Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 573-581  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
A Heterogeneous Relationships between  
Urbanization, Energy Consumption, Economic  
Growth on Environmental Degradation: Panel Study  
of Malaysia and Selected ASEAN+3 Countries  
1
1
1
1
Ali Umar Ahmad , Suraya Ismail , Aminu Hassan Jakada , Ibrahim Sambo Farouq , Atiku  
1
1
2
Abubakar Muhammad , Umar Aliyu Mustapha , Ahmad Tijjani Abdullahi , Aminu Muhammad  
Fagge3  
1
Faculty of Business and Management, University Sultan Zainal Abidin (UNISZA), Terengaennu Malaysia  
2
Faculty of Social Management Science, Department of Economics, Bayero University Kano, Kano Nigeria  
3
Faculty of Arts & Social Science, Department of Economics & Development Studies, Federal University Dutse, Jigawa Nigeria  
Received: 11/12/2019  
Accepted: 01/02/2020  
Published: 20/02/2020  
Abstract  
This paper aims to analyse the association among urbanization, economic growth, energy consumption and environmental degradation  
based on estimates in the context of second-generation techniques. A Malaysian economy and selected ASEAN+3 were estimated using  
Pesaran (1999) Pooled Mean Grouped (PMG) and a panel dynamic common correlated effects (DCCE) technique pioneered by Pesaran and  
Chudik (2015) that measures a model of error correction (EC) which is resilient to cross-sectional dependency and co-integration. Evidence  
from the findings shows that the main actors or driving forces leading to a high level of environmental degradation are urbanization, economic  
growth, and energy consumption for Malaysia and selected ASEAN+3 nations. Also found was the existence of one-way causality running  
from economic growth to environmental degradation. It also indicates another one-way causality running from square of economic growth  
to environmental degradation. Whereas, a bidirectional causality is found between urbanization and environmental degradation, as well as a  
feedback causality among energy consumption and environmental degradation.  
Keywords: Urbanization, environmental degradation, Energy consumption, Economic growth, Heterogeneous panel, Malaysia and Selected  
ASEAN+3  
Introduction1  
(
40) Stable economic growth with that of the least environmental  
1
damage from the climate is a severe challenge to the modern  
world. Academics and decision-makers are curious to find out  
which determinants are responsible for environmental damage  
The most challenging phenomenon facing humanity in the  
2
1st century is global climate change, which is increasingly  
destroying ecosystems. Over the past few decades, global  
consensus has shown that carbon dioxide (CO ) emissions are one  
(43). Besides, many contributing factors like energy usage, power  
2
usage, economic growth, trade openness, urban growth and  
transportation are responsible for environmental degradation  
of the primary sources of global warming due to rising energy  
consumption (25) and (35). Since after the industrial age, the rate  
(20”16”13). Energy usage in the Association of Southeast Asian  
2
of growth in CO emissions has been 2.0 ppm per year and in  
017, this crossed the net figure of 410 ppm. This record will hit  
Nations (ASEAN) economies has significantly increased as a  
result of steady growth in urbanism and industrial development.  
ASEAN. The Center for Energy (ACE) forecast a rise in the  
energy usage of ASEAN nations by 4.4% in 2030, which is higher  
than the global average demand for energy growth of 1.4%.  
Nonetheless, a comprehensive greenhouse gas emission study  
continues to be restricted to ASEAN plus Three (ASEAN+3)  
member states. Numerous researches cantered on estimating the  
2
a current pace of up to 450 ppm within a few short decades (1).  
Achieving a high rate of economic growth through industrial  
production and technological progress is a primary concern for  
newly developed countries, which are reciprocally enhancing  
international trade, urban population and financial development.  
The recently industrialized nations (NIC) contribute 42% of total  
2
global CO emissions as a result of increased economic growth  
Corresponding author: Ali Umar Ahmad, Faculty of Business  
and Management, Universiti Sultan Zainal Abidin (UNISZA),  
Terengaennu Malaysia. E-mail: umarahali204019@gmail.com.  
5
73  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 573-581  
deterioration of the environment, energy usage and economic  
growth in ASEAN economies. (23), and (17) analyzed the  
interconnections between CO pollution and powerful influences  
2
in ASEAN nations, whereas (6) based on only ASEAN 8. (36)  
and (10) evaluated the impact of ASEAN-5 nations on foreign  
2
direct investment, energy consumption and CO pollution. This  
linkage among energy consumption economic growth and  
carbon-economic growth when analysing the empirical study (3)  
Given that the sincerity of climate change and its negative  
environmental impact has been given more considerable attention  
to the global community, several studies have focused primarily  
on the relationship among energy usage, in specific the use of  
research, therefore, aims to bridge the gap in the research by  
examining the role of global warming among ASEAN+3 nations,  
especially CO emissions. The slow growth to Japan has indeed  
2
been consumed by the rise of Korea, China, and ASEA (30),  
which has expanded the percentage of ASEAN+3 in the world  
GDP.  
The contribution of ASEAN+3 nations in world GDP  
exceeded the United States of America (US) by 2.05 percent and  
the members of the European Union (EU) by 1.49 percent in  
2
fossil fuels and CO pollution (38). Looking at the researches on  
power-growth-environment (PGE), Soytaş et al. find Granger  
non-causality for the US economy among economic growth and  
greenhouse gases. (2) notes that both power use and emission  
growth are driven by economic development in France. Although  
(45), (11) and (44) find that economic growth drives carbon  
emissions in China, Jalil and Mahmud (21) accept proof that the  
EKC hypothesis is correct. While (18) promotes bi-directional  
connections, neither Soytas and (38) and (15) consider causal  
links between Turkey's variables. For the board containing six  
Central American nations, the EKC theory was endorsed by (15).  
(28) for the USA, (27) for India (37) highlighted the results  
endorsing a strong association among economic growth and  
energy usage. When the findings are regarded in research, it is  
hard to say that there is agreement on the course of the energy-  
economic growth-environment partnership. It can be said, though,  
that energy usage massively increases economic growth and  
production of coal.  
2
012. However, the ASEAN+3 rate of growth GDP is projected  
to rise by 27% by 2018. The ASEAN plus 3 (APT) was  
institutionalized at the Third ASEAN+3 Conference in Manila of  
1
999 (Association of Southeast Asian Party, 2014) in a joint  
declaration on East Asian Cooperation. The APT Work Plan for  
Cooperation 2013-2017 was subsequently adopted at the 14th  
meeting of APT Foreign Ministers on 30 June 2013. One outline  
of the APT Work Plans is to reinforce environmental and  
sustainable development cooperation and address climate change  
impacts. The rest of the current paper will be structured as  
follows. The next chapter includes a review of past studies,  
followed by the paragraph on methods. The following section  
discusses the experimental findings, and in the last chapter, the  
article concludes with the conclusion.  
2.1 Econometrics Estimation  
The study used the annual data for the period 1970-2018 for  
Malaysia and Identified ASEAN+3 nations. State choice was  
based on a few criteria; covering developing and emerging  
economies, recognizing economic proximity and rate of  
integration, and eventually representing Annex B states and non-  
Annex B nations in the Kyoto Protocol. The study's variables  
included urbanization (population growth), economic growth  
2
Literature Review  
The The study of carbon dioxide emission drivers is not a new  
research subject. Since the age of industrial development, global  
economies have been reorganized from organic to inorganic,  
pushing the consumption of fossil fuels for industrial production  
in order to meet population demands (28). Such structural change  
raises the use of fossil fuel resulting in climate change and drastic  
climate change (1). Environmental damage and climate change  
are currently a significant concern for policymakers to remedy a  
(
GDP percentage growth), energy consumption (EC, kg of oil  
equivalent per capita), GDP square, and environmental  
degradation (CO emission per capita metric ton). This study  
2
involves parameters in logarithmic terms. The data is collected  
from the Development Indicators of the World Bank (2019).  
STATA 15 and EViews 10 program for analysis.  
2
healthier environment by shocking CO emissions. It is time to  
2
.2 Testing slope homogeneity  
The second problem in a panel statistical analysis is whether  
examine and build the conceptual framework by government  
measures to prevent environmental damage. A large number of  
studies examined environmental pollution control performers on  
or not the parameters of the slope are heterogeneous. A strong null  
hypothesis is the causality of the entire panel from one parameter  
to another by applying the mutual constraint (14). Moreover, due  
to the specific characteristics of the region, the parameter  
homogeneity assumption is not capable of capturing  
heterogeneity (8).  
2
various dimensions, such as population impact on CO .  
The linkage between energy consumption, economic growth,  
and carbon emissions is a topic that has become the order of recent  
times for quite a period in the literature on energy and climate  
economics. This connection can be classified into four factions by  
several quantitative results; although the first cohort of results  
suggests that energy usage induces growth and a one-way linkage  
exists, the second group asserts that energy usage improves as a  
result of economic growth, the third group claims that the  
causality connection is bidirectional. There is no causal link  
between energy usage and economic growth, as per the  
conclusions of the last factions. Nevertheless, with the  
Environmental Kuznets Curve (EKC) theory in research, the  
association between economic development and greenhouse gas  
emissions is established. Under this theory, the pollution rates are  
very high during the first phase of the country's development, but  
after a certain developmental level, the emissions are decreased  
and lower due to further economic growth. Studies focus on the  
A standard F-test is the most common way of testing the null  
hypothesis of the slope homogeneity:  ∶ 훽 = 훽 푢푝표푛 푎푙푙 ꢀ in  
contrast to the hypothesis of heterogeneity:  ≠ 훽 Representing  
0
a fraction of non-zero pair-wise slope for  ≠ ꢁ. The validity of F  
test can be seen in a scenario where the cross-section dimension  
(N) is small relatively, and the panel's time dimension (T) is  
enormous; the explanatory variables are strictly exogenous, and  
the variances of errors are homoscedastic. (41) developed the test  
of slope homogeneity on the dispersion of individual slope  
estimates from an appropriate pooled estimator by relaxing the  
homoscedasticity assumption in the F test. Moreover, both the F  
test and the Swamy test require models of panel data where N is  
small relative to T (41).  
5
74  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 573-581  
퐻 : 훽 < ꢊ ꢀ = 1,2,3, … . , 푁 훽 = 표 ꢀ = 푁 ꢏ 1, 푁 ꢏ  
2
… … … , 푁. ꢃꢑℎ푒 푠푒푟ꢀ푒푠 ꢀ푠 푠ꢑ푎ꢑꢀ표푛푎푟푦)  
(6)  
2
.3 Testing the cross-sectional dependency  
Cross-section dependency must be tested once proceeding for  
As shown in Table 1, because the series likelihood values and  
further steps. Otherwise, outcomes may be bias and contradictory  
7). Therefore, the presence of cross-section dependence in the  
co-integration formula are less than 0.05, H0 hypotheses are  
firmly denied and the cross-sectional correlation between these  
countries has been determined. It indicates that a significant  
change in the series often impacts the others in one of the nations.  
So, when decision-makers in these countries set their policy, other  
nations ' reforms and other external determinants should be taken  
into account. Moreover, as cross-section dependence has been  
established, this condition should be assessed when selecting the  
unit root and co-integration testing technique. Nevertheless, panel  
unit root checks and study of co-integration were also used taking  
into account the cross-sectional dependence. Findings in Table 2  
demonstrate that the sequence at levels are non-stationary,  
although at first differences get to be stationary; they are shown  
to be first-order integrated, I (1). In this scenario, it was  
established that the co-integration association between these  
patterns could be checked as the sets under consideration are  
incorporated in the same order.  
(
series and the equation of cointegration should be checked before  
further studies. The presence of cross-sectional dependence  
between countries is tested through the (7) LM test when the time  
dimension exceeds the cross-sectional dimension. (8) has  
improved this test if the time dimension is smaller than the cross-  
section dimension, and the time dimension is larger than the  
cross-section continuum. If the average group is zero, this test is  
biased, but the average individual is distinct from zero. By  
applying the variance and the mean to the test statistics, Pesaran  
(
(
7) modified this variation. Therefore, the bias-adjusted LM test  
LMadj) is named. The adjusted statistical form of the LMadj test is  
as follows:  
퐿푀푗  
ꢋꢎꢍ  
2
퐿ꢃ퐿 − 1)  
ꢃ푅 − 푇 − 1) 휌̂ 푖푗  휋̂ 훾푖푗  
푗  
푖푗  
=
(
ꢄ ∑ ∑ ꢇ휌̂  
ꢉ ~ 퐿ꢃꢊ,1)  
ꢃ1)  
푖ꢌꢍ 푗ꢌ푖+ꢍ  
2
.5 Wasteland Cointegration Test  
In the research, many panel co-integration tests allow CSD  
where ̂ 훾푖푗 stands as the average, 훾푖푗 Stands as the variance. The  
test of the statistics to be generated here reveals a typical normal  
distribution as asymptotic (8). The null hypothesis of the LMadj is  
the absence of cross-sectional dependence.  
between the different groups in the panel. In our statistical  
estimation, the (32) board co-integration experiment will only be  
implemented and adopted. This test does not only provide robust  
results in small sample sizes, but it could also be adhered in all  
instances, whether or not CSD exists, and can handle both nation-  
specific intercept and slope dimensions together with trends.  
However, (32) adopts systemic (instead of just residual) dynamics  
by easing the assumption that the unit root first-generation panel  
experiment typically imposes a common factor constraint. (32)  
then suggested four residual-based experiments that could be used  
to determine the null hypothesis of non-co-integration. Four of  
these measures are table statistics, while the other four are team  
statistics that are usually shared. The test mainly analyses whether  
or not co-integration happens by evaluating whether there is an  
error correction for the diverse panel groups and the panel itself.  
2
.4 Unit root Test (CADF)  
In this analysis, because cross-section dependence between  
the countries in the panel among the variables used was  
established, one of the second-generation unit root tests  
developed by (7) was used to evaluate stationary of the variables.  
Unit root testing can be carried out in the series forming the panel  
in each cross-section unit through CADF. So, it is also possible to  
estimate the sequence stationary one by one for the overall panel  
and each cross-section. CADF test assumes that each country is  
affected differently from time effects and that in T > N and N > T  
circumstances, spatial autocorrelation is used. By comparing the  
statistical values of this test with the CADF critical table values  
of Pesaran, stationary for each country is tested. If the value of  
CADF's critical table is higher than the value of CADF's statistics,  
the null hypothesis is rejected and only that country's series is  
found to be stationary. The statistics of the CADF test are  
estimated as follows:  
The measurements are based on a simple error correction  
model:  
푘ꢍ푖  
− 훽 푋,ꢔ ꢏ ꢕ 푎∆푦,푗  
0푖 푖,푡ꢎꢍ 푖  
푗ꢌꢍ  
 = 훿 ꢏ 훿 ꢓ푦  
푘푗푖  
푗ꢌ푘ꢈ푖  
∆푋,  휇푡  
(7)  
푖,푡  
= ꢃ1 − 휑 )훼 ꢏ 휑 푦  
ꢏ 휋 ꢀ =  
Where  is the error correction term, which already provides  
푖,푡ꢎꢍ  
푖,푡  
projections of the pace of adjustment to the long-run equilibrium  
of the group. Therefore, the panel hypothesis and group are  
estimated as:  
1
,2,3, … … … . , 푁 푎푛ꢐ ꢑ = 1,2,3, … … … . . , 푇  
(2)  
 = ꢒ 푓 ꢏ 휇  
ꢃ3)  
푖푡  
퐻 : ꢀ훿 = ꢊ ꢑ ꢀ 푛 푝 푐 푓 ∀푖  
Here  displays unobservable prevalent influence of each  
country,  Reveals the error of individual-specific. Equation (2)  
and (3), as well as unit root hypothesis, can be given as follows:  
0
0푖  
퐻 : 훿  
<
0푖  
 푒 푎 푐 푓 ∀푖  
(8)  
In the panel study, the alternative hypothesis suggests that  
equilibrium change is homogeneous around the various groups.  
Rejecting the null hypothesis thus means that there is proof of co-  
integration in the board as a whole.  
 = 훿 ꢏ 훽푦  
ꢏ 휏 푓 ꢏ 휇  
푖푡  
ꢀ = 1,2,3,  … . , 푁 푎푛ꢐ ꢑ  
ꢃ4)  
푖,푡ꢎꢍ  
=
1,2,3, … … . . , 푇  
퐻 : 훽 = ꢊ 푢푝표푛 푎푙푙 ꢀ  
ꢃ푛표푛 − 푠ꢑ푎ꢑꢀ표푛푎푟ꢀꢑ푦) (5)  
0
5
75  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 573-581  
Table 1: Cross-sectional Dependency Test, Testing of Slope Homogeneity and Unit root test  
CD  
CIPS Level  
CIPS First  
Difference  
-4.564*  
-6.190*  
-6.190*  
CADF Level  
CADF First  
Difference  
-3.799*  
-6.776*  
-7.343*  
Variables  
퐿푁퐶푂2푡  
18.15*  
8.52*  
6.82*  
36.75*  
20.50*  
0.584  
-3.640  
-0.643  
-1.769  
-1.038  
-0.906  
-3.735*  
-3.925*  
-4.138*  
-1.039  
퐿푁퐺퐷푃  
푖푡  
퐿푁퐺퐷ꢈ  
푖푡  
퐿푁푈푅푡  
퐿푁퐸퐶푡  
-2.763*  
-5.333*  
-6.664*  
-4.001*  
Test of Homogeneity  
퐿푀  
320.80*  
69.41*  
3.795*  
퐿푀 푎ꢐꢁ  
퐿푀 퐶퐷∗  
Table 2: Summary results of heterogeneous cointegration tests  
Dependent Variable is CO  
2
Test type  
With Trend  
p-value  
Without Trend  
Value  
Statistic  
Value  
p-value  
Westerlund  
G
t
4.860*  
0.000  
-4.703*  
0.000  
G
a
t
23.034*  
0.009  
-22.803*  
0.000  
P
12.155*  
-27.309*  
0.000  
0.000  
-11.508*  
-18.215*  
0.000  
0.000  
P
a
*
and ** denotes rejection of the null hypothesis of no cointegration at 1% and 5% levels of significance respectively for Westerlund estimates. AIC is,  
therefore, used in selecting lag.  
Group Statistics:  
connections between both the parameters in trend and trend-free  
instances. The group means statistic ꢃ퐺휏 푎푛ꢐ Gα) rejects the null  
at both 1% and 5% level of significance and both panel statistics  
ꢃ푃휏 푎푛ꢐ 푃훼) at the 1%, 5% and 10% level of significance,  
respectively.  
퐻 : ꢀ훿 = ꢊ ꢑℎ푒푟푒 ꢀ푠 푛표 푝푟푒푠푒푛푐푒 표푓 푐표ꢀ푛ꢑ푒푔푟푎ꢑꢀ표푛 푓표푟 ∀푖  
0
0푖  
퐻 : 훿  
0푖  
<
ꢊ ꢑℎ푒푟푒 푒푥ꢀ푠ꢑ 푎 푐표ꢀ푛ꢑ푒푔푟푎ꢑꢀ표푛 푓표푟 푠표푚푒 푔푟표푢푝푠,  
푏푢ꢑ 푛표ꢑ 푓표푟 표ꢑℎ푒푟푠  
2
.6 Long-run and Short-run Estimates  
The alternative hypothesis in group analysis also assumes that  
Report on IPAT identity by Ehrlich and Holdren (1971)  
the transition in equilibrium is diverse around the various groups,  
and denial of the null hypothesis implies evidence of co-  
integration in at least one member of the group.  
provides the basis for many work relevant to the detection of  
environmental degradation drivers. The well-known  
identification indicates that environmental destruction is the result  
of population (P), affluence (A), and technology (T) and can be  
defined as follows:  
In order to determine the vibrant assimilation between  
Urbanization, Energy usage, Economic Growth on  
Environmental Deterioration in Malaysia and Selected  
ASEAN+3 nations, this study includes a time series panel  
method, notably (32) error-based tests to measure the long-term  
connection between Urbanization, Energy usage and Economic  
Growth on Environmental damage. The main advantage of the  
operation is to analyse the variables ' pre-movement without any  
endogeneity concerns. The tests are premised on (31) suggested  
structural instead of residual nuances. (32) show better smaller  
sample characteristics with small size biases and high voltage  
relative to residual-based co-integration technique in the error  
typo-based tests.  
퐼 = 푃. 퐴. 푇  
(9)  
퐼 = 휑푃 . 퐴 . 푇  
(10)  
After taking the logarithm, Eq. (9) is transformed into Eq. (10)  
as follows.  
ln 퐼 = ln 휑 ꢏ 휎 ln 푃 ꢏ 휌 ln 퐴 ꢏ 휏 ln 푇 ꢏ 푙푛휀  
(11)  
where  is the coefficient of the model, 휎, 휌, 휏 are exponentials of  
independent variables and STIRPAT model random error term is  
represented by . In this research, (7) and the Dynamic Panel  
Common Correlated Effects (DCCE) method established by (7),  
which calculates an error correction (EC) model, scientifically  
evaluate the impacts of population (P), affluence (A), technology  
(T) and other actors on environmental damage. The (7)  
assumptions that variables are exogenous and require feedback  
effects among eigenvalues that can lead to problems of  
This study of 10 emerging countries (Malaysia and Selected  
ASEAN+3 nations) also suits well. Both experiments are evenly  
distributed and can integrate unit-specific short-run trends, unit-  
specific pattern and slope factors, and cross-sectional dependence  
(32). Table 2 above indicates that all four figures refute the null  
hypothesis of no cointegration in both trendy and trend-free  
economies in Malaysia and chosen ASEAN+3. This means that  
in Malaysia and Selected ASEAN+3 nations, there are long-run  
5
76  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 573-581  
consistency. (7) tackles three main issues, the first issue being  
cross-sectional correlations, which are addressed by taking cross-  
sectional averages and lagging cross-sectional averages of  
predictive factors on the right-hand side of the equation with  
predictor variables. The second problem is parameter variability,  
which can be overcome using Eberhardt and Presbitero's (2015)  
mean group model. The third problem is nuances that can be  
solved by introducing the explanatory determinants lag in the  
model. The common correlated effects dynamic panel (DCCE)  
method solves all the problems mentioned above and provides  
more accurate predictions for the expanded STIRPAT model. The  
model in question consists of the preceding equations:  
 = ꢙ ꢏ ∐ 푙  
ꢏ 휌푃 ꢏ 휏퐴 ꢏ 휑푇 ꢏ 휇 퐼푉 ꢏ  ꢏ  
푖,푡ꢎꢍ  
푖푡  
푖푡  
푖푡  
ꢏ ꢕ  
ꢚ푖  
푖푡  
ꢡ  
̅̅̅̅̅  
ꢏ ꢕ  
̅̅̅̅̅̅̅  
푃퐼  
̅̅̅̅̅̅̅  
 퐴퐼 ꢏ  
푡ꢎꢡ  
ꢡꢌ0  
푡ꢎꢡ  
ꢡꢌ0  
푡ꢎꢡ  
ꢡꢌ0  
 푇̅ ̅ 퐼̅ ̅̅̅̅ ꢏ ꢕ  
5 퐼̅ ̅푉̅ ̅퐼 ̅̅̅̅ ꢏ 휀  
(19)  
푡ꢎꢡ 푖푡  
represents the dependent  
ꢡꢌ0  
푡ꢎꢡ  
ꢡꢌ0  
̅
̅̅̅̅ ̅̅̅̅̅̅̅ ̅̅̅̅̅̅̅ ̅̅̅̅̅̅̅̅ ̅̅̅̅̅̅̅̅  
where  , 푃퐼 , 퐴퐼 , 푇퐼 , 퐼푉퐼  
푡ꢎꢡ  
푡ꢎꢡ  
푡ꢎꢡ  
푡ꢎꢡ  
푡ꢎꢡ  
variable cross-sectional average, and y represents cross-sections  
averages lags. Dependent variable (,) included as an  
explanatory variable because models with dynamic properties  
such as Dynamic Common Correlated Estimator (DCCE) uses lag  
of independent variable (7).  
However, the PMG estimators illustrate both the pooling  
suggested by the drawbacks of homogeneity on the long-run  
coefficients and the median through classes used to obtain process  
for the analyzed model's other short-run parameters and error  
correction coefficients. The Pooled Mean group model, including  
the long-term relationship between variables, that obey the  
methods of Pesaran et al. (1999):  
ꢏ 휌푃 ꢏ 휏퐴 ꢏ 휑푇 ꢏ 휇퐼푉 ꢏ 푄푡  
(12)  
(13)  
 = ꢙ ꢏ ∐ 푙  
푖,푡ꢎꢍ  
푖푡  
푖푡  
푖푡  
 = 푄  ∀푡  
푖ꢛ푡  
푖푡  
 = (  
ꢄ = ꢙ푟 ꢏ 훽 푙  
ꢏ 푄 푔 ꢏ 푀  
푖푡  
(14)  
푖 푖,푡ꢎꢍ  
푡  
ꢥꢎꢍ  
푞ꢎꢍ  
퐿푁퐶푂2 = 훽 ꢏ ∑ 휕 ∆퐿푁퐶푂2  
ꢏ ∑ ꢒ ∆퐿푁퐺퐷푃  
푖푗  
푖푡ꢎ푗  
푖푗  
푖푗ꢎꢍ  
where  = 1, ꢑ표 푁; ꢑ = 1 ꢑ표 푇; 푙 is a dependent variable that  
represents CO2 emission; 푖푡 is a measure of the population; Ait  
is a measure of affluence; Tit is a measure of technology and 퐼푉푡  
Denotes multiple predictor variables for the extended STRIPAT  
system, including energy output, labor productivity, residential  
housing, density population, energy mix and market accessibility.  
푗ꢌꢍ  
ꢛꢎꢍ  
ꢍꢌ0  
ꢏ ∑  ∆퐿푁퐺퐷푃  
푖푗  
푖푗ꢎꢍ  
ꢍꢌ0  
ꢦꢎꢍ  
ꢜꢎꢍ  
ꢏ ∑ 휑 ∆퐿푁푈푅퐵  
ꢏ ∑ 휔 ∆퐿푁퐸퐶  
푖푗  
푖푗ꢎꢍ  
푖푗  
푖푗ꢎꢍ  
Also  represents effects specification to the country which are  
ꢍꢌ0  
ꢍꢌ0  
unobserved;  consistent parameters contingent on some  
possible determinants but not dependent on parameter  
ꢏ 휋 퐿푁퐶푂2  
ꢏ 휋 퐿푁퐺퐷푃  
푖푗ꢎꢍ  
푖푗ꢎꢍ  
푖푗ꢎꢍ  
ꢏ 휋 퐿푁퐺퐷푃  
ꢏ 휋 퐿푁푈푅퐵  
푖푗ꢎꢍ  
dependency.  is the economy specific impacts of time-varying  
ꢏ 휋 퐿푁퐸퐶  
ꢏ 휇푡  
5
푖푗ꢎꢍ  
determinants that are not noted and also reflect downturns that  
impact all the newly industrialized nations with the same extent  
on a world level.  Represent errors which are not correlated  
with regressors. Also  exhibit shocks which are common and  
unobserved as well, furthermore these errors are also weakly  
independent across countries and are also serially correlated. ωi  
ꢍ푖푡  
ꢃ2ꢊ)  
where:  
is the first difference operator, and  
퐿푁퐶푂2, 퐿푁퐺퐷푃, 퐿푁퐺퐷푃 , 퐿푁푈푅퐵, 푎푛ꢐ 퐿푁퐸퐶 Are the five  
variables selected in the study. The constants is  , the short-run  
and  
long-run  
coefficients  
on  
the  
trends  
are  
denotes matrix for factor loadings,  represents the vector of  
휕 , ꢒ , 훿 휑 , 휗 , 푎푛ꢐ 휔 푎푛ꢐ 휋 , 휋 휋 휋 푎푛ꢐ 휋 ,  
푖푗 푖푗 푖푗 푖푗 푖푗  
coefficients and  is a stationary covariance process regardless  
of error  . Further, it is assumed that vector consisting of factor  
푖푗  
5
respectively. 푝, ꢧ, 푟, 푠, 푎푛ꢐ 푧 represents the maximum lag  
length,ꢍ푖푡 are error terms,  
loadings ( , 휋 ) and coefficients such as  = ꢃ푄 , 휌, 휏, 휑, 휇 )  
The table above shows the long-run results of DCCE and  
PMG estimates. These results revealed that at a 1% level of  
significance, a unit increase in GDP leads to 16% and a 29% rise  
follow the below models with random coefficients.  
푄 = 푧 ꢏ 휃0,,0,~퐼퐼퐷ꢃꢊ, 훿)  
̌
(15)  
2
in CO emissions, respectively. While at a 1% level of  
2
significance, a 1 unit rise in GDP will bring about a 69% decrease  
in CO emissions, and subsequently, at a 5% level of significance,  
푣푒푐ꢃ푧 ) = 푣푒푐ꢃ푧) ꢏ 휃 휗 ~퐼퐼퐷ꢃꢊ, 훿 )  
(16)  
(17)  
ꢜ,푖, ꢜ,푖  
2
2
a 1-unit increase in GDP will result in 24% decrease in CO  
emissions. Whereas, at a 1% level of  
2
Ω = Ω ꢏ 휃,,,~퐼퐼퐷ꢃꢊ, 훿)  
significance, a 1-unit increase in POP will leads to 36% and 31%  
decline in CO emission, respectively. However, at a 5%  
significance level, a 1-unit increase in EU leads to 21% and a 35%  
increase in CO emission.  
Meanwhile, in the short-run, at a 1% significance level, a unit  
increase in GDP leads to 34% and a 13% increase in CO  
2
____ 푀퐺 =  
푖ꢌꢍ  
)ꢃ Ωꢞ − Ω )′  
 Ωꢞ − Ω  
̇
(18)  
ꢟꢠ  
ꢟꢠ  
2
ꢝꢎꢍ  
We embraced the method of dynamic joint-related effect  
assessment (7) for the measurement equation used as cross-  
sectional averages dependent variable greenhouse gases. The  
model in Eq. (18) also includes lag of the dependent variable as a  
proxy for common factors effect along with P, A, and T and  
extended variables.  
2
2
emission. Also, a unit change in GDP , 27% and 48% increase in  
CO emission will result in restively at a 1% level of significance.  
While at a 5% level of significance, a unit change in POP will  
result in a 35% decrease in CO emission. Whereas, at a 5% level  
of significance, a unit increase in the EU will lead to a 21% and  
5% increase in CO emission, respectively.  
2
2
3
2
5
77  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 573-581  
Table 3: Estimates Results  
Dependent variable: LNCO2it  
DCCE  
PMG  
Variables  
Coefficients  
Standard  
error  
p-  
value  
Coefficients  
Standard  
error  
p-  
value  
Long-run estimates  
LNGDPit  
Long-run estimates  
0.299*  
0.071  
0.167  
0.097  
0.249  
0.000  
0.000  
0.000  
0.002  
0.163*  
[-3.805]  
0.043  
0.087  
0.249  
0.139  
0.000  
0.046  
0.002  
0.000  
[4.220]  
푖푡  
LN퐺퐷푃  
-0.698*  
-4.179]  
-0.248**  
[-2.640]  
[
LNURBit  
LNEUit  
-0.369*  
-3.806]  
-0.590*  
[2.861]  
[
-0.801*  
-3.221]  
-1.192*  
[-8.576]  
[
Short-run estimates  
Short-run estimates  
ΔLNGDPit  
0.347*  
3.343]  
0.104  
0.102  
0.174  
0.088  
0.071  
0.000  
0.008  
0.035  
0.005  
0.000  
0.137*  
[2.322]  
0.059  
0.156  
0.069  
0.139  
0.179  
0.006  
0.000  
0.000  
0.012  
0.002  
[
푖푡  
ΔLN퐺퐷푃  
0.274*  
2.686]  
0.487*  
[3.122]  
[
ΔLNURBit  
ΔLNEUit  
ectt-1  
-0.369**  
-2.119]  
-0.315*  
[-4.565]  
[
0.210**  
2.386]  
0.350**  
[2.52]  
[
-0.438*  
-6.147]  
-0.557*  
[-3.115]  
[
Observation  
Cross-section  
F(P)  
598  
13  
299.15(0.000)  
0.68  
0.57  
2
R
2
Adj-R  
CD Statistics  
Optimal lag length  
4.77(0.000)  
(1,1,1,1,1)  
(1,1,1,1,1)  
causality of Dumitrescu and Hurlin Granger are:  
The results are in line with EKC, as the combination of  
economic development and greenhouse gas emissions is  
developed with the Environmental Kuznets Curve (EKC) concept  
study. Under this hypothesis, pollution rates are very high in the  
first stage of development of the country, but after a certain level  
of development, emissions are lowered and lower due to more  
economic growth, just like the findings of the current study.  
ꢃ푘)  
∆퐿푁퐶푂2, = 훽 ꢏ ∑ 휕 ∆퐿푁퐶푂2,푘  
푘ꢌꢍ  
ꢃ푘)  
ꢏ ∑ ꢒ ∆퐿푁퐺퐷푃푖,푡ꢎ푘  
푘ꢌꢍ  
ꢃ푘)  
 ꢒ ∆퐿푁퐺퐷ꢈ  
2
.7 Dumitrescu and Hurlin heterogeneous Panel Granger  
푖,푡ꢎ푘  
Causality Estimates  
푘ꢌꢍ  
In heterogeneous panel data models with defined coefficients,  
ꢃ푘)  
 훿 푖,푡ꢎ푘  
(
14) developed the non-causality test. The rise in generic causality  
checks for panel data suggests evaluating cross-sectional  
longitudinal constraints on design coefficients in the context of a  
linear autoregressive information generation process. The use of  
cross-sectional data will expand the causality data set from one  
parameter given to another. The composite board figures of  
푘ꢌꢍ  
ꢃ푘)  
 휃 푖,푡ꢎ푘  
푘ꢌꢍ  
ꢏ 휀,푡  
ꢃ21)  
5
78  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 573-581  
The model uses a fixed special effect and a fixed coefficient  
model. The heterogeneous no-causality hypothesis the null  
퐿푁퐺퐷푃  
푖,푡  
ꢃ푘) ꢃ푘) ꢃ푘)  
ꢃ푘)  
hypotheses: ( : , 훿 , ꢒ 푎푛ꢐ 휃 = ꢊ∀ = 1, . . 푁). The  
0
ꢃ푘)  
ꢃ푘)  
=
  ∑ ꢒ  
푖,푡ꢎ  ∑ 휕 2푖,푡ꢎ푘  
value of F-statistics and p-value, which indicates whether to reject  
or not to reject the null hypothesis, documents no, or the existence  
of causality.  
Table 4 below shows the causality relationship between the  
2
determinants concerning CO emissions, which highlights that  
푘ꢌꢍ  
푘ꢌꢍ  
ꢃ푘)  
ꢃ푘)  
 ꢒ ∆퐿푁퐺퐷ꢈ  
푖,푡ꢎ푘  
 훿 푖,푡ꢎ푘  
푘ꢌꢍ  
푘ꢌꢍ  
there is an existence of one-way causality running from economic  
ꢃ푘)  
 휃 푖,푡ꢎ푘  
growth to CO2 emission. It also indicates another one-way  
푘ꢌꢍ  
2
causality running from GDP to CO  
2
emission. Whereas, a  
ꢏ 휀,푡  
ꢃ 22)  
bidirectional causality is found between urbanization and CO  
emission, as well as a feedback causality among energy used and  
CO emission. This is very consistent with the findings of (18)  
2
퐿푁퐺퐷푃ꢈ  
푖,푡  
2
While (11), (12) and (25) found economic growth driving carbon  
emissions (1) accept evidence that the EKC hypothesis is right.  
ꢃ푘)  
ꢃ푘)  
=
  ∑ ꢒ ∆퐿푁퐺퐷푃ꢈ  
 ꢒ 푖,푡ꢎ푘  
푖,푡ꢎ푘  
푘ꢌꢍ  
푘ꢌꢍ  
Table 4: Granger causality results  
ꢃ푘)  
ꢃ푘)  
 휕 2푖,푡ꢎ푘  ∑ 훿 푖,푡ꢎ푘  
LNGDP−/  
LNCO2  
LNGDP←/  
LNCO2  
푘ꢌꢍ  
푘ꢌꢍ  
WHnc  
1.703  
ꢃ푘)  
ꢏ ∑ 휃 ∆퐿푁퐸,푘  
3
4
.078*  
.778  
푘ꢌꢍ  
ꢫꢬꢭ  
1.546  
ꢏ 휀,푡  
ꢃ 23)  
ꢝꢪ  
ꢫꢝꢮ  
̃
2
2
LNGDP −/  
LNGDP ←/  
LNCO2  
ꢃ푘)  
LNCO2  
퐿푁푈푅퐵, = 훽 ꢏ ∑ 훿 ∆퐿푁푈푅퐵,푘  
WHnc  
1.227  
푘ꢌꢍ  
3
5
.383*  
.494  
ꢃ푘)  
ꢏ ∑ ꢒ ∆퐿푁퐺퐷ꢈ  
ꢫꢬꢭ  
0.424  
푖,푡ꢎ푘  
ꢝꢪ  
푘ꢌꢍ  
ꢫꢝꢮ  
̃
ꢃ푘)  
 ꢒ 푖,푡ꢎ푘  
LNURB−/  
LNCO2  
LNURB←/  
푘ꢌꢍ  
LNCO2  
2.259*  
2.853  
WHnc  
ꢃ푘)  
ꢏ ∑ 휕 ∆퐿푁퐶푂2,푘  
7
.560*  
푘ꢌꢍ  
ꢫꢬꢭ  
ꢝꢪ  
ꢃ푘)  
15.318  
 휃 푖,푡ꢎ푘  
ꢫꢝꢮ  
̃
푘ꢌꢍ  
LNEU−/  
LNCO2  
LNEU←/  
LNCO2  
ꢏ 휀,푡  
ꢃ24)  
WHnc  
ꢃ푘)  
ꢃ푘)  
퐿푁퐸, = 훽 ꢏ ∑ 휃 ∆퐿푁퐸,  ∑ 훿 ∆퐿푁푈푅퐵,푘  
2.447*  
0.337  
3.292*  
ꢫꢬꢭ  
푘ꢌꢍ  
푘ꢌꢍ  
ꢝꢪ  
4
92.398  
ꢃ푘)  
ꢫꢝꢮ  
ꢏ ∑ ꢒ ∆퐿푁퐺퐷ꢈ  
̃
푖,푡ꢎ푘  
푘ꢌꢍ  
ꢃ푘)  
ꢏ ∑ ꢒ ∆퐿푁퐺퐷,푘  
3 Results and policy implications  
This research used the sophisticated panel DCCE approach to  
analyse the expanded STIRPAT model for a panel of Malaysia  
and Identified ASEAN+3 economies from 1970 to 2018. The  
presence of cross-sectional dependence between the nations in the  
panel, in other phrases the hypothesis that a macroeconomic  
downturn in one of the nations examined might affect others, also  
analyzed using the CDLM test formulated by (8) and those whose  
variance was rectified by Pesaran, Ullah, and Yamagata and it was  
defined that cross-section existed In the co-integration equation  
and between the examined countries ' sequence of urbanization,  
푘ꢌꢍ  
ꢃ푘)  
ꢏ ∑ 휕 ∆퐿푁퐶푂2,푘  
푘ꢌꢍ  
ꢏ 휀,푡  
ꢃ2ꢨ)  
Where  Remain steady in the dimension of the time, and ꢩ  
denotes steady lag orders for all cross-sections of the panel. This  
ꢃ푘)  
ꢃ푘)  
ꢃ푘)  
ꢃ푘)  
allows  , 휕 , 훿 푎푛ꢐ 휃푖  
parameters and coefficients of slope to differ across the groups.  
As an autoregressive  
5
79  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 573-581  
economic growth, energy usage and environmental pollution.  
CADF test designed by (7) examined the presence of unit root in  
series in this analysis, taking into account the cross-section  
dependence in series, and it was noticed that series were not level  
consistent and stable when their first differences were taken.  
In this case, the precondition for studying the co-integration  
linkage between series was determined. The presence of the co-  
integration relation between the series was tested by the test  
established by (32) and the cross-section dependence was  
considered and the co-integration connection between the series  
was observed. Then the calculation of the board is performed  
using the DCCE method. Co-integration analysis is also used for  
robustness to verify the co-integration relationship between  
variables. Also, compared to PMG techniques are the results of  
the DCCE method. Finally, the research applied causality checks  
for Dumitrescu and Hurlin to explore the causalities of course.  
The research to investigate essential factors that are the primary  
in an enormous cost decline in renewable energy. The decision-  
makers in Malaysia and selected ASEAN+3 nations should take  
some steps to personalize the need for energy and encourage the  
use of renewable energy at the commercial and industrial level by  
creating policies such as user tax subsidies. One of the effective  
measures to limit environmental damage in Malaysia and selected  
ASEAN+3 countries may be encouraging productive industrial  
and household power use.  
References  
1
Ahmed, K., Akhondzada, A., Kurnitski, J., & Olesen, B. (2017).  
Occupancy schedules for energy simulation in new prEN16798-1 and  
ISO/FDIS 17772-1 standards. Sustainable cities and society, 35, 134-  
144.  
2
3
4
5
Ang, J. B. (2007). CO2 emissions, energy consumption, and output  
in France. Energy policy, 35(10), 4772-4778.  
Apergis, N., & Payne, J. E. (2009). CO2 emissions, energy usage, and  
output in Central America. Energy Policy, 37(8), 3282-3286.  
Apergis, N., & Payne, J. E. (2010). Renewable energy consumption  
and growth in Eurasia. Energy Economics, 32(6), 1392-1397.  
Beigel, J. H., Tebas, P., Elie-Turenne, M. C., Bajwa, E., Bell, T. E.,  
Cairns, C. B., ... & Luke, T. (2017). Immune plasma for the treatment  
of severe influenza: an open-label, multicentre, phase 2 randomised  
study. The Lancet Respiratory Medicine, 5(6), 500-511.  
Borhan, H., Ahmed, E. M., & Hitam, M. (2012). The impact of CO2  
on economic growth in ASEAN 8. Procedia-Social and Behavioral  
Sciences, 35, 389-397.  
2
cause of rising CO pollution is very important as total emissions  
rise sharply. Evidence from the findings shows that the main  
actors or driving forces leading to a high level of environmental  
damage are demographics, GDP per capita, and energy usage for  
Malaysia and selected ASEAN+3 nations.  
It can, therefore, be inferred that, with higher population size,  
GDP per person, and energy consumption, the solution to  
6
supporting a level of CO  
will contribute to the rate of CO  
Malaysia and Selected ASEAN+3 states, on the other hand, labor  
productivity has no significant long-term effect on the rate of CO  
2
emissions and reducing energy usage  
2
emissions being regulated. In  
7
8
Pesaran MH (2007) A simple panel unit root test in the presence of  
cross-section dependence. J Appl Econ 22(2):265312  
Breitung, J., & Pesaran, M. H. (2008). Unit roots and cointegration in  
panels. In The econometrics of panel data (pp. 279-322). Springer,  
Berlin, Heidelberg.  
2
pollution. Therefore, with the help of calculations, it can be  
advocated but the use of further labor productivity during  
industrial development would not cause deterioration of the  
environment. Likewise, the workforce holding the real economy's  
9
1
Breusch, T. S., & Pagan, A. R. (1980). The Lagrange multiplier test  
and its applications to model specification in econometrics. The  
review of economic studies, 47(1), 239-253.  
0 Chandran, V. G. R., & Tang, C. F. (2013). The impacts of transport  
energy consumption, foreign direct investment and income on CO2  
emissions in ASEAN-5 economies. Renewable and Sustainable  
Energy Reviews, 24, 445-453.  
potential does not significantly contribute to a rise in CO  
emission, which means that global economic growth will not  
affect the rate of CO pollution. Therefore, the results suggest that  
the main factors that can decrease CO emissions are energy  
2
2
2
usage, level of public work and efficiency of labor. The actors of  
expanded STIRPAT (population, economic growth, and energy  
usage) in all Malaysia and selected ASEAN+3 nations support  
long-term environmental damage.  
11 Chen, Y. L., Analytis, J. G., Chu, J. H., Liu, Z. K., Mo, S. K., Qi, X.  
L., ... & Zhang, S. C. (2009). Experimental realization of a three-  
dimensional topological insulator, Bi2Te3. science, 325(5937), 178-  
1
81.  
1
1
2
3
Chudik, A., & Pesaran, M. H. (2015). Common correlated effects  
estimation of heterogeneous dynamic panel data models with weakly  
exogenous regressors. Journal of Econometrics, 188(2), 393-420.  
Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y.,  
Pirzada, Z. A., ... & Charpentier, E. (2011). CRISPR RNA maturation  
by trans-encoded small RNA and host factor RNase  
III. Nature, 471(7340), 602.  
These results provide a policymaker with useful information  
to control both safe industrialization speed and rate of CO  
emissions. Industrialization is fundamental element of  
economic growth and cannot be limited, while the primary cause  
for environmental damage is CO emissions. Lawmakers in  
2
a
2
Malaysia and selected ASEAN+3 nations propose adding new  
industrial units with environmentally-friendly technology that  
consume low energy levels, leading to low levels of pollution.  
Managing energy usage can be a significant contributor to  
1
1
4
Dumitrescu, E. I., & Hurlin, C. (2012). Testing for Granger non-  
causality in heterogeneous panels. Economic modelling, 29(4), 1450-  
1
460.  
5 Farhani, S., & Ozturk, I. (2015). Causal relationship between CO 2  
emissions, real GDP, energy consumption, financial development,  
trade openness, and urbanization in Tunisia. Environmental Science  
and Pollution Research, 22(20), 15663-15676.  
2
mitigating CO pollution, particularly for the industry sector in  
Malaysia and selected ASEAN+3 nations, and this can be made  
possible through effective policies with government support.  
Such countries in Malaysia and Identified ASEAN+3 need to  
implement more restrictive energy policies for short- and long-  
term non-renewable sources of energy and should invest more in  
research and development to incorporate environmentally  
friendly sources of energy. Renewable and alternative energy  
options that are an alternative to non-renewable energy (oil)  
should be discussed being used on a massive scale. More notably,  
renewable energy will eventually replace fossil fuel energy  
because recent research and technological advances have resulted  
16 Friedl, B., & Getzner, M. (2003). Determinants of CO2 emissions in  
a small open economy. Ecological economics, 45(1), 133-148.  
1
7 Go, F. M., & Govers, R. (1999, August). The Asian perspective: which  
international conference destinations in Asia are the most  
competitive?. In Journal of Convention  
&
Exhibition  
Management (Vol. 1, No. 4, pp. 37-50). Taylor & Francis Group.  
8 Halicioglu, F. (2009). An econometric study of CO2 emissions, energy  
consumption, income and foreign trade in Turkey. Energy  
Policy, 37(3), 1156-1164.  
1
5
80  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 1, Pages: 573-581  
1
9 Hui, T. S., Rahman, S. A., & Labadin, J. (2012). Statistical modelling  
of CO2 emissions in Malaysia and Thailand. International Journal on  
Advanced Science, Engineering and Information Technology, 2(5),  
41 Swamy, P. A. (1970). Efficient inference in a random coefficient  
regression model. Econometrica: Journal of the Econometric Society,  
311-323.  
3
50-355.  
42 Swamy, P. A. (1970). Efficient inference in a random coefficient  
regression model. Econometrica: Journal of the Econometric Society,  
311-323.  
2
2
2
2
2
2
2
0 Iwata, H., Okada, K., & Samreth, S. (2010). Empirical study on the  
environmental Kuznets curve for CO2 in France: the role of nuclear  
energy. Energy Policy, 38(8), 4057-4063.  
43 Thomou, T., Mori, M. A., Dreyfuss, J. M., Konishi, M., Sakaguchi,  
1 Jalil, A., & Mahmud, S. F. (2009). Environment Kuznets curve for  
M., Wolfrum, C., ... & Gorden, P. (2017). Adipose-derived  
circulating miRNAs regulate gene expression in other  
tissues. Nature, 542(7642), 450.  
CO2 emissions:  
a
cointegration analysis for China. Energy  
policy, 37(12), 5167-5172.  
2
3
4
Kaika, D., & Zervas, E. (2013). The Environmental Kuznets Curve  
44 Wang, J. (2011). The end of the revolution: China and the limits of  
modernity (Vol. 40, No. 5, pp. 631-633). Sage CA: Los Angeles, CA:  
SAGE Publications.  
45 Washington, W. M., Weatherly, J. W., Meehl, G. A., Semtner Jr, A.  
J., Bettge, T. W., Craig, A. P., ... & Zhang, Y. (2000). Parallel climate  
model (PCM) control and transient simulations. Climate  
Dynamics, 16(10-11), 755-774.  
46 Yusuf, S., Pfeffer, M. A., Swedberg, K., Granger, C. B., Held, P.,  
McMurray, J. J., ... & CHARM Investigators and Committees.  
(2003). Effects of candesartan in patients with chronic heart failure  
and preserved left-ventricular ejection fraction: the CHARM-  
Preserved Trial. The Lancet, 362(9386), 777-781.  
(EKC) theoryPart A: Concept, causes and the CO2 emissions  
case. Energy Policy, 62, 1392-1402.  
Karki, S. K., Mann, M. D., & Salehfar, H. (2005). Energy and  
environment in the ASEAN: challenges and opportunities. Energy  
Policy, 33(4), 499-509.  
Lise, W., & Van Montfort, K. (2007). Energy consumption and GDP  
in Turkey: Is there  
a
co‐integration relationship?. Energy  
economics, 29(6), 1166-1178.  
5 Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing:  
Printing precision and application in food sector. Trends in Food  
Science & Technology, 69, 83-94.  
6
M. Hashem Pesaran, Yongcheol Shin & Ron P. Smith (1999) Pooled  
Mean Group Estimation of Dynamic Heterogeneous Panels, Journal  
of the American Statistical Association, 94:446, 621-  
6
2
7 Masih, A. M., & Masih, R. (1996). Energy consumption, real income  
and temporal causality: results from a multi-country study based on  
cointegration and error-correction modelling techniques. Energy  
economics, 18(3), 165-183.  
2
8
Mericske‐Stern, R., Piotti, M., & Sirtes, G. (1996). 3‐D in vivo force  
measurements on mandibular implants supporting overdentures. A  
comparative study. Clinical oral implants research, 7(4), 387-396.  
2
9 Oh, W., & Lee, K. (2004). Causal relationship between energy  
consumption and GDP revisited: the case of Korea 1970–  
1
999. Energy economics, 26(1), 51-59.  
Okushima, S. (2016). Measuring energy poverty in Japan, 2004–  
013. Energy policy, 98, 557-564.  
3
3
0
1
2
Pedroni, P. (2004). Panel cointegration: asymptotic and finite sample  
properties of pooled time series tests with an application to the PPP  
hypothesis. Econometric theory, 20(3), 597-625.  
3
3
3
3
2
3
4
5
Persyn, D.,  
cointegration tests for panel data. The STATA journal, 8(2), 232-241.  
Persyn, D., Westerlund, J. (2008). Error-correctionbased  
cointegration tests for panel data. The STATA journal, 8(2), 232-241.  
Pesaran, M. H. (2004). General diagnostic tests for cross section  
dependence in panels.  
Roy, D. K., & Datta, B. (2017). Multivariate adaptive regression  
spline ensembles for management of multilayered coastal  
aquifers. Journal of Hydrologic Engineering, 22(9), 04017031.  
Saboori, B., & Sulaiman, J. (2013). Environmental degradation,  
economic growth and energy consumption: Evidence of the  
environmental Kuznets curve in Malaysia. Energy Policy, 60, 892-  
& Westerlund, J. (2008). Error-correctionbased  
&
3
6
9
05.  
3
3
3
4
7 Soytas, U., & Sari, R. (2009). Energy consumption, economic growth,  
and carbon emissions: challenges faced by an EU candidate  
member. Ecological economics, 68(6), 1667-1675.  
8 Soytas, U., & Sari, R. (2009). Energy consumption, economic growth,  
and carbon emissions: challenges faced by an EU candidate  
member. Ecological economics, 68(6), 1667-1675.  
9
Soytas, U., Sari, R., & Ewing, B. T. (2007). Energy consumption,  
income, and carbon emissions in the United States. Ecological  
Economics, 62(3-4), 482-489.  
0
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K.,  
Boschung, J., ... & Midgley, P. M. (2013). Climate change 2013: The  
physical science basis.  
5
81