

phenomenon of acoustic cavitation, which involves the 

formation, growth, and sudden collapse of micro-bubbles 

that generate short-lived, localized “hot spots” in an 

irradiated liquid (Wang et al., 2007).  

The high-temperatures (5000 K) and pressures (1000 

atm) induced by cavitation's in collapsing gas bubbles in 

aqueous solution lead to the thermal dissociation of water 

molecules into reactive free radicals  H0 and OH0 (Shimizu 

et al., 2007; Goel et al., 2004 ). There are three possible 

reaction sites in ultrasonically irradiated homogeneous 

liquids: (i) the gaseous interiors of collapsing cavities; (ii) 

the interfacial liquid region between cavitation's bubbles and 

the bulk solution, where high-temperatures (ca. 1000-2000 

K) and high temperature gradients exist; and (iii) the bulk 

solution at ambient temperature, where small amounts of 

OH0 diffuse from the interface. The sonochemical effect 

takes place at the gas-liquid interface due to the oxidation of 

organic molecules by OH0 and, to a lesser extent, in the bulk 

solution or the pyrolytic decomposition inside the bubbles 

(Li et al., 2008; Eren, 2012). Hydrophilic and non-volatile 

compounds such as dyes mainly degrade through OH0 

mediated reactions in the bulk solution and at the bubble-

liquid interface, while hydrophobic and volatile species 

degrade thermally inside the bubbles (Merouani et al., 2015; 

Wu et al., 2012).  

Cavitation phenomena produce high 

temperature/pressure fields and free radicals (such as OH0 

and H2O2, etc) in liquids (Fig. 3) (Pang et al., 2011). 

Cavitation consists of the repetition of three distinct steps: 

formation (nucleation), rapid growth (expansion) during the 

cycles until it reaches a critical size, and violent collapse in 

the liquid in less than a microsecond (Chowdhury and 

Viraraghavan, 2009) as shown in Fig. 4. Parameters that 

affect cavitation are liquid temperature, external pressure, 

liquid viscosity, amount and type of solved gases, the surface 

tension of a liquid (Fu et al., 2007). All these parameters are 

related to the liquid but the parameters of sound wave that 

are effective discuses below:  

 

2.2 Cavitation near surfaces 

The most important effects of ultrasonic on liquid-solid 
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systems are mechanical and attributed to asymmetric 

cavitation. In addition, shockwaves that have the potential to 

create microscopic turbulence are produced within 

interfacial films surrounding nearby solid particles (Pang et 

al., 2011). 

 

 
Figure 3: Reaction zone in cavitation process (Aadapted from 

Duong Pham et al., 2009)  

 

 
Figure 4: Growth and implosion of cavitation bubbles in aqueous 
solution under ultrasonic irradiation (Merouani et al., 2015)  

 

Asymmetric collapse leads to the micro-jet formation of 

solvent that collides with the solid surface at tremendous 

force, resulting in newly exposed, highly reactive surfaces as 

well as corrosion and erosion. These phenomena increase the 

rate of mass transfer near the catalyst surface (Chowdhury 

and Viraraghavan, 2009).  

 

2.3 Acoustic pressure 

The acoustic pressure is a sinusoidal wave dependent on 

time (t), frequency (f) and the maximum pressure amplitude 

of the wave, Pa, max and is represented by the following 

equation (Kuna et al., 2017; Hongwei et al., 2004): 

 

)..2sin(max, tfPP aa   (1) 

 
where, Pa is the acoustic pressure which directly 

proportional to more and violent collapse of bubbles, Pa, 

max is the maximum pressure amplitude of the wave which 

directly proportional to the input power of the transducer, t 

and fare time and frequency of ultrasonic waves, 

respectively (Hongwei et al., 2004; Shchukin et al., 2011). A 

sufficiently large increase in the intensity of ultrasound will 

generate larger values of acoustic pressure. An increase in 

the value of Pa lead to a more and violent collapse (Hongwei 

et al., 2004). 

Hence frequency has a diverse relation with the bubble 

sizes, in (relatively) low-frequency irradiations (16-

100KHz) will produce large cavitation bubbles which results 

in high temperature and pressure in the cavitation zone 

(Tsaih et al., 2004). As the frequency increases the cavitation 

zone becomes less violent and, in the MHz, range no 

cavitation's is observed and the main mechanism is acoustic 

streaming (Hongwei et al., 2004). I, is the power intensity of 

the ultrasonic wave in terms of   the energy transmitted per 

unit time per unit normal area of fluid:  

 

 
(2) 

 
where ρ is density of a medium/liquid, c is velocity of sound 

in that medium and Pa is the maximum pressure amplitude 

of the wave (Hongwei et al., 2004; Shchukin et al., 2011). 

Increasing intensity will increase the cavitation and also 

violent collapse of bubbles (Tsaih et al., 2004). This increase 

will continue until reaching an optimum point and after that 

point increase in power, the intensity will reduce the rate of 

cavitation. For example, Mutiarani et al., showed that 

removing turbidity increases with increasing power to 60 

watts and decreases for powers beyond 60w (Zhang et al., 

2016). Whereby the effect of power on removal efficiency 

(of microcystins) was studied using 30, 60 and 90 watt in the 

constant frequency of 20 KHz after 1, 5, 10, 20 minutes of 

exposure to the ultrasonic samples. The results are shown in 

Fig.5. 

 

 
Figure 5: The decrease of Turbidity at 28 kHz and 1 Hour of 
Irradiation time with variation of Power (Hatanaka et al., 2002) 

 

This phenomenon may be explained by bubble shielding 

effect. When the power intensity is high enough, a dense 

cloud of navigational bubbles accumulates around the 

ultrasonic transducer. The cavitation bubbles attenuate 

sound waves due to both scattering and absorption and thus 

impede the propagation of sound waves, especially at the 

resonant size (Mutiarani and Trisnobudi 2012).  

This study intends to develop the ANN model(s) to 

simulate the concentration of microsystems after using 

ultrasonic waves to remove them or changing those 

12

max, )2(  cPI a 
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pollutants to removable compounds. Input variables such as 

time, frequency and power of the applied ultrasonic are used 

to determine the proportional (C/C0) as the target value of 

the model(s). The data from Ma, et al., are used in this study 

(Rajasekhar et al., 2012). Then the results are verified by 

distinct study made by Hao et al., 2004 and Zhang et al., 

2016. Ultrasonic wave may Influence Cyanobacteria in 

several ways: (a) sinking Cyan bacteria by rapture vehicles 

that filled with gases which causes the flotation of 

Cyanobacteria; (b) disruption of photosynthesis; (c) damage 

of cell membranes due to lipid peroxidation; and (d) 

differential susceptibility to ultrasonic waves at different 

stages in the cell division cycle (Gerde et al., 2012; Zhang et 

al., 2006). Most experiments in this field are performed in 

frequencies between 20-28 KHz and in some researchers 

used frequencies up to 1.7 MHz (Lee et al., 2002; Ma et al., 

2005). Therefore, this study evaluates the effect of different 

ultrasonic frequencies such as 20,150,410 and 1700 KHz (in 

constant power of 30w) after 1,5,10 and 20 minutes of 

irradiation on Microcystis as the typical representative of 

bloom-forming algae. 

 

 

 
Figure 6: (a) The removal of microcystins dissolved in water after 

ultrasonic irradiation at 20 kHz and various powers of 30, 60, and 

90 W with time (Hatanaka et al., 2002) and (b) The removal of 
microcystins dissolved in water after ultrasonic irradiation at 30W 

and various frequencies of 20, 150, 410 kHz, and 1.7 MHz with time 

(Hao et al., 2004)  

 

Also, some research worked on the effect of ultrasonic 

irradiation on cyanobacteria. Their work is very similar to 

(Ma et al., 2005). In both works (see Fig.6) they used UV–

vis spectrophotometer (Ultra-Spec 2000, Amersham 

Biosciences AB, Uppsala, Sweden). Furthermore, Ma et al., 

calibrated the device on 684 nm and Hao et al., found an 

optical density of cell suspension of 560 nm as an optimum. 

The initial concentration in both experiments was 2µg/L. 

Therefore, it is possible to compare the results of the current 

ANN model with (Ma et al., 2005; Hao et al., 2004).  

 

 
Figure 7: (a)  Effect of ultrasonic irradiation (20 kHz, 30 W) for 
different time on Microcystis suspension, including changes of 

Microcystis biomass (Lee et al., 2002) and (b) Cyanobacterial 
biomass as a function of time during ultrasonic irradiation at 20 kHz, 

40W (Ma et al., 2005)  

 

2.4 Artificial Neural Network Method 

The artificial neural network (ANN), as its name 

implies, is a technique for simulation of the human brain 

functions during the problem–solving process, which has 

been developed and originated about 60 years ago. The 

neural network approach can be applied to the powerful 

computation of complex nonlinear relationships, just as 

humans apply knowledge gained from past experience to 

new problems or situations (Tang et al., 2004). Thus, for 

modeling parameters that don’t have a simple (linear) 

relationship with input data, ANN method can be employed 

effectively. The MLF (multilayer feed-forward) networks 

trained with back-propagation algorithm are the most 

popular type of networks (Salami et al., 2016 a,b; Salari et 

al., 2018). For example, models that marked by (*) in Table2 

have used feed-forward networks for their development 

(Tang et al., 2004).  

 

2.5 Structure of the Networks 

The basic architecture consists of three types of neuron 

layers: input, hidden, and output layers. Fig. 10 shows a two-

layer network. In feed-forward ANN networks, the signal 

flow from input to output units, strictly in a feed-forward 

direction (Samani et al., 2007; Koncsos, 2010). Hidden 

layers consist of a different number of neurons. Fig. 8 shows 

a parameter such as “a” is the output of neuron and “p” is 

the input. Parameters w and p are weight and bias 

respectively.  All parameters denoted as matrices, and can be 

expressed as (Salami et al., 2015).  
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Figure 8: A two layer feed-forward network 
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The most common "f" functions are presented in Fig. 9. 

These transfer functions transfer output of each layer to a 

simpler more useful expression for calibrating the wi and bi 

(s) in next layer/step.  

 

 
Figure 9: Transfer functions 

 

The training process determines the ANN weights and is 

similar to the calibration of a mathematical model. In order 

to perform training correctly, we must iteratively continue 

and repeat the process of calibrating and optimizing the wi, 

bi(s), with the final target of minimizing the mean square 

error (MSE) value as possible as it is, the process will 

continue until the required precisions reached. In the 

following procedure, weights and biases will change every 

time the process is repeated. The calibration process for wi, 

bi(s) is as (Abraham et al., 2005): 
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𝑚
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𝑛

𝑖=1

 

 

where α is the learning rate. In this study, the mean square 

error (MSE) is the criterion for comparing the outputs. 

Where ti is the target (real) value and ai is the network 

output. Two feed-forward networks with back propagation 

learning rule (Eqs.9-12) are used to develop the models in 

MATLAB environment. The design parameters of the 

networks have been. Other training parameters of the models 

are shown in Table 1. 

 

Table 1: Training parameters 

α0 0.001 Network type 
Feed-Forward back 

propagation 

α decrees 0.1 Training function 
Trainlm (Levenberg-

Marquardt) 

α increase 10 
Adaptive learning 

function  
Train GDM 

maximum 

α 
1E+10 Performance function  MSE 

min grad 1.00E-10 Transfer function Tensing(x) 

 
The validation of all equations/models after 

development, have been tested with precision parameters 

such as R or R* and MAE. R* is used in cases that we had 

negative values of R. In other words, when𝑦𝑗 > 𝑦𝑗̅̇ , R will be 

negative. 
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3 Results and Discussion  
3.1 Data development  

Fig.6 shows measured data that can be used in this study. 

They are just 28 sets (12 sets obtained from Fig.6a and 16 

sets obtained from Fig.6b). Since the size of data sets did not 

look enough for developing a reliable ANN model, we used 

a simple interpolation method to expand these 28 sets of data 

to 7280 sets (Hao et al., 2004). To implement the procedure 

all three (input) parameters of time (t), power (I) and 

frequency (f) were prepared with smaller intervals compared 

to Fig 6 (a,b). Actually, the number of data was increased to 

a reasonably sufficient amount by simple interpolation. For 

example, in step 1, the irradiation duration was modified 

from 1 to 20 min, one minute by minute.  In step 2, power 

changed from 30W to 90W by 10W each time, and in step 3 

the frequency range expanded from 20 to 400 KHz by 10 

KHz and from 500 KHz to 1.7 MHz by 100 KHz each time. 

Furthermore, all possible compositions of input parameters 

were considered in the potential range.  

In order to ensure the model accuracy, the original data 

(28 data sets from Ma et al., (2005) removed from learning 

data and just were used to validate the models after the 

development. Since Ln(C/C0) exhibited a rather linear 

relationship with time, it was chosen as the target value to 

obtain a more accurate and reliable model. The target values 

of 7280 data sets prepared and adjusted for modelling are 

presented in Fig. 10.  

 

 
Figure 11: Comparison between model results and real data 

 

3.2 Cell density simulation  

Input parameters such as Fig. 6a data, (I = 30 W, f = 20 

KHz, t = 0, 1, 2..., 9 min) were used as input parameters in 

the ANN model and C/C0 for all 10 conditions were 

simulated. Then a novel formula such as Eq. (13-15) is 

developed to show the relationship between the C/C0 and 

cell density.   

 

T

aat
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e
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0
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a

m
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𝒂𝒆 =
𝒙𝒎,𝒆

𝒙𝒎
                                                                      (15) 

 

where xm,0  is the  C/C0 in t = 0 , calculated with Eq. 11, x0 is 

cell density in t = 0 , obtained from Fig. 6a, xm,e is C/C0 in 

end time (T) , calculated with Eq. 11, xe is cell density in end 

time (T), obtained from Fig. 6a. Fig. 12 shows the results of 

the model and developed equation (Eq. 13) and their 

comparison with the real data (Fig.6a). The input parameters 

in Fig.6.b such as (I = 40W, f = 30 KHz, t = 0, 1, 2, …, 10 

min) were used in the generated model and the results of 

model (r) is converted to cell density using Eq.  13. Finally, 

the results of the proposed procedure is compared with the 

results of Hao et al., (2004) which is shown at Fig. 12b.  

 

 
Figure 10: 7280 obtained target values of 7280 data sets prepared 

for modeling 

 
In order to obtain the optimum removal rate at each 

condition, we consider all possible combinations of input 

values (time (t), power (I), frequency (f)) within the desired 

ranges which can describe the oscillating pattern of the target 

data C/C0. The primary proposed models developed and 

verified assuming linear or polynomial correlations between 

input values time (t), power (I) and frequency (f) to the target 

parameter Ln(C/C0). However, the analysis showed a weak 

correlation for linear and polynomial models. Therefore, 

MATLAB software was used to generate ANN models by 

applying the input parameters such as I,t and f as feed data 

to predict Ln(C/C0) as the target element.  

In this regard, 7280 sets of data were used for modelling 

in which 70% for training, 15% for validation and the other 

15% for testing. The network that is used has one hidden 

layer with 20 neurons. After developing the model, all 7280 

(sets of) input data were used to estimate Ln(C/C0) for each 

data set, the overall average MSE was 2.72×10-5 which 

implies how accurate the model is. Figure 11 shows all 28 

sets of original data that were used for modelling compared 

with model results. The average MSE for the following 28 

data sets was 3.15×10-4.  Accordingly, the model outcome 

is Ln of C/C0. 

 

𝑥𝑚 =
𝐶

𝐶0
= 𝑒𝑟                                                                   (12) 
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Figure 12: (a) the results of the model and Eq. 12 compared with 

real data and (b) Model verification using the comparative results of 
(Hao et al., 2004)  

 
Whereby, the input parameters in Fig.6.b (I = 40W, f = 

30 KHz, t = 0, 1, 2, …, 10 min) were entered to model and 

the results (r) converted to cell density using Eq. 12 which 

can be compared to the results of (Hao et al., 2004). It worth 

to note that the model predicts the value of C/C0 closely near 

to 1 in time zero while the data less than one minute were  

not used  at the model training stage. The model results can 

be used for: 

- Optimizing problems 

- Calibrating measurement equipment 

- Finding errors in measurements, caused by 
operator/equipment fault 

- Reproducing missing/bad data 

The other main outcome of the current study is the 

relation between C/C0-removal and cell density which leads 

to develop a promising state-of-the-art equation called 

Salami’s equation:   

 

T

aat
a

CC

C

C
SalamiEq

e ).(

0/

0
.

0
0





                   (16) 

where α is a factor that depends on the passed time, initial 

and endpoint values of the (C/C0) and it’s proportional to the 

value of cell density. The value of the (C/C0) can be obtained 

from the experiment and/or the presented ANN model. The 

model simulates C/C0 very close to 1 at time t equals to zero.  

It is obvious that C in time zero should be equals to C0 and 

thus the C/C0 must be 1.  However, it should be considered 

that the model is just using times equals or above one minute 

and the fact that it can predict the behavior of target in time 

zero, indicate that the model has some kind of intelligence 

for predicting data that has never encountered before.   

4 Conclusion 
In recent times wastewater treatment by ultrasonic has 

become a popular treatment technique due to its ability to 

degrade pollutants at the end of treating products, i.e. CO2, 

water and organic acids. Ultrasonic dye degradation is a 

complete, irreversible degradation process that provides an 

appropriate, safe wastewater treatment method with non-

toxic and stable products. The main achievement of this 

study is an ANN model that can simulate the value of 

Ln(C/C0), for cyanobacteria at minutes of ultrasound 

irradiation such as t; with frequency of ‘f’ and power 

intensity of ‘I’.  By using parameters such as I, f and t (as 

input parameters), model will simulate the value of 

Ln(C/C0).  Accuracy of the model demonstrated in all 

domains as Time: between 0 to 20 minutes, Power intensity: 

between 30 to 90 watts, Frequency between 20 KHz to 1.7 

MHz, Initial concentration of cyanobacteria: 2 µg/L. The 

model has the ability of adaptation with new data and can be 

updated/calibrated with new/different data. Result of the 

ANN model and Salami’s equation (that both made by data 

from Ma et al., 2005, verified completely with an 

outstanding, but similar work such as Hao et al., 2004. This 

study also shows a method for expanding data with a simple 

interpolation technique that can increase the number of data 

(sets) by: 

 Breaking the differences between (existed) input 

parameters to smaller fractions and find values of target 

parameters (in those points) by interpolation  

 Combining different experiment that is done in similar 

conditions 

 Considering all possible combinations of input 

parameters; and it is a procedure that can be used to 

describe experimental data sets. 
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