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Abstract

Cyanobacteria produce toxins that affect animals and human’s health. Therefore, modeling concentration of this type of algae
is necessary. This study employs artificial neural network (ANN) modeling method to simulate the cavitation mechanism by
ultrasonic irradiation on cyanobacteria concentration variation in treated water. The proposed model used parameters such as power
intensity, frequency and the time of ultrasound irradiation as input variables. The results showed that proportional value of
cyanobacteria concentration to the initial concentration (C/Co). The data obtained from a laboratory experiment and number of data
in the existed study was not enough for ANN modeling, the data expanded to 7280 data sets from the original 28 data sets obtained
by the experimental study. A feed-forward learning algorithm with 20 neurons in the first (hidden) layer and one neuron in the
second layer was developed with the MSE value equals to 2.72x105. Model results were used for predicting the cell density value.
Furthermore, a novel formulation was presented to correlate the C/Co values with the cell density. To verify the accuracy of the
ANN and developed equation, the value of cell density was predicted by studies performed by other researchers. In this case the
MSE was 1.55x10.
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1 Introduction et al., 2004). Therefore, ultrasonic irradiation, due to its

Cyanobacteria affect animals and human’s health due to advantage_s, including s_afety, cleanliness and energy
poison production. The presence of this type of algae in conservation, can be a suitable way to reduce pollution in
nutrient-rich drinking water reserves has adverse effects in aquatic resources containing harmful algae. Only a few
terms of taste, smell and health (Leclercq et al., 2014). researches have been developed since cyanobacterial bloom
Hence, it is necessary worldwide to control the blooms of control by ultrasound is a fairly new field. Moreover, the
algae and to remove the garbage before the distribution of ultrasonic process is not affected by the toxicity and low
water in an appropriate manner in accordance with the WHO biodegradability of compounds (Fu et al., 2007). Ultrasound
guidelines and customer expectations (Leclercq et al., 2014). waves affect larger molecules faster than smaller ones

Today, ultrasonic devices have various applications in (Yamamoto et al., 2015). The ultrasonic method uses
different fields of science, industry, medical practice and so electrical energy to induce physical, chemical and biological
forth (Sharma et al., 2011). One of the innovative techniques treating effects as shown in Fig.1 (Kasaai, 2013). Sound
for improvement of water/wastewater treatment process is waves with a frequency between 20 KHz to 200 MHz are
the application of ultrasonic waves; that does not require the called ultrasonic waves. When an ultrasonic wave enters a
addition of oxidants or catalyst and does not generate liquid, it can cause cavitation (Wu et al,, 2012). Fig.2
additional waste streams as compared to adsorption or illustrates the ultrasonic range due to its applications. In
ozonation processes (Zhang et al., 2009; Wang and Yuan addition, bloom-forming  cyanobacteria participate in
2016). The ultrasonic method is known to have a detrimental diverse consortia, and symbioses with a broad array of
effect on the structure and function of organisms (Hongwei microorganisms, higher plants and animals, which help

Corresponding author: Marjan Salari, Department of Civil
Engineering, Sirjan University of Technology, Kerman,
Iran. E-mail: salari.marjan@gmail.com.

625


mailto:salari.marjan@gmail.com
http://www.jett.dormaj.com/

Journal of Environmental Treatment Techniques

2020, Volume 8, Issue 2, Pages: 625-633

alleviate environmental stresses and limitations (Pilli et al.,
2011; Rajasekhar et al., 2012). In this study, the apparent gap
between experimental data and modeling, by trying to
determine if artificial intelligence models can predict
cavitation mechanism for inhibiting algal growth. According
to the best author’s knowledge, artificial neural network
modeling and network performance evaluation are not
considered in order to determine the cavitation mechanism
by ultrasonic irradiation to control cyanobacterial citrate
growth.
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Figure 1: Physical, chemical and biological effects of electrical
energy (Kasaai, 2013)
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Figure 2: Diagram of the ultrasonic range (Wu et al., 2012)

2 Material and Methods

Three ultrasonic devices, two beaker systems (operating
at 200 kHz and 1.7 MHz, respectively) and one horn system
(operating at 20 kHz), are employed in this study. The
ultrasonic generator designed in our laboratory consists of a
voltage-controlled oscillator (VCO) (Zhang et al., 2009),
power amplifier, matched impedance and feedback unit. The
ultrasound at 20 kHz was emitted from a titanium horn
dipped into the cyanobacterial suspension, and the ultrasonic
at higher frequencies (200 kHz and 1.7 MHz) was emitted
from the piezo-electric discs of lead zirconate titanate fixed
on the underside of the beaker reactors with epoxy. Each
frequency required a specific emitter. Their ultrasonic
powers dissipated in the medium were measured
calorimetrically (Paerl, 2018). The volume of ultrasonic
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reactors was 1200 and 800 ml cyanobacterial suspension that
was filled in experiments (Lee et al., 2002; Ma et al., 2005).
Cyanobacteria, or blue-green algae, occur worldwide often
in calm, nutrient-rich waters. Some species of cyanobacteria
produce toxins that affect animals and humans. People may
be exposed to cyanobacteria toxins by drinking or bathing in
contaminated water. The most frequent and serious health
effects are caused by drinking water containing toxins or by
ingestion during recreational water contact like swimming.
Cyanobacteria can also cause problems for drinking water
treatment systems. Therefore, studying and modeling the
concentration of this type of algae is necessary to prevent its
adverse effects on humans and animals.

2.1 Cavitation process

When a liquid is sonicated, dissolved gas molecules are
entrapped by micro-bubbles that grow and expand upon
rarefaction of the acoustic cycle; these micro-bubbles then
release extreme temperatures upon adiabatic collapse (Hao
et al., 2004; Lin et al., 2008). The process is based on the
phenomenon of acoustic cavitation, which involves the
formation, growth, and sudden collapse of micro-bubbles
that generate short-lived, localized “hot spots” in an
irradiated liquid (Wang et al., 2007).

The high-temperatures (5000 K) and pressures (1000
atm) induced by cavitation's in collapsing gas bubbles in
aqueous solution lead to the thermal dissociation of water
molecules into reactive free radicals HO and OHO (Shimizu
et al., 2007; Goel et al., 2004 ). There are three possible
reaction sites in ultrasonically irradiated homogeneous
liquids: (i) the gaseous interiors of collapsing cavities; (ii)
the interfacial liquid region between cavitation's bubbles and
the bulk solution, where high-temperatures (ca. 1000-2000
K) and high temperature gradients exist; and (iii) the bulk
solution at ambient temperature, where small amounts of
OHO diffuse from the interface. The sonochemical effect
takes place at the gas-liquid interface due to the oxidation of
organic molecules by OHO and, to a lesser extent, in the bulk
solution or the pyrolytic decomposition inside the bubbles
(Li et al., 2008; Eren, 2012). Hydrophilic and non-volatile
compounds such as dyes mainly degrade through OHO
mediated reactions in the bulk solution and at the bubble-
liquid interface, while hydrophobic and volatile species
degrade thermally inside the bubbles (Merouani et al., 2015;
Wau et al., 2012).

Cavitation phenomena produce high
temperature/pressure fields and free radicals (such as OH°
and H202, etc) in liquids (Fig. 3) (Pang et al., 2011).
Cavitation consists of the repetition of three distinct steps:
formation (nucleation), rapid growth (expansion) during the
cycles until it reaches a critical size, and violent collapse in
the liquid in less than a microsecond (Chowdhury and
Viraraghavan, 2009) as shown in Fig. 4. Parameters that
affect cavitation are liquid temperature, external pressure,
liquid viscosity, amount and type of solved gases, the surface
tension of a liquid (Fu et al., 2007). All these parameters are
related to the liquid but the parameters of sound wave that
are effective discuses below:

2.2 Cavitation near surfaces
The most important effects of ultrasonic on liquid-solid
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systems are mechanical and attributed to asymmetric
cavitation. In addition, shockwaves that have the potential to
create microscopic turbulence are produced within
interfacial films surrounding nearby solid particles (Pang et
al., 2011).
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Figure 3: Reaction zone in cavitation process (Aadapted from
Duong Pham et al., 2009)
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Figure 4: Growth and implosion of cavitation bubbles in aqueous
solution under ultrasonic irradiation (Merouani et al., 2015)

Asymmetric collapse leads to the micro-jet formation of
solvent that collides with the solid surface at tremendous
force, resulting in newly exposed, highly reactive surfaces as
well as corrosion and erosion. These phenomena increase the
rate of mass transfer near the catalyst surface (Chowdhury
and Viraraghavan, 2009).

2.3 Acoustic pressure

The acoustic pressure is a sinusoidal wave dependent on
time (t), frequency (f) and the maximum pressure amplitude
of the wave, Pa, max and is represented by the following
equation (Kuna et al., 2017; Hongwei et al., 2004):

P, =P, SINQ27. 1) )

where, Pa is the acoustic pressure which directly
proportional to more and violent collapse of bubbles, Pa,
max is the maximum pressure amplitude of the wave which
directly proportional to the input power of the transducer, t
and fare time and frequency of ultrasonic waves,
respectively (Hongwei et al., 2004; Shchukin et al., 2011). A
sufficiently large increase in the intensity of ultrasound will
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generate larger values of acoustic pressure. An increase in
the value of Pa lead to a more and violent collapse (Hongwei
et al., 2004).

Hence frequency has a diverse relation with the bubble
sizes, in (relatively) low-frequency irradiations (16-
100KHz) will produce large cavitation bubbles which results
in high temperature and pressure in the cavitation zone
(Tsaih et al., 2004). As the frequency increases the cavitation
zone becomes less violent and, in the MHz, range no
cavitation's is observed and the main mechanism is acoustic
streaming (Hongwei et al., 2004). 1, is the power intensity of
the ultrasonic wave in terms of the energy transmitted per
unit time per unit normal area of fluid:

I = Pa,maxz(zpc)_l (2)

where p is density of a medium/liquid, c is velocity of sound
in that medium and P is the maximum pressure amplitude
of the wave (Hongwei et al., 2004; Shchukin et al., 2011).
Increasing intensity will increase the cavitation and also
violent collapse of bubbles (Tsaih et al., 2004). This increase
will continue until reaching an optimum point and after that
point increase in power, the intensity will reduce the rate of
cavitation. For example, Mutiarani et al., showed that
removing turbidity increases with increasing power to 60
watts and decreases for powers beyond 60w (Zhang et al.,
2016). Whereby the effect of power on removal efficiency
(of microcystins) was studied using 30, 60 and 90 watt in the
constant frequency of 20 KHz after 1, 5, 10, 20 minutes of
exposure to the ultrasonic samples. The results are shown in
Fig.5.

100 -
80 -
60

40

The Decrease of Turbidity (%)

20 40 60

Power (watt)

Figure 5: The decrease of Turbidity at 28 kHz and 1 Hour of
Irradiation time with variation of Power (Hatanaka et al., 2002)
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This phenomenon may be explained by bubble shielding
effect. When the power intensity is high enough, a dense
cloud of navigational bubbles accumulates around the
ultrasonic transducer. The cavitation bubbles attenuate
sound waves due to both scattering and absorption and thus
impede the propagation of sound waves, especially at the
resonant size (Mutiarani and Trisnobudi 2012).

This study intends to develop the ANN model(s) to
simulate the concentration of microsystems after using
ultrasonic waves to remove them or changing those
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pollutants to removable compounds. Input variables such as
time, frequency and power of the applied ultrasonic are used
to determine the proportional (C/CO0) as the target value of
the model(s). The data from Ma, et al., are used in this study
(Rajasekhar et al., 2012). Then the results are verified by
distinct study made by Hao et al., 2004 and Zhang et al.,
2016. Ultrasonic wave may Influence Cyanobacteria in
several ways: (a) sinking Cyan bacteria by rapture vehicles
that filled with gases which causes the flotation of
Cyanobacteria; (b) disruption of photosynthesis; (c) damage
of cell membranes due to lipid peroxidation; and (d)
differential susceptibility to ultrasonic waves at different
stages in the cell division cycle (Gerde et al., 2012; Zhang et
al., 2006). Most experiments in this field are performed in
frequencies between 20-28 KHz and in some researchers
used frequencies up to 1.7 MHz (Lee et al., 2002; Ma et al.,
2005). Therefore, this study evaluates the effect of different
ultrasonic frequencies such as 20,150,410 and 1700 KHz (in
constant power of 30w) after 1,5,10 and 20 minutes of
irradiation on Microcystis as the typical representative of
bloom-forming algae.
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Figure 6: (a) The removal of microcystins dissolved in water after
ultrasonic irradiation at 20 kHz and various powers of 30, 60, and
90 W with time (Hatanaka et al., 2002) and (b) The removal of
microcystins dissolved in water after ultrasonic irradiation at 30W
and various frequencies of 20, 150, 410 kHz, and 1.7 MHz with time
(Hao et al., 2004)

Also, some research worked on the effect of ultrasonic
irradiation on cyanobacteria. Their work is very similar to
(Ma et al., 2005). In both works (see Fig.6) they used UV—
vis  spectrophotometer (Ultra-Spec 2000, Amersham
Biosciences AB, Uppsala, Sweden). Furthermore, Ma et al.,
calibrated the device on 684 nm and Hao et al., found an
optical density of cell suspension of 560 nm as an optimum.
The initial concentration in both experiments was 2ug/L.
Therefore, it is possible to compare the results of the current
ANN model with (Ma et al., 2005; Hao et al., 2004).
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Figure 7: (a) Effect of ultrasonic irradiation (20 kHz, 30 W) for
different time on Microcystis suspension, including changes of
Microcystis biomass (Lee et al., 2002) and (b) Cyanobacterial
biomass as a function of time during ultrasonic irradiation at 20 kHz,
40W (Ma et al., 2005)

2.4 Artificial Neural Network Method

The artificial neural network (ANN), as its name
implies, is a technique for simulation of the human brain
functions during the problem-solving process, which has
been developed and originated about 60 years ago. The
neural network approach can be applied to the powerful
computation of complex nonlinear relationships, just as
humans apply knowledge gained from past experience to
new problems or situations (Tang et al., 2004). Thus, for
modeling parameters that don’t have a simple (linear)
relationship with input data, ANN method can be employed
effectively. The MLF (multilayer feed-forward) networks
trained with back-propagation algorithm are the most
popular type of networks (Salami et al., 2016 a,b; Salari et
al., 2018). For example, models that marked by (*) in Table2
have used feed-forward networks for their development
(Tang et al., 2004).

2.5 Structure of the Networks

The basic architecture consists of three types of neuron
layers: input, hidden, and output layers. Fig. 10 shows a two-
layer network. In feed-forward ANN networks, the signal
flow from input to output units, strictly in a feed-forward
direction (Samani et al., 2007; Koncsos, 2010). Hidden
layers consist of a different number of neurons. Fig. 8 shows
a parameter such as “a” is the output of neuron and “p” is
the input. Parameters w and p are weight and bias
respectively. All parameters denoted as matrices, and can be
expressed as (Salami et al., 2015).
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The most common "f" functions are presented in Fig. 9.
These transfer functions transfer output of each layer to a
simpler more useful expression for calibrating the wi and bi
(s) in next layer/step.

Figure 9: Transfer functions

The training process determines the ANN weights and is
similar to the calibration of a mathematical model. In order
to perform training correctly, we must iteratively continue
and repeat the process of calibrating and optimizing the wi,
bi(s), with the final target of minimizing the mean square
error (MSE) value as possible as it is, the process will
continue until the required precisions reached. In the
following procedure, weights and biases will change every
time the process is repeated. The calibration process for wi,
bi(s) is as (Abraham et al., 2005):
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where o is the learning rate. In this study, the mean square
error (MSE) is the criterion for comparing the outputs.
Where ti is the target (real) value and ai is the network
output. Two feed-forward networks with back propagation
learning rule (Eqgs.9-12) are used to develop the models in
MATLAB environment. The design parameters of the
networks have been. Other training parameters of the models
are shown in Table 1.

Table 1: Training parameters

Feed-Forward back

0o 0.001 Network type .
propagation
- . Trainlm (Levenberg-
o decrees 0.1 Training function Marquardt)
aincrease 10 ;’-\dap_tlve learning Train GDM
unction
21aX|mum 1E+10 Performance function MSE
min grad 1.00E-10  Transfer function Tensing(x)
The validation of all equations/models after

development, have been tested with precision parameters
such as R or R* and MAE. R* is used in cases that we had
negative values of R. In other words, wheny, > 7, Rwill be
negative.

‘ vs = vl
L=y, (10)
i
fory, >y, >R, Z
l
Yi
fory, <y, >R, =y =
Yi
R R+R
MAI=7j=1|y£ — il (11)
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3 Results and Discussion
3.1 Data development

Fig.6 shows measured data that can be used in this study.
They are just 28 sets (12 sets obtained from Fig.6a and 16
sets obtained from Fig.6b). Since the size of data sets did not
look enough for developing a reliable ANN model, we used
a simple interpolation method to expand these 28 sets of data
to 7280 sets (Hao et al., 2004). To implement the procedure
all three (input) parameters of time (t), power (I) and
frequency (f) were prepared with smaller intervals compared
to Fig 6 (a,b). Actually, the number of data was increased to
a reasonably sufficient amount by simple interpolation. For
example, in step 1, the irradiation duration was modified
from 1 to 20 min, one minute by minute. In step 2, power
changed from 30W to 90W by 10W each time, and in step 3
the frequency range expanded from 20 to 400 KHz by 10
KHz and from 500 KHz to 1.7 MHz by 100 KHz each time.
Furthermore, all possible compositions of input parameters
were considered in the potential range.

In order to ensure the model accuracy, the original data
(28 data sets from Ma et al., (2005) removed from learning
data and just were used to validate the models after the
development. Since Ln(C/Co) exhibited a rather linear
relationship with time, it was chosen as the target value to
obtain a more accurate and reliable model. The target values
of 7280 data sets prepared and adjusted for modelling are
presented in Fig. 10.
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Figure 11: Comparison between model results and real data
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3.2 Cell density simulation

Input parameters such as Fig. 6a data, (I =30 W, f=20
KHz, t =0, 1, 2..., 9 min) were used as input parameters in
the ANN model and C/Co for all 10 conditions were
simulated. Then a novel formula such as Eq. (13-15) is
developed to show the relationship between the C/Co and
cell density.

. Xy
Ce” denslty=m (13)
E +f

(14)

a, = 2= (15)

where xmo isthe C/Coint=0, calculated with Eq. 11, Xo is
cell density in t = 0, obtained from Fig. 6a, Xm,e is C/Co in
end time (T) , calculated with Eq. 11, xe is cell density in end
time (T), obtained from Fig. 6a. Fig. 12 shows the results of
the model and developed equation (Eq. 13) and their
comparison with the real data (Fig.6a). The input parameters
in Fig.6.b such as (I =40W, f=30 KHz,t=0, 1, 2, ..., 10
min) were used in the generated model and the results of
model (r) is converted to cell density using Eq. 13. Finally,
the results of the proposed procedure is compared with the
results of Hao et al., (2004) which is shown at Fig. 12b.
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Figure 10: 7280 obtained target values of 7280 data sets prepared
for modeling

In order to obtain the optimum removal rate at each
condition, we consider all possible combinations of input
values (time (t), power (1), frequency (f)) within the desired
ranges which can describe the oscillating pattern of the target
data C/Co. The primary proposed models developed and
verified assuming linear or polynomial correlations between
input values time (t), power (1) and frequency (f) to the target
parameter Ln(C/Co). However, the analysis showed a weak
correlation for linear and polynomial models. Therefore,
MATLAB software was used to generate ANN models by
applying the input parameters such as I,t and f as feed data
to predict Ln(C/Co) as the target element.

In this regard, 7280 sets of data were used for modelling
in which 70% for training, 15% for validation and the other
15% for testing. The network that is used has one hidden
layer with 20 neurons. After developing the model, all 7280
(sets of) input data were used to estimate Ln(C/Co) for each
data set, the overall average MSE was 2.72x10-5 which
implies how accurate the model is. Figure 11 shows all 28
sets of original data that were used for modelling compared
with model results. The average MSE for the following 28
data sets was 3.15x10-4. Accordingly, the model outcome
is Ln of C/Co.

Xy = % =e” (12)



Journal of Environmental Treatment Techniques

2020, Volume 8, Issue 2, Pages: 625-633

o
N
wn

(a) ©-Real Data -4-Salami's Eq Results

(=]
N
®

o
i
or
fo 2

0.1

Cell Density

0.05

0 1§ 2 3 4 5 6 74 8 9
Time(min)

0.35

(b) ©Real Data -a-Salami's Eq Results

(=]
o T
N W
2]
[ 46]
| Jo]

o
o
w

Cell Density

@ R

=
o ©°
o O

o 1 2 3 4 S5 6 7 8 9 10
Time(min)
Figure 12: (a) the results of the model and Eq. 12 compared with
real data and (b) Model verification using the comparative results of
(Hao et al., 2004)

Whereby, the input parameters in Fig.6.b (I = 40W, f =
30 KHz,t=0,1, 2, ..., 10 min) were entered to model and
the results (r) converted to cell density using Eqg. 12 which
can be compared to the results of (Hao et al., 2004). It worth
to note that the model predicts the value of C/Co closely near
to 1 in time zero while the data less than one minute were
not used at the model training stage. The model results can
be used for:
- Optimizing problems
- Calibrating measurement equipment
- Finding errors in measurements,

operator/equipment fault

- Reproducing missing/bad data

The other main outcome of the current study is the
relation between C/CO-removal and cell density which leads
to develop a promising state-of-the-art equation called
Salami’s equation:

caused by

SalamiEq= oz.3 = __cico (16)
co ., t@—a)
0 T

where a is a factor that depends on the passed time, initial
and endpoint values of the (C/Co) and it’s proportional to the
value of cell density. The value of the (C/Co) can be obtained
from the experiment and/or the presented ANN model. The
model simulates C/Co very close to 1 at time t equals to zero.
It is obvious that C in time zero should be equals to Co and
thus the C/Co must be 1. However, it should be considered
that the model is just using times equals or above one minute
and the fact that it can predict the behavior of target in time
zero, indicate that the model has some kind of intelligence
for predicting data that has never encountered before.
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4 Conclusion
In recent times wastewater treatment by ultrasonic has

become a popular treatment technique due to its ability to

degrade pollutants at the end of treating products, i.e. COz,

water and organic acids. Ultrasonic dye degradation is a

complete, irreversible degradation process that provides an

appropriate, safe wastewater treatment method with non-
toxic and stable products. The main achievement of this
study is an ANN model that can simulate the value of

Ln(C/Co), for cyanobacteria at minutes of ultrasound

irradiation such as t; with frequency of ‘f" and power

intensity of ‘I’. By using parameters such as I, f and t (as
input parameters), model will simulate the value of

Ln(C/Co). Accuracy of the model demonstrated in all

domains as Time: between 0 to 20 minutes, Power intensity:

between 30 to 90 watts, Frequency between 20 KHz to 1.7

MHz, Initial concentration of cyanobacteria: 2 pg/L. The

model has the ability of adaptation with new data and can be

updated/calibrated with new/different data. Result of the

ANN model and Salami’s equation (that both made by data

from Ma et al, 2005, verified completely with an

outstanding, but similar work such as Hao et al., 2004. This
study also shows a method for expanding data with a simple
interpolation technique that can increase the number of data

(sets) by:

e Breaking the differences between (existed) input
parameters to smaller fractions and find values of target
parameters (in those points) by interpolation

e Combining different experiment that is done in similar
conditions

e Considering all possible combinations of input
parameters; and it is a procedure that can be used to
describe experimental data sets.
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