Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 694-707  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Adsorptive Remediation of Crude Oil Contaminated  
Marine Water Using Chemically and Thermally  
Modified Coconut (Cocos nucifera) Husks  
3
1
*
2
2
Samuel E. Agarry , Kigho M. Oghenejoboh , Ewomazino. O. Oghenejoboh , Chiedu N. Owabor ,  
Oladipupo O. Ogunleye1  
1
Biochemical and Bioenvironmental Engineering Laboratory, Department of Chemical Engineering, Ladoke Akintola University of Technology, P. M. B.  
4
000, Ogbomoso, NIGERIA.  
2
Biochemical and Bioenvironmental Engineering Laboratory, Department of Chemical Engineering, Delta State University, Abraka, P. M. B. 22, Oleh  
Campus, NIGERIA.  
3
Department of Chemical Engineering, Federal University of Petroleum Resources, Effurun, NIGERIA  
Received: 17/01/2020  
Accepted: 04/04/2020  
Published: 20/05/2020  
Abstract  
This study evaluated the potential of a chemically and thermally modified coconut husk as oil-spill sorbents in the remediation of crude  
oil contaminated marine water under varying physical factors of sorption time, initial oil concentration, temperature, sorbent dosage and oil  
weathering number of days. Coconut husk (CH) was chemically activated with zinc chloride and then pyrolyzed at a different combination  
o
of temperatures-retention times of 400 -800 C and 30  60 minutes to produce un-activated and activated coconut husk-derived biochar  
(CHB and ACHB), while acetylated-coconut husk (ACCH) was produced using acetic anhydride. The results revealed that the sorption  
potential of coconut husk can be enhanced by chemical, thermal (pyrolysis) and chemo-thermal treatments (chemical/pyrolysis). The oil  
sorption capacities and oil removal efficiencies of raw CH, ACCH, CHB800-60, and ACHB800-60 were a function of the physical factors. The  
rate of oil sorption by raw CH, ACCH, and CHB800-60 follows pseudo-second-order kinetics while that of ACHB800-60 follows pseudo-first-  
order kinetics. The oil sorption by raw CH, ACCH, CHB800-60 and ACHB800-60 occurs via both surface and intraparticle diffusion mechanism.  
Freundlich isotherm best describe the oil sorption behaviour of ACCH, CHB800-60, and ACHB800-60, respectively, while Langmuir isotherm  
best describes the sorption of raw CH. The maximum monolayer sorption capacities were 12.11 g/g, 15.06 g/g, 16.10 g/g, and 16.84 g/g for  
the raw CH, ACCH, CHB800-60 and ACHB800-60, respectively, and hence the performance of the sorbents was in the following order: ACHB800-  
6
0
> CHB800-60 > ACCH > raw CH.  
Keywords: Adsorptive remediation; Isotherms; Kinetics; Modified coconut husk; Oil spill  
inorganic mineral, organic synthetic and organic vegetable [4-6].  
Among the various commercial oil sorbents that have been  
deployed for oil spill removal, synthetic sorbent made up of  
polypropylene, polyethylene, and polyurethanes, and several  
cross-linked polymeric materials are the most commonly  
employed due to their good oleophilic and hydrophobic  
characteristics [6-9]. However, the major disadvantages of these  
sorbents are that they are not biodegradable [6, 8, 10], sometimes  
have low sorption capacity and are often expensive [6, 8, 11].  
Therefore, there is a renewed attention and interest in the usage  
of natural sorbents as one of the most attractive options for oil  
spill remediation due to their low cost, eco- friendliness,  
effectiveness, low water pickup, high buoyancy, good reusability  
and high sorption capacity [12-13].  
1
Introduction1  
Small and massive scale of oil spills occurs yearly on land,  
sea and marine water systems throughout the world as a result of  
human mistakes and carelessness, deliberate acts of pipeline  
vandalism, earthquakes, natural disaster [1], offshore drilling and  
production activities, crude oil transports by ships, cargos,  
vessels, tankers, rail and trucks, untreated oily waste disposal  
from petroleum refineries, factories and industrial facilities [2].  
For the cleanup strategies of oil in the coastal or marine  
environment, several oil spill removal methods have been used,  
such as the use of solidifiers, dispersants and controlled in-situ  
burning, bioremediation, booms, skimmers and sorbent/adsorbent  
[3].  
Adsorption technology has been observed to be one of the  
A wide variety of natural sorbents employed for oil spill  
remediation in water have been reported in the literature. These  
most effective method for oil spill removal or treatment. The  
sorbents that are used for oil spill removal are classified as  
Corresponding author: Samuel E. Agarry, Biochemical and Bioenvironmental Engineering Laboratory, Department of Chemical  
Engineering, Ladoke Akintola University of Technology, P. M. B. 4000, Ogbomoso, NIGERIA. E-mail: sam_agarry@yahoo.com.  
6
94  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 694-707  
include banana peels [6], modified pomelo peels [14], human hair  
engineering aspects of the removal or sorption mechanism such  
as kinetics and equilibrium of the crude oil sorption onto the  
sorbents.  
[15], corncob [9], luffa fibre [16], rice husk [5], coconut coir [17],  
barley straw [18], and sugarcane baggase [4]. However, the major  
draw-back of these agricultural plant-derived sorbents when  
present in saturated oil-water environments is their tendency to  
adsorb both water as well as oil, causing them to sink [17] as a  
result of low hydrophobicity and poor buoyancy when compared  
to synthetic sorbents such as poly-propylene [9, 11]. That is, when  
agricultural plant-derived sorbents are applied to saturated oil-  
water environments, water sorption is preferentially favoured  
over oil sorption because of the typical hydrophilic (due to  
abundant associated hydroxyl functional groups in the cellulose,  
hemicelluloses and lignin) nature of the sorbent [17].  
Hydrophobicity or oleophilicity is one of the major advantages of  
sorbent characteristics that influences oil sorption effectiveness in  
the presence of water [19]. The sorbents effectiveness in saturated  
oil-water environments would be enhanced when the amount of  
hydroxyl functional group present is reduced (i.e. hydrophilicity  
is reduced) and hydrophobicity is increased [19]. The amount of  
hydroxyl functional group of these sorbents can be reduced by  
chemical modification, such as acetylation, acylation, acrylation,  
benzoylation, cyanoethylation, and methylation [20] and as well  
as by thermal modification (pyrolysis) in the production of  
biochar. This chemical reactions involves the replacement of the  
hydroxyl functional group in the cellulose, hemicelluloses, and  
lignin present at the polymeric backbone with more hydrophobic  
groups [17].  
2
Materials and Methods  
Simulated marine water was used for the remediation studies.  
Chemicals and reagents used for the studies were of analytical  
grade (Sigma-Aldrich, Germany). De-ionized water was made  
used of throughout the experiments. Raw coconut husks (CH)  
used for the studies were obtained from a small scale coconut  
chips factory.  
2
.1 Preparation of simulated marine water  
The preparation of simulated marine water for this study was  
carried out according to the recipe of Kester et al. [30] and  
Nwadiogbu et al. [9]. Ten (10) litres of de-ionized water was  
measured into a 20-L plastic container and the following  
quantities of salts (chemicals) were weighed and added into it as  
follows: Sodium chloride (NaCl) 23.926 g, Sodium sulphate  
(
NaSO  
bicarbonate (NaHCO  
g and Boric acid (H  
mixture was then stirred vigorously with a stirring rod.  
4
) 4.008 g, Potassium chloride (KCl) 0.667 g, Sodium  
) 0.196 g, Potassium bromide (KBr) 0.098  
BO ) 0.026 g. For thorough mixing, the  
3
3
3
2
.2 Preparation of chemically modified coconut husk  
(acetylated coconut husks)  
The raw coconut husks (CH) were chemically modified by  
The use of biochar as a potential eco-friendly adsorbent for  
wastewater and water purification has of recent received  
increasing attention [21-23]. Biochar can be produced from a  
myriad of discarded organic and biologically-based materials,  
including agricultural by-products or wastes. Several biochar  
derived from pyrolysis of agricultural wastes have been explored  
for a variety of applications including their adsorption potential  
for heavy metal removal from contaminated water [21-23], while  
very few works involving their use as oil adsorbents (such as rice  
husk biochar, corncob biochar, cornstalk biochar) in the removal  
of oil have been reported in the literatures [24-27]. Thus, a study  
for the implementation of biochar as sorbent for oil sorption needs  
to be fully developed. According to Camilli et al. [28] and Reddy  
et al. [29] there is the need to develop an effective, fast and cheap  
methods to minimize or mitigate the negative consequences of oil  
spill. However, report or information on the use of thermally and  
chemically modified coconut husk (a commonly available low-  
cost fibrous layer of lignocellulosic waste material found outside  
the coconut shell) as oil sorbents is seldom scarce.  
acetylation reaction. Raw CH were sorted out so that sand  
impurities can be removed. The sorted coconut husks were sun-  
dried and then comminuted into samples of uniform size. Prior to  
acetylation of the raw CH, the influence of the CH fibre on  
acetylation was reduced. This was done by weighing 20 g of the  
sieved comminuted samples of the CH and then extracted in a  
Soxhlet apparatus for 5 h with a mixture of n-hexane and acetone  
o
(
1:4, v/v). The residue CH were then oven-dried at 60 C for 16  
h. The extracted content was calculated as a percentage of the  
oven-dried coconut husks. The oven-dried CH were then  
acetylated using the method of Sun et al. [20]. This method of  
acetylation was carried out in a solvent-free system using acetic  
anhydride in the presence of N-bromosuccinimide (NBS) as  
catalyst. Ten (10) grams of dried-extracted CH were put into a  
round-bottom flask and thereafter 200 mL of acetic anhydride as  
well as 1% NBS catalyst were added. The round-bottom flask was  
fitted to a condenser and then placed in an oil bath that is on top  
of a thermostat- controlled heating device set at a temperature of  
o
1
00 C and the reaction was left for 1 h.  
Since coconut husk tends to also adsorb water, its oil sorption  
capacity may be reduced. Thus, acetylation reaction and pyrolysis  
are introduced to increase the hydrophobicity of the husks.  
Therefore, the major focus of this work are to (1) chemo-  
thermally modify the coconut husk through chemical activation  
using zinc chloride as agent and pyrolysis to produce activated  
coconut husk-biochar, (2) chemically modify the coconut husk  
through acetylation to produce acetylated-coconut husk and (3)  
evaluate and compare the potentials and efficiencies of the raw  
coconut husks and the resulting modified coconut husks (coconut  
husk derived-biochar, activated coconut husk-derived biochar and  
acetylated-coconut husk) as oil sorbents in the remediation of  
crude oil contaminated marine water under varying conditions of  
sorption time, temperature, oil concentration, oil weathering and  
sorbent dosage. Attempts have also been made to study the  
Thereafter, the round-bottom flask was taken out from the oil  
bath and the hot reagent was decanted. The CH were then washed  
thoroughly with acetone and ethanol. This was done to remove  
any unreacted acetic anhydride and the acetic acid by-products.  
The washed acetylated-CH (ACCH) obtained were then oven-  
o
dried at 60 C for 16 h and stored in the desiccator prior to use.  
2
.3 Preparation of thermally and chemo-thermally modified  
coconut husks  
The raw CH was thermally modified by the action of pyrolysis  
as well as chemo-thermally modified by the action of chemical  
activation and pyrolysis to produce un-activated and activated  
coconut husk-derived biochar (CHB and ACHB). The preparation  
of ACHB was carried out according to the method of Subha and  
Namasivayam [31]. The comminuted CH samples were  
6
95  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 694-707  
impregnated with zinc chloride (ZnCl  
g of the sample was added to 100 g of anhydrous ZnCl  
boiled deionized water and the mixture stirred for 1 h to form a  
2
) in a ratio 2:1. That is, 200  
in 1 L of  
the sorbent transferred to the non-polar (organic) liquid phase was  
determined by filtration and then followed by drying and  
weighing. The degree of hydrophobicity of the sorbent was  
estimated based on Eq. (1) [38]:  
2
paste, after which the remaining solution was decanted and then  
o
oven-dried at 110 C for 1 h. The ZnCl  
2
-impregnated CH samples  
were then packed inside a steel container with a tight lid. The steel  
container was then placed inside another larger steel container  
with tight lid. The inner space of this larger container was filled  
with sand consolidated layer by layer to the brim of the container  
so as to achieve a near total absence of the sample’s exposure to  
air except for the limited oxygen already trapped in the voids of  
the sample. The whole setup was thereafter placed in a muffle  
furnace after attaining the required temperature in the furnace.  
W   
H
(1)  
HD(%)   
100  
W
O
where WH and WO are the weight of sorbent in hexane (g) and  
original weight of sorbent (g), respectively.  
2
.6 Remediation protocol  
2.6.1 Screening of activated biochar for oil removal  
The eight (8) activated biochar samples (ACHB400-30  
ACHB400-45, ACHB400-60, ACHB600-30, ACHB600-45, ACHB600-60  
The ZnCl -impregnated CH samples were pyrolyzed at 400, 600  
2
o
and 800 C for different heating or retention time of 30, 45 and 60  
min, respectively.  
,
,
The activated biochar (activated coconut husk-carbon)  
produced from the pyrolysis or carbonization was allowed to cool  
to room temperature. After cooling, 100 mL of 1.0 M  
hydrochloric acid (HCl) was added to each of the activated CH  
derived-biochar (ACHB) in 500 mL beaker and the samples were  
ACHB800-30, ACHB800-45 and ACHB800-60) prepared at different  
pyrolysis temperature and retention time were first screened to  
identify the best candidate for oil removal. One hundred (100)  
millilitre of the simulated marine water was placed in a 500 mL  
beaker and 5 g of crude oil was weighed and added. A weighed  
sample (0.5 g) of each ACHB was sprinkled over the crude oil-  
water system. The beaker was then placed on a temperature  
controlled water bath shaker and agitated continuously at a speed  
of 120 rpm for 15 min. At the end of 15 min, the wetted sorbent  
was taken out and allowed to drain for 5 minutes on a filter paper  
after which the saturated sorbent was weighed. The adsorbed  
water in the sample was measured using the Karl Fischer  
technique as well described in ASTM D1533 [39]. The quantity  
2
left for one day so as remove or leach out excess ZnCl present in  
the biochar. After that, the samples were filtered and washed  
thoroughly with deionized water after which 50 mL of 1.0 M  
NaOH was added to neutralize the acidic effects of the acid on the  
activated biochar. The activated CH derived-biochar (ACHB)  
was washed several times with deionized water until the pH of the  
wash water was neutral. Each of the ACHB was then filtered and  
o
oven-dried at 150 C for 3 hours till constant weight was achieved.  
The ACHB were allowed to cool to room temperature and  
thereafter stored in an air tight containers to avoid humidity  
adsorption, prior to use. The ACHB produced at 400, 600 and 800  
t
of sorbed oil at time, t (q ) (i.e. oil sorption capacity) was  
calculated according to Eq. (2) [40] by taking into account the  
weight of the sorbent, the weight of the sorbent, oil and water and  
the weight of water:  
o
C with retention time of 30, 45 and 60 min was respectively  
labelled according to its pyrolysis temperature-retention time (i.e.  
ACHB temperature-time) as: ACHB400-30, ACHB400-45, ACHB400-  
M  (M  M )  
wc  
6
0
, ACHB600-30, ACHB600-45, ACHB600-60, ACHB800-30, ACHB800-  
and ACHB800-60. Preparation of the un-activated coconut husk  
w
i
(2)  
q   
t
4
5
Mi  
derived-biochar (CHB) was carried with the same above  
2
procedure, however, without the use of ZnCl (i.e. no chemical  
activation)  
where, Mi is the initial mass of sorbent (g), Mw is the mass of  
wetted sorbent after draining (g) and MWC is the mass of water  
content in wetted sorbent (g). All experiments were carried out in  
triplicate and the mean values were used for calculations.  
Following these preliminary sorption studies, the best performing  
ACHB was selected for further studies. The effects of sorption  
2
.4 Characterization of sorbents  
The raw CH, ACCH, ACHB400-30, ACHB400-45, ACHB400-60  
,
ACHB600-30, ACHB600-45, ACHB600-60, ACHB800-30, ACHB800-45  
and ACHB800-60 samples were characterized for surface area using  
the iodine number method, volatile matter, ash content, fixed  
carbon, moisture content, bulk density and pH, using ASTM-  
D4607-94, ASTM-D1762-84 and ASTM 3172-75 standard  
methods [32] and functional groups using Fourier infra-red  
spectroscopy (FT-IR), respectively.  
time (1- 30 min), initial oil concentration (5 9 g/L), temperature  
o
(
15  35 C), sorbent dosage (0.5  25 g) and oil weathering  
number of days (3, 7 and 10 days) using the raw CH, ACCH,  
CHB800-60 and ACHB800-60 were investigated.  
2
.7 Data analysis  
Correlations between biochar adsorption of crude oil as  
2
.5 Determination of the degree of hydrophobicity  
function of pyrolysis temperature and retention time was done  
using the regression analysis tool of SPSS (ver. 10) software  
package. Also, one-way ANOVA and Tukey Post-hoc (HSD)  
tests were conducted to ascertain the significant difference  
between the sorption capacities of the activated biochars prepared  
at different pyrolysis temperatures and retention times and other  
adsorbents used in the study.  
The degree of hydrophobicity ( HD ) of the sorbents were  
defined as the tendency of the materials to be removed from the  
polar aqueous phase into a non-polar liquid phase [38]. In this  
experiment, 1.0 g of sorbent was added into a beaker that  
contained 20 mL of water and was sufficiently agitated. After this,  
2
0 mL of hexane solvent (i.e. the same volume of water) was  
added into the beaker and then the mixture was agitated for 3 min.  
Thereafter, the mixture was then left to stand for 5 min to allow  
for the separation of the two immiscible phases. The amount of  
6
96  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 694-707  
Table 1: Characterization properties of sorbents  
ACHB  
400 C  
ACHB  
600 C  
ACHB  
800 C  
o
o
o
Parameter  
N (mg/g)  
Raw CH  
CHB800-60 ACCH  
60  
3
0
45  
60  
30  
45  
60  
30  
45  
I
2
2.684  
3.88  
80.74  
6.05  
9.33  
0.084  
6.8  
160.7 167.2 180.4 250.1 257.5 266.8 278.0 310.6 342.2  
30.44 31.76 32.72 33.52 34.96 35.66 36.58 37.82 38.64  
29.20 27.80 26.50 25.94 24.42 23.24 18.52 16.82 14.93  
176.4  
46.26  
23.45  
2.76  
12.89  
5.95  
70.82  
AC (%)  
VM (%)  
MC (%)  
FC (%)  
5.96  
5.90  
5.86  
5.67  
5.65  
5.60  
5.55  
5.44  
5.40  
5.88  
34.40 34.54 34.92 34.87 34.97 35.50 39.35 39.92 41.03  
0.324 0.310 0.284 0.266 0.242 0.226 0.210 0.197 0.183  
27.53  
0.743  
8.20  
17.35  
0.137  
6.2  
3
BD (g/cm )  
pH  
9.5  
9.8  
10.0  
10.4  
10.6  
10.8  
11.2  
11.3  
11.4  
It is seen that the raw CH has a volatile matter (VM) content  
of 80.74% which is very high with low ash content (AC) of 3.88%  
palm kernel shell, safflower seed cake, sugar beet tailings,  
sugarcane bagasse at high temperature [34, 42, 43, 45, 46].  
The iodine number of a sorbent or material correlates with  
surface area and porosity or pore development [42, 44, 47]. The  
observed increase in iodine number with respect to increased  
temperature implies that the surface area and porosity of the  
activated biochars also increases with respect to increasing  
temperature and retention time. Suman and Gautam [43] have  
reported that the surface area and porosity of carbon produced  
from coconut husk increased with increase in pyrolysis  
temperature. Table 1 shows that high pyrolysis temperature and  
longer retention time would result in the release of great amount  
of volatile compounds from the raw material and consequently  
influences the iodine adsorption. The highest iodine adsorption  
was achieved with activated biochar produced at a pyrolysis  
temperature of 800°C and retention time of 60 min (ACHB800-60  
with iodine number of 342.2 mg/g). It is clearly shown in Table 1  
that as the volatile matter content of the biochars decreased, the  
iodine adsorption of these biochars increased. Lower pyrolysis  
temperature and shorter retention time causes lower amount of  
volatile compounds to be released and thus produces biochar with  
underdeveloped carbon structures and reduced surface area ().  
The iodine number of raw CH and ACCH are lower than the  
values obtained for the biochars.  
2
and a fixed carbon (FC) of 9.33%. The BD, I N, and pH values  
3
for raw CH are 0.084 g/cm , 2.684 mg/g and 6.8, respectively.  
However, when the raw CH was modified through acetylation  
reaction with acetic anhydride to produce ACCH, variations in  
these observed values occurred as presented for ACCH in Table  
2
1. As it can be seen, the VM, AC, FC, BD, I N, and pH values of  
3
ACCH are 70.82%, 5.95%, 17.35%, 0.137 g/cm , 12.89 mg/g and  
6
.2, respectively.  
In addition, when the raw CH was further modified through  
thermo-chemical method using zinc chloride and pyrolysis at  
different temperature and retention time to produce activated  
biochar (ACHB400-30, ACHB400-45, ACHB400-60, ACHB600-30  
,
ACHB600-45, ACHB600-60, ACHB800-30, ACHB800-45 and ACHB800-  
6
0
), there are wide variations in the physical properties in  
comparison with the raw CH as shown in Table 1. As it can be  
seen, VM, AC, FC, BD, I N, and pH ranged from 29.20-14.93%,  
0.44  38.64%, 34.40  41.03%, 0.324-0.183 g/cm , 160.7-342.2  
2
3
3
mg/g, and 9.5-11.4, respectively. These values indicated that the  
VM and BD gradually decreased with increasing pyrolysis  
o
temperature (400  800 C) and retention time (30  60 min) while  
2
AC, FC, I N and pH respectively increased with increases in the  
pyrolysis temperature and retention time. Chen et al. [41], Angin  
34] and Lee et al. [42] have reported similar observation of an  
[
increase in ash content and fixed carbon as well as a decrease in  
volatile matter as pyrolysis temperature increases. Suman and  
Gautam [43] have reported a decrease in ash content with respect  
to increasing temperature in the pyrolysis of coconut husk. Lee et  
al. [42] and Olafadehan et al. [44] have reported similar  
observation of a decrease in bulk density with respect to increase  
in pyrolysis temperature and time.  
3.2 FT-IR characterization  
Result of the FTIR spectra carried out on raw CH, ACCH,  
CHB800-60 and ACHB800-60 are presented in Table 2. The spectra  
of the untreated raw CH precursor reveals the following peaks :  
-
1
3560.25  3620.30 cm (-OH stretching of hydroxyl group that  
-
1
occur in cellulose, and N-H stretch), 2850.10  2965.15 cm (C-  
H asymmetric stretching of CH and CH of aliphatic), 1455.15 –  
1652.05 cm (C-H deformation of CH , -C=C- stretching of  
aromatic), 1715.04  1840.30 cm (carbonyl (C=O) group of  
2
3
-
1
Bulk density measures the flow ability of a material. A good  
sorbent or adsorbent is indicated by a lower bulk density [42]. The  
lowest bulk density was achieved for activated biochar produced  
3
-
1
-
1
ester (ascribed to hemicellulose), 1170.11  1325.20 cm (-C-O-  
C stretching in cellulose, hemicellulose), (Nguyen et al., 2016).  
For ACCH, the FTIR spectra revealed a peak band at 3500.11  
o
at a temperature of 800 C and retention time of 60 min (ACHB800-  
6
0
). The VM, AC, FC, BD, I  
biochar (CHB800-60) are 23.45%, 46.26%, 27.53%, 0.743 g/cm ,  
76.4 mg/g and 8.2, respectively. The pH of the sorbent  
2
N, and pH values of the un-activated  
3
-1  
 3540.45 cm indicating the presence of OH stretching of  
1
hydroxyl group. The decrease in the OH peak intensity showed  
that some of the OH groups were substituted by the acetyl group  
and this substitution reduces the degree of hydrogen bonding [9].  
constitutes a useful indicator of the nature of the functional groups  
present on the sorbent surface. As shown in Table 1, the pH values  
of raw CH and ACCH are slightly acidic while that of the un-  
activated and activated biochars are alkaline. The alkaline nature  
of the un-activated and activated biochars may be attributed to the  
presence of relative larger concentration of inorganic material in  
the form of mineral ash. Similar values of alkaline pH have been  
reported for carbons or biochars produced from coconut shell,  
-
1
The higher peak at 2900.15  2970.35 cm reveals the presence  
of C-H stretching of alkane (CH and CH ). This indicates an  
increase in the CH and CH (alkyl group) in ACCH and thus  
2
3
2
3
increase in the hydrophobicity and oleophilicity of the acetylated  
coconut husk.  
6
97  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 694-707  
Table 2: FT-IR spectrum analyses of raw CH, ACCH, CHB800-60 and ACHB800-60  
ACCH  
Absorption Peak Number (cm )  
OH (stretching), OH (non-bonding),3500.11 3540.45  
N-H (stretching)  
2 3  
C-H, CH and CH C-H, CH and CH (aliphatic),  
COOH (carboxylic group)  
C-H (aliphatic), C=C, C=O1695.20  1820.40  
stretching), N-H  
Raw CH  
Absorption Peak Number (cm ) Functional Groups  
-
1
-1  
Functional Groups  
OH (stretching), OH (non-  
bonding), N-H (stretching)  
3
560.25 3620.30  
2
1
1
1
850.10 2965.15  
715.04 1840.30  
455.15 - 1652.05  
170.11 1325.20  
2
3
(aliphatic),2900.15 2970.35  
COOH (carboxylic group)  
C-H (aliphatic), C=C, C=O  
(stretching), N-H  
(
C-H (deformation), N-H (bending),1430.23 - 1640.15  
C=C (aromatic)  
C-H N-H  
(bending), C=C (aromatic)  
(deformation),  
C-O (stretching of alcohol, ether),1140.18  1295.25  
C-N (stretching of amine)  
C-O (stretching of alcohol,  
ether), C-N (stretching of amine)  
CHB800-60  
ACHB800-60  
3
1
1
1
488.05 - 3786.60  
688.25 1810.11  
410.10 - 1548.60  
088.05 - 1190.20  
OH (stretching), OH (non-bonding),3446.79 - 3751.55  
N-H (stretching)  
OH (stretching), OH (non-  
bonding), N-H (stretching)  
C-H (aliphatic), C=C, C=O  
(stretching), N-H  
C=C (aromatic), C-H (bending  
in aliphatic)  
C-H  
(alkane),  
C=C,  
C=O1685.79 - 1799.59  
(stretching), N-H  
C=C (aromatic), C-H (bending in1400.32 - 1516.05  
aliphatic)  
C-O (stretching of alcohol, ether),1072.42  1147.55  
C-N (stretching of amine)  
C-O (stretching of alcohol,  
ether), C-N (stretching of amine)  
This hypothesis was confirmed by the presence of carbonyl  
modifications. This could be the result of hemicellulose and  
cellulose degradation in temperature of 800 C [25]. That is, high  
o
(
1
C=O) group of ester or amides at the peak intensity of 1695.20 –  
-
1
820.40 cm observed in ACCH which indicates that acetylation  
carbonizing or pyrolysis temperature leads to high reduction of  
surface functional group diversity and abundance [25, 48].  
Pyrolysis of lignocellulosic biomass majorly leads to  
dehydroxylation or dehydrogenation reactions which results in  
polyaromatization of any left-over carbon. It is the presence of  
this polyaromaticity that contributes to the hydrophobicity and  
enough oleophilicity of biochar [27].  
had occurred. This observation is in good agreement with the  
increased degree of hydrophobicity of the raw CH from 19.4% to  
5.6% after the modification. Thus, it is suggested that the  
6
increased hydrophobicity of raw CH after modification with  
acetic anhydride will increase the affinity of ACCH to absorb or  
remove more crude oil. The FTIR spectrum of ACHB800-60  
showed the presence of N-H stretch and O-H stretching (both free  
-
1
-1  
and H-bonded) at 3446.79 cm and 3751.55 cm , confirming the  
presence of amine and OH groups from residual  
hemicellulose/cellulose. The presence of C-H stretching of  
3.3 Selection of activated biochar  
Figure 1 shows the oil sorption capacity of the eight types of  
activated biochar produced at different pyrolysis temperature of  
-
1
o
aliphatic or alkane at the peak region of 2850.10-2965.15 cm as  
seen in raw CH has completely disappeared in ACHB800-60 (i.e.  
peak not observed) as well as in CHB800-60 [48]. The absence of  
this C-H aliphatic peak positively correlates with increased  
400  800 C and retention time of 30  60 min. At the respective  
o
temperatures of 400, 600 and 800 C, the oil removal efficiency  
of each ACHB increased with increase in pyrolysis retention time  
(30 60 min). At the same pyrolysis retention time of 30-60 min,  
the oil sorption capacity of ACHB increased with increase in  
-
1
hydrophobicity in biochar. The band from 1685.79 cm to  
-
1
o
1
799.59 cm indicates the presence of carbonyl (C=O) group of  
pyrolysis temperature (400  800 C). Across all the activated  
ester or amides, however, a relatively higher intensity or peak  
(
biochars used for the treatment, the oil removal efficiency ranged  
from 55.2 ± 0.5 to 76.8 ± 0.5%. This suggests that a considerable  
percentage of oil was removed over the 15 min remediation  
period. Indeed, there was statistically significant difference in the  
oil removal efficiencies of the ACHB obtained at the different  
-1  
1688.25  1810.11 cm ) is observed in CHB800-60. The C=C  
-1  
stretching of aromatic at the band region of 1400.32 cm to  
-1  
516.05 cm was observed in ACHB800-60. While an increased  
-1  
1
band region of 1410.10 - 1548.60 cm was observed in CHB800-  
as compared to ACHB800-60. The peak observed from 1072.42–  
-
6
0
pyrolysis temperature and retention time (ANOVA: P = 4.3 × 10  
-
1
20  
1
147.55 cm was assigned to -C-O stretching (ascribed to  
).  
cellulose and hemicellulose). However, the peaks representing C-  
H of aliphatic, C=C- of aromatic, C=O and OH of hydroxyl group  
in ACHB800-60 and CHB800-60 are lower as compared to the  
precursor which implied reduction of the functional group  
diversity and abundance and thus indicating increased  
hydrophobicity and oleophilicity of the biochar [48] which is in  
good agreement with the increased degree of hydrophobicity of  
the raw CH from 19.4% to 94.8% after the thermal and chemical  
Furthermore, post hoc comparisons between the oil removal  
efficiencies of different pairs of ACHB (36 pairs) using Tukey’s  
(HSD) test at 5% probability level showed that there are  
significant differences between the oil removal efficiencies of the  
different pairs with the P-value ranging between 0.001 and 0.018.  
Maximum oil removal efficiency of 76.84% was achieved with  
o
ACHB obtained at pyrolysis temperature of 800 C and retention  
time of 60 min (ACHB800-60).  
6
98  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 694-707  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
400  
350  
300  
250  
200  
150  
100  
50  
0
Adsorbent  
Oil Removal Efficiency  
Iodine Number (Surface Area)  
Figure 1: Oil removal efficiency of activated coconut husk derived-biochar (ACHB) produced at different temperature-time combinations  
1
1
2
0
8
6
4
2
0
0
5
10  
15  
20  
25  
30  
35  
Sorption Time (min)  
Raw CH  
ACCH  
CHB-800-60  
ACHB-800-60  
Figure 2: Effect of sorption time on oil sorption capacity of modified coconut husk (raw CH, ACCH, CHB800-60 and ACHB800-60  
)
This was followed by ACHB600-60 and ACHB400-60 with oil  
removal efficiencies of 68.2% and 60.2%, respectively. This  
observation suggest that oil removal efficiency of ACHB  
correlates positively with the pyrolysis temperature and retention  
time as well as with the surface area of the biochar [21, 49]. These  
observations are consistent with the observations reported for  
biochar prepared from date seed used for heavy metal removal  
performance, it was then selected for the remaining subsequent  
experiments.  
3.4 Effect of sorption time  
The results for the effect of sorption time on oil removal is  
shown in Figure 2. It can be seen that the oil sorption capacity of  
raw CH, ACCH, CHB800-60 and ACHB800-60 respectively  
increased with the increase in sorption time. The oil sorption  
rapidly increase in the first 3 min and after which, it proceeded at  
[
[
21] as well as for activated rubber particles used for oil removal  
49]. The reason for this observation can be attributed to the  
th  
effects of pyrolysis temperature on the physiochemical  
characteristics of the biochar including surface functional groups,  
structure of the pores and surface area. Sorption is a combination  
a slow rate until the 12 minute when there was no more  
significant oil sorption and a maximum oil sorption capacity of 5  
± 0.13 g/g, 8.42 ± 0.01 g/g, 8.75 ± 0.02 g/g and 9.35 ± 0.01 g/g  
of adsorption and absorption. Adsorption is  
a
surface  
was attained by raw CH, ACCH, CHB800-60 and ACHB800-60,  
phenomenon that has direct relationship with surface area. Thus,  
increasing the surface area will result in increased adsorption.  
More so, surface area indirectly affects the absorption of the  
material to a large extent. This is because, as the surface area  
increases, it increases the capillaries formed and so increases the  
absorption [50]. Since ACHB800-60 displayed the best  
respectively. The initial high rate of oil sorption may be attributed  
to the presence of active sites (microscopic voids) on the sorbent  
surfaces which was rapidly occupied with the oil molecules while  
slower rate of sorption at the later stage may probably be due to  
the active site saturation with oil molecules where there was no  
more significant oil sorption and as well as the equilibrium  
6
99  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 694-707  
between the sorption and desorption processes that occurred after  
saturation [15, 51, 52]. Similar observations regarding the use of  
sorbents for oil removal have been reported [15]. The results in  
Figure 2 also revealed that ACHB800-60 relatively demonstrated a  
higher oil sorption capacity and thus a higher oil removal  
efficiency than CHB800-60 (un-activated biochar), ACCH and raw  
further showed that there is a significant difference in the sorption  
capacity of CHB800-60 and ACHB800-60. The reason for these  
observations may be due to difference in the proportions of  
hydrophobic and hydrophilic functional groups in the sorbents  
[53]. In addition, the higher surface area and pore volume as  
indicated by the higher iodine numbers and as well as the swelling  
and pores filling may also have been responsible for the high oil  
sorption capacity and oil removal efficiency of the activated  
biochar [24]. Al Zubaidy [54] has reported that the oil sorption  
capacity of activated carbonized date palm kernel powder was  
higher than the un-activated carbonized date palm kernel powder  
while Nwadiogbu et al. [9] have reported that the oil adsorption  
capacity of acetylated corncob was higher than that of the raw  
corncob. Yusof et al. [17] have also observed and reported that  
esterified coconut coir had a higher oil sorption capacity than the  
raw coconut coir.  
CH. This performance was closely followed by that of CHB800-60  
,
ACCH and raw CH, respectively. Overall, there was statistically  
significant difference in the sorption capacities of these sorbents  
-
16  
(
ANOVA: P = 1.11 × 10 ).  
Post hoc comparisons using Tukey’s (HSD) test at 5%  
probability level were carried out to basically determine the  
significant difference in sorption capacity between any of the  
sorbents. The difference in the mean sorption capacity between  
pairs of sorbents were greater than the Tukey HSD value. Thus,  
the Tukey’s test revealed that there are significant differences in  
the sorption capacity between the raw CH and ACCH; between  
the raw CH and CHB800-60 as well between raw CH and ACHB800-  
3.5 Effect of initial oil concentration  
6
0
, respectively. It also indicates that there are significant  
difference in the sorption capacity between the ACCH and  
CHB800-60 as well as between ACCH and ACHB800-60 while it  
The changes in the oil sorption capacity and oil removal  
efficiency at different initial oil concentration of 5 to 9 g are  
illustrated in Figure 3.  
1
00  
16  
1
1
1
8
6
4
2
0
4
2
0
80  
60  
40  
20  
0
5
6
7
8
9
5
6
7
8
9
Oil Concentration (g/L)  
Raw CH  
Raw CH  
ACCH  
CHB-800-60  
ACHB-800-60  
ACHB-800-60  
ACCH  
CHB-800-60  
Figure 3: Effect of initial oil concentration on oil sorption capacity and oil removal efficiency of modified coconut husk  
1
1
20  
00  
12  
10  
8
80  
60  
40  
20  
0
6
4
2
0
15  
20  
25  
30  
35  
15  
20  
25  
30  
35  
o
Temperature ( C)  
Raw CH  
Raw CH  
ACCH  
CHB-800-60  
ACHB-800-60  
ACHB-800-60  
ACCH  
CHB-800-60  
Figure 4: Effect of temperature on oil sorption capacity and oil removal efficiency of modified coconut husk  
7
00  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 694-707  
o
It is seen that the oil sorption capacity of raw CH, ACCH,  
CHB800-60 and ACHB800-60 respectively increased with increase in  
the initial oil concentration while their oil removal efficiency  
decreased with increase in initial oil concentration. Similar  
observation has been reported for esterified coconut coir in its use  
for oil removal from seawater with initial oil concentration of 0.05  
to 0.2% mL/mL [17] as well as for bentonite/activated carbon in  
its use for oil removal with initial concentration of 863 to 1613  
ppm [55]. Maximum oil sorption capacity of 5 g/g, 8.42 g/g, 8.75  
g/g and 9.35 g/g as well as a corresponding maximum oil removal  
efficiency of 50%, 84.2%, 87.5% and 93.5% was attained by raw  
CH, ACCH, CHB800-60 and ACHB800-60 respectively, with the use  
of initial oil concentration of 5 g.  
ACHB800-60 at different temperature of 15 to 35 C. The results in  
Figure 4 demonstrated that the oil sorption capacity and oil  
removal efficiency of raw CH, ACCH, CHB800-60 and ACHB800-  
60 increases with increasing temperature. A similar observation  
depicting an increase in the quantity of oil removed or sorbed with  
increase in temperature was reported by Abdelwahab [16] in his  
investigation of the effect of temperature on the oil sorption  
capacity of raw luffa fibres. Hussein et al. [18] using barley straw  
as well as Toyoda et al. [56] using exfoliated graphite have also  
reported similar observation for the adsorption of heavy crude oil.  
This increase in sorption may probably be due to decrease in the  
viscosity of the oil as temperature increases making it suitable to  
penetrate pores and be trapped between surface roughness until  
maximum oil removal is attained at 35 ºC. Nevertheless, at lower  
temperature, the viscosity of oil is high and this may cause the oil  
to plug the pores and thus resulting in lower oil removal. On the  
other hand, decrease in oil sorption capacity with increasing  
temperature had been reported for the use of banana peel [13],  
human hair [15] and modified pomelo peel [14] in crude oil  
adsorption or removal.  
3
.6 Effect of temperature  
The effect of marine water temperature on the oil sorption  
capacity and oil removal efficiency was investigated since the  
temperature of marine water varies normally with seasonal  
change and location. Figure 4 shows the oil sorption capacity and  
oil removal efficiency of raw CH, ACCH, CHB800-60 and  
1
00  
10  
8
80  
60  
40  
20  
0
6
4
2
0
0
.5  
1
1.5  
2
2.5  
0.5  
1
1.5  
2
2.5  
Sorbent Dosage (g)  
Raw CH  
Raw CH  
ACCH  
ACCH  
CHB-800-60  
CHB-800-60  
ACHB-800-60  
ACHB-800-60  
Figure 5: Effect of sorbent dosage on oil sorption capacity and oil removal efficiency of modified coconut husk  
1
00  
10  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
un-  
3-day  
7-day  
10-day  
un-  
3-day  
7-day  
10-day  
weathered weathered weathered weathered  
weathered weathered weathered weathered  
oil  
oil  
oil  
oil  
oil  
oil  
oil  
oil  
Raw CH  
ACCH  
CHB-800-60  
ACHB-800-60  
Raw CH  
ACCH  
CHB-800-60  
ACHB-800-60  
Figure 6: Effect of number of oil weathering days on oil sorption capacity and oil removal efficiency of modified coconut husk  
7
01  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 694-707  
3
.7. Effect of sorbent dosage  
provided a good fit to the remediation kinetic data based on the  
high values of the regression coefficient (R ) which were close to  
2
Figure 5 shows the effect of sorbent dosage on the oil sorption  
capacity and oil removal efficiency. The results in Figure. 5  
revealed that as the mass of the sorbents (raw CH, ACCH,  
CHB800-60 and ACHB800-60) increased from 0.5 g to 2.5 g, the oil  
sorption capacity decreased with a corresponding increase in oil  
removal efficiency. The reason for the observed decrease in oil  
sorption capacity may be due to the overlapping or aggregation of  
active adsorption sites while the observed increase in oil removal  
efficiency may primarily be attributed to an increased surface area  
and the availability of more active adsorption sites [9]. Yusof et  
al. [17] and Nwadiogbu et al. [9] have correspondingly reported  
similar observation for the use of esterified coconut coir (0.2  1  
g) and acetylated corncob (0.5 2 g) in oil spill removal.  
1. From Table 3, it can be seen that ACHB800-60 relatively  
displayed the highest rate of sorption with a higher rate constant  
-
1
(k) of 0.256 min . This was closely followed by that of CHB800-  
-
1
-1  
60 (k = 0.249 min ), ACCH (k= 0.231 min ) and raw CH (k =  
-
1
0.201 min ), respectively. Similarly, the pseudo-second-order  
kinetic model can be expressed as presented in Eq. (4) [58]:  
t
qt k2qe qe  
1
t
(4)  
2
-1  
2
where k is the pseudo-second-order rate constant (g/g.min ) and  
is the theoretical equilibrium sorption capacity (g/g) both of  
which can be calculated from the slope and intercept of the linear  
plot of t/q versus t (plot not shown). The values of the constants  
q
e
3
.8 Effect of oil weathering number of days  
Oil weathering is the sum of the physical and biological  
t
-
1
-1  
are presented in Table 3. The initial sorption rate h (g g min )  
processes acting on oil, which change the chemical composition  
and physical properties, such as viscosity, over time [57]. The  
quantity of oil respectively adsorbed by raw CH, ACCH, CHB800-  
was calculated from the following equation:  
2
h  k qe  
(5)  
60  
and ACHB800-60 as a function of the number of days of oil  
2
subjection to weathering effect is presented in Figure 6.  
It can be seen that the oil sorption capacity as well as the oil  
removal efficiency relatively decreases with increase in the  
number of days that the oil was subjected to weathering effect.  
That is, the sorption capacity and removal efficiency displayed by  
all the sorbents (raw CH, ACCH, CHB800-60 and ACHB800-60) was  
higher for un-weathered crude oil than for the weathered oil. This  
observation may be attributed to increase in the viscosity of oil as  
the number of days for oil weathering increases. This observation  
is in agreement with the observation reported by Sidik et al. [38]  
for the use of lauric acid-modified oil palm leaves in the removal  
of oil not exposed to air (un-weathered oil) and the one exposed  
to air for 7 days (i.e. 7-days weathered oil). Nguyen and Pignatello  
Table 3 shows that the pseudo-second-order kinetic model  
equation provided a good fit to the remediation kinetics data  
2
based on the high values of the regression coefficient (R ) which  
2
were close to 1. The R values of the pseudo-second-order kinetic  
model equation obtained for raw CH, ACCH, CHB800-60 and  
ACHB800-60 were 0.9577, 0.9805, 0.9872 and 0.9946,  
respectively. The results in Table 3 revealed that ACHB800-60  
exhibited the highest initial sorption rate of oil with  
.568 g/g.min and a faster rate of sorption with k value of 0.078  
g/(g.min) than the other sorbents. This was relatively followed by  
2
that of CHB800-60 (h = 4.812; k = 0.055), ACCH (h = 3.797; k =  
2
.044) and raw CH (h = 1.336; k  
h
value of  
7
2
2
0
2
= 0.038), respectively. The R  
[24] have also reported similar observation that weathered crude  
value of pseudo-second-order kinetic equation obtained for raw  
CH, ACCH and CHB800-60 was higher than that of its pseudo-first-  
order kinetic equation (i.e., 0.9427, 0.9641 and 0.9807) and there  
oil (chocolate mousse) was less absorbed by maple wood biochars  
and commercial biochars when compared with un-weathered  
crude oil. However, Hussein et al. [18] using barley straw and  
Alaa Eldin et al. [13] using banana peels have respectively  
reported increased sorption for 1-day and 7-days weathered heavy  
crude oil.  
e e  
exist a very good agreement between q (theoretical) and q  
experimental) which suggest that the pseudo-second-order  
(
kinetic model provided a better fit to the oil remediation kinetic  
data of raw CH, ACCH and CHB800-60, respectively.  
Thus, the removal of oil spill by raw CH, ACCH and CHB800-  
60  
follows a pseudo-second-order kinetics. This is in agreement  
with the observation made for the use of fatty acid-modified  
banana trunk fiber [59], esterified coconut coir [17], human hair  
15], fatty acid-modified pomelo peel [14] and lauric acid-  
3
.9 Adsorptive remediation (sorption) kinetic studies  
Sorption kinetics helps in predicting the rate at which sorption  
takes place as well as assist in designing and optimising full-scale  
applications [15]. Sorption kinetic models of Lagergren pseudo-  
first-order, pseudo-second-order and intraparticle diffusion  
models were applied to the remediation kinetics data to analyze  
the rate and mechanism of crude oil sorption by raw CH, ACCH,  
CHB800-60 and ACHB800-60. The Lagergren pseudo-first-order  
kinetic model is expressed as given in Eq. (3) [58]:  
[
modified oil palm leaves [38] in the removal of oil spill. While  
2
the R value of pseudo-first-order kinetic equation (i.e., 0.9976)  
obtained for ACHB800-60 is relatively higher than its pseudo-  
second-order kinetic model equation (i.e., 0.9946) and there also  
exist a very good agreement between q (theoretical) and q  
e e  
experimental) which indicates that pseudo-first-order kinetic  
model provided a better fit to the kinetic data. Therefore, the  
removal of oil spill by ACHB800-60 follows a pseudo-first-order  
kinetics. This is in agreement with the observation of Nwadiogbu  
et al. [9] for the use of raw and acetylated corncob. The transport  
of oil from the aqueous phase to the sorbent surface and then its  
diffusion into the interior of porous particles can be described by  
Weber-Morris intraparticle diffusion model.  
(
ln(q  q )  lnq  kt  
(3)  
e
t
e
where q  
t
and q  
e
are the quantities of crude oil sorbed at time  
t
(s)  
and at equilibrium, respectively, in g/g. is the pseudo-first-order  
rate constant (min ) which can be determined from the slope of  
the linear plots of ln(q -q ) versus t (plot not shown). The values  
of the constants are presented in Table 3. The results presented in  
Table 3 shows that the pseudo-first-order kinetic model equation  
-
1
e
t
7
02  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 694-707  
Table 3: Pseudo first-order, pseudo second-order, intra-particle and correlation coefficients obtained for the removal of crude oil from  
marine water by raw CH, ACCH, CHB800-60 and ACHB800-60  
Kinetic Model  
Pseudo first-order  
Parameter  
Raw CH  
0.201  
ACCH  
0.231  
CHB800-60  
0.249  
ACHB800-60  
0.256  
k
min-1)  
1
(
(
(
qe  
qe  
5.71  
5.0  
9.43  
9.63  
9.31  
theo.) (mg/g)  
exp)  
8.42  
8.75  
9.35  
2
R
0.9427  
0.9641  
0.9807  
0.9974  
Pseudo second-order  
0
.038/0.049 0.044  
0.055  
0.078  
k2  
qe  
qe  
(
g/(g.min))  
5.74  
5.00  
1.336  
9.29  
8.42  
9.45  
8.75  
9.85  
9.85  
(
theo.) (mg/g)  
exp)  
(
h
3.797  
4.912  
0.9872  
7.568  
0.9946  
2
0
.9577  
0.9805  
R
Weber-Morris Intraparticle diffusion  
(
mg/(g min0.5))  
1.45  
2.43  
2.59  
2.74  
Kp  
C
0.3514  
0.2942  
0.9891  
0.1677  
0.9943  
0.2091  
0.9946  
2
0
.9555  
R
Weber-Morris Intraparticle Diffusion  
1
0
5
0
0
1
2
3
4
5
6
0
.5  
t (min)  
Raw CH Experimental Data  
ACCH Experimental Data  
ACHB-800-60 Experimental Data  
CHB-800-60 Experimental Data  
Figure 7: Application of Weber-Morris intraparticle diffusion to the sorption kinetic data of modified coconut husk  
The model can be expressed as presented in Eq. (6) [58]:  
.5  
intraparticle diffusion begins to decrease due to the extremely low  
sorbate concentrations in the aqueous phase [60, 61]. This  
0
q  K t C  
2
(6)  
observation is confirmed by the high  
R
and a non-zero intercept  
t
d
results obtained for raw CH, ACCH and CHB800-60 and ACHB800-  
60, respectively, as presented in Table 3. The high regression  
suggest the existence of an intraparticle diffusion mechanism for  
the sorption of crude oil by raw CH, ACCH and CHB800-60 and  
ACHB800-60. Also, the presence of the intercept C (boundary layer  
effect) confirmed the existence of film or surface sorption and  
thus indicating that intraparticle diffusion was not the only rate-  
controlling or determining step.  
-
½
where K  
d
is the intra particle diffusion rate constant (mg/g min )  
is the intercept. The intercept of the plot indicates the  
boundary layer effect and its magnitude determines the degree of  
the surface sorption contribution in the rate determining step. K  
and  
C
d
0
.5  
can be determined from the slope of the plot of q  
t
vs. t  
.
Intraparticle diffusion becomes the sole rate determining step if  
the plot passes through the origin [58]. In fact, the linear plots did  
not pass through the origin and given the multilinearity of these  
plots for oil removal by raw CH, ACCH and CHB800-60 and  
ACHB800-60, this suggests that oil removal occurred in three  
phases as shown in Figure 7.  
The first steeper linear phase represents film or surface  
diffusion, the second linear phase represents intraparticle or pore  
diffusion and the third phase is final equilibrium stage where  
3
.10 Sorption isotherms  
The fundamental requirements for the design of adsorption  
systems are the sorption isotherms. Sorption isotherm depicts at  
constant temperature the equilibrium correlation or relationship  
that exist between the quantity of sorbate in the liquid phase and  
that on the surface of the sorbent [61]. A number of two, three or  
7
03  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 694-707  
fourparameter sorption isotherm models have been developed to  
describe equilibrium relationships in adsorption systems. In this  
present study, two-parameter models of Langmuir, Freundlich,  
and Temkin were used to analyze the equilibrium data. The linear  
form of Langmuir isotherm model is as given in Eq. (7):  
The Freundlich isotherm model is normally applied to non-  
ideal sorption on heterogeneous surfaces where binding sites are  
not equivalent or independent [61]. The linear form of this  
isotherm model can be expressed as presented in Eq. (8) [58]:  
(
8)  
lnq  ln K 1 nlnCe  
e
F
(
7)  
*
qmax  
q b C  
e
qe  
max  
where K  
F
and n are Freundlich constants that roughly gives an  
indicator of the adsorption capacity (mg/g) and the intensity of  
sorption. The constants can be estimated from the slope and  
intercept of the linear plot of lnq versus lnC .  
where qmax and b are Langmuir isotherm constants. (mg/g) is the  
maximum monolayer sorption capacity of the sorbent (mg/g), b  
e
e
(L/mg) is related to energy of adsorption, which quantitatively  
2
The values of the constants are presented in Table 4. The  
obtained for raw CH, ACCH, CHB800-60 and ACHB800-60 are  
.9806, 0.9896, 0.9966 and 9972, respectively and these values  
R
represents the binding affinity between the sorbent and the  
sorbate. The qmax and b can be determined from the linear plot of  
0
1
qe vs. 1 Ce . The determined values of the Langmuir constants  
indicates that the Freundlich isotherm provided a good fit to the  
sorption equilibrium data. Values 1 < n < 10 or 1/n < 1 indicates  
favourable sorption [61]. In this study, the values 1/n for raw CH,  
ACCH, CHB800-60 and ACHB800-60 are 0.468, 0.318, 0,325 and  
0.293, respectively, which indicates a favourable sorption of oil  
are presented in Table 4.  
2
As seen in Table 4, the R values are 0.9950, 0.9805, 0.9850  
and 0.9868 for raw CH, ACCH, CHB800-60 and ACHB800-60  
respectively, indicating that the Langmuir isotherm provided a  
good fit to the sorbents equilibrium data. It can apparently be said  
that when b > 0, sorption system is favorable [58]. In this study,  
b was found to be 0.286, 4.33, 1.86 and 3.74 L/mg for raw CH,  
ACCH, CHB800-60 and ACHB800-60, respectively. The value of qmax  
obtained for ACHB800-60 (16.84 g/g) was found to be relatively  
higher than the other sorbents used in this study. This was closely  
followed by that of CHB800-60 (16.10 g/g), ACCH (15.06 g/g) and  
raw CH (12.11 g/g), respectively. The qmax values obtained in this  
study are relatively comparable with the values obtained for the  
use of other adsorbents. Sathasivan and Mas Haris [59], Okiel et  
al. [55], Uzoije et al. [62], Sidik et al. [38], Asadpour et al. [63],  
Ifelebuegu et al. [15], Yusof et al. [17] and Elkady et al. [64]  
correspondingly obtained qmax values of 0.149-0.476 g/g; 0.00712  
g/g; 0.0014 g/g, 0.00172 g/g; 3.33 g/g, 4.226 g/g; 15.3 g/g; and  
and their corresponding K  
(g/g) (L/g). Smaller the values of 1/n, the higher the affinity  
between sorbate and sorbent [55]. The K values which roughly  
F
values are 3.32, 9.11, 10.24 and 13.10  
F
indicates the sorption capacity revealed that ACHB800-60 had a  
higher performance or sorption in comparison with the other  
sorbents. This was relatively followed by CHB800-60, ACCH and  
F
raw CH, respectively. The K : 1/n values obtained in this study  
are relatively comparable with the values obtained for the use  
other adsorbents. Sathasivan and Mas Haris [59], Okiel et al. [55],  
Uzoije et al. [62], Sidik et al. [38], Asadpour et al. [63], Ifelebuegu  
F
et al. [15] and Elkady et al. [64] correspondingly obtained K : 1/n  
values of 0.028-0.25 g/g:0.385-0.779; 10.37 mg/g:0.658; 0.0055  
g/g:0.641; 1.72 mg/g: 0.719; 0.0224-0.0340 g/g:, 1.477 g/g:  
0.420; and 0.2751 g/g:0.926 for the use of fatty acid-modified  
banana trunk fiber, powdered activated carbon, groundnut shell-  
activated carbon, lauric acid-modified oil palm leaves, fatty acid-  
modified mangrove bark, human hair and water hyacinth-derived  
Nano-activated carbon in the removal of oil from water  
respectively.  
1
6.4 g/g for the use of fatty acid-modified banana trunk fiber,  
powdered activated carbon, groundnut shell-activated carbon,  
lauric acid-modified oil palm leaves, fatty acid-modified  
mangrove bark, human hair, esterified coconut coir and water  
hyacinth-derived Nano-activated carbon in the removal of oil  
from water respectively.  
Table 4: Adsorption isotherm parameters and correlation coefficients for the adsorption of crude oil by raw CH, ACCH, CHB800-60 and  
ACHB800-60  
Isotherm Model  
Langmuir  
Parameter  
Raw CH  
12.11  
ACCH  
15.06  
CHB800-60  
16.10  
ACHB800-60  
16.84  
qmax (g/g)  
b2 (L/g)  
R
0.286  
0.9950  
4.33  
0.9805  
1.86  
0.9850  
3.74  
0.9868  
Freundlich  
Temkin  
(
g/g)(L/g  
3.32  
9.11  
10.24  
0.325  
13.10  
0.293  
K f  
0
.468  
0.318  
1
n
2
R
0.9806  
0.9896  
0.9966  
0.9972  
2
2
0
.379  
.846  
.8851  
16.08  
3.291  
0.766  
18.51  
3.546  
0.7104  
44.49  
3.478  
0.7243  
A
B
(L/g)  
bT (kJ/mol)  
2
R
0.9885  
0.9816  
0.9925  
0.9972  
7
04  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 694-707  
Temkin isotherm can be represented in its linear form as [58]:  
sorbent dosage and oil weathering. The rate of oil sorption by raw  
CH, ACCH and un-activated CHB800-60 respectively follows a  
pseudo-second order kinetics while activated CHB800-60 follows a  
pseudo-first order kinetics. The sorption of oil by occurs via  
surface and pore diffusion mechanisms. Freundlich isotherm can  
be used to best describe the sorption behavior of ACCH, CHB800-  
q  Bln A  BlnCe  
e
(
9)  
B A  
where is related to the heat of sorption, is the equilibrium  
binding constant (L/min) which corresponds to the maximum  
6
0
and ACHB800-60 while Langmuir isotherm best describes the  
sorption behavior of raw CH. The degree of oil removal  
performance by these sorbents follows this order: ACHB800-60  
binding energy. C  
equilibrium (g/L), q  
equilibrium (g/g),  
degree Kelvin and R, the ideal gas constant (8.314×10 KJ mol-1  
e
is concentration of the adsorbate at  
e
is the amount of sorbate sorbed at  
>
B
= RT bT where T is the temperature in  
CHB800-60 > ACCH > raw CH. Coconut husk and its modified  
forms has very strong potential for utilization as effective, low-  
cost and eco-friendly alternative sorbents for oil spill remediation.  
-
3
-
1
K ) and, b  
from the linear plot of q  
ACCH, CHB800-60 and ACHB800-60 are 0.9885, 0.9816, 0.9925 and  
972, respectively and these values indicates that the Temkin  
isotherm also provided a good fit to the sorption equilibrium data.  
The values of and b are given in Table 4. As presented in  
t
and  
A
are constants.  
A
and  
B
can be determined  
e
vs. lnCe. The R  
2
obtained for raw CH,  
Acknowledgment  
9
The authors sincerely thanked the technical staff of  
Thermosteel Laboratories, Warri, Delta State of Nigeria for the  
provision of the facilities that were used for the physical and  
chemical and analyses carried out on the contaminated marine  
water and adsorbent.  
A
,
B
t
Table 4, it is seen that the constant A value for ACHB800-60 (44.49  
L/g) is higher than the values obtained for other sorbents. This  
shows that ACHB800-60 had greater binding to the oil and greater  
oil removal than other sorbents. This was followed by that of  
CHB800-60 (18.51 L/g), ACCH (16.08 L/g) and raw CH (2.379  
Ethical issue  
Authors are aware of, and have complied with the best  
practice in publication ethics specifically with regard to  
authorship, dual submission, and manipulation of figures,  
competing interests and compliance with policies on research  
ethics. Authors have adhered to publication requirements that this  
submitted work is original and has not been published elsewhere  
in any form of language.  
t
L/g), respectively. The lower values of b (< 8 KJ/mol) indicate  
that the interaction between crude oil and each of the sorbent (raw  
CH, ACCH, CHB800-60 and ACHB800-60) was weak. Hence, the  
sorption process of crude oil onto raw CH, ACCH, CHB800-60 and  
ACHB800-60 can respectively be expressed as physical sorption as  
t
indicated by the value of b .  
2
As shown in Table 4, it is observed that the R values obtained  
for the application of Freundlich isotherm to the sorption  
equilibrium data of ACCH, CHB800-60 and ACHB800-60 is  
relatively higher than the corresponding values obtained for  
Langmuir and Temkin isotherms. Thus, the results revealed that  
the Freundlich isotherm model is more suitable for describing the  
sorption of crude oil by ACCH, CHB800-60 and ACHB800-60,  
respectively, than the Langmuir isotherm model. That is, the  
sorption of crude oil onto ACCH, CHB800-60 and ACHB800-60  
occurred on heterogeneous binding sites with non-uniform  
distribution of energy. This observation is in agreement with the  
results reported for the use of fatty acid-modified banana trunk  
fibers [59], lauric acid-modified oil palm leaves [38], leaves and  
root of Pistia stratiotes [65], acetylated kapok fibers [66] and  
human hair [15] in the removal of oil from aqueous phase,  
Competing interests  
The authors wish to declare that there is no conflict of interest  
in this research work.  
Authors’ contribution  
All the authors of this study have completely contributed to  
the data collection, data analyses and manuscript writing.  
References  
[1] Doshia, B., Repoa, E., Heiskanenb, J. P. et al. (2017). Effectiveness of  
N,O-carboxymethyl chitosan on destabilization of Marine Diesel,  
Diesel and Marine-2T oil for oil spill treatment, Carbohydrate  
Polymers 167, 326336.  
2
[2] Fingas, M. (2011). Oil Spill Science and Technology: Prevention,  
Response, and Clean Up, Elsevier, Burlington, MA.  
respectively. Meanwhile, the R value for Langmuir isotherm  
application to the sorption data of raw CH is relatively higher than  
the corresponding values obtained for Freundlich and Temkin  
isotherms. Hence, the sorption of crude oil by raw CH can better  
be described by the Langmuir isotherm. A similar observation has  
been reported for the use of raw corncob and acetylated corncob  
in the removal of oil [9].  
[
3] Brakstad, G. O., Daling, P. S., Faksness, L. et al. (2014). Depletion  
and biodegradation of hydrocarbons in dispersions and emulsions of  
the Macondo oil generated in an oil-on-seawater mesocosmflume  
basin, Marine Pollution Bulletin 84, 125134.  
[4] Behnood, R., Anvaripour, B., Fard, N. J. H. et al. (2013). Application  
of natural sorbents in crude oil adsorption, Iran. J. Oil Gas Sci.  
Technol. 2(4), 111.  
[
5] Galblaub, O. A., Shaykhiev, I. G., Stepanova, S. V. et al. (2015). Oil  
spill cleanup of water surface by plant-based sorbents: Russian  
practices, Process Saf. Environ. Prot. 15, 115.  
4
Conclusions  
Oil sorption potentials of coconut husk (raw CH) and its  
modified forms (ACCH, CHB800-60 and ACHB800-60) were  
evaluated and thus can be concluded that the sorption potential of  
coconut husk can be improved or enhanced by thermal treatment  
through pyrolysis and chemical treatment using acetic anhydride  
as agent of acetylation and zinc chloride as agent of chemical  
activation. The oil sorption capacities and oil removal efficiencies  
of raw CH, ACCH, un-activated CHB800-60 and ACHB800-60 were  
functions of sorption time, initial oil concentration, temperature,  
[6] Alaa El-Din, G., Amer, A. A., Malsh, G. et al. (2017). Study on the  
use of banana peels for oil spill removal. Alexandria Eng. J.  
http://dx.doi.org/10.1016/j.aej.2017.05.020.  
[
7] Teas, C., Kalligeros, S., Zanikos, F. et al. (2001). Investigation of the  
effectiveness of absorbent materials in oil spill cleanup. Desalination  
1
40 (3), 259264.  
[
8] Wahi, R., Chuah, L. A., Choong, T. S. Y. et al. (2013). Oil removal  
from 321 aqueous state by natural fibrous sorbent: an overview. Sep.  
7
05  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 694-707  
Purif.  
Technol.  
113,  
5163.  
[28] Camilli, R., Reddy, C. M., Yoerger, D. R. et al. (2010). Tracking  
hydrocarbon plume transport and biodegradation at Deep water  
horizon. Science 330, 201204.  
doi:http://dx.doi.org/10.1016/j.seppur.2013.04.015  
[
[
9] Nwadiogbu, J. O., Ajiwe, V. I. E., and Okoye, P. A. C. (2016).  
Removal of crude oil from aqueous medium by sorption  
onhydrophobic corncobs: Equilibrium and kinetic studies. Journal of  
Taibah University for Science 10, 5663.  
10] Deschamps, G., Caruel, H., Borredon, M. E. et al. (2003). Oil  
removal from water by selective sorption on hydrophobic cotton  
fibres: study of sorption properties and comparison with other cotton  
fibre-based sorbents. Environ. Sci. Technol. 37 (5), 10131015.  
11] Bayat, A., Aghamiri, S. F., Moheb, A. et al. (2005). Oils pill cleanup  
from seawater by sorbent materials. J. Chem. Eng. Technol. 28,  
[29] Reddy, C. M., Arey, J. S., Seewald, J. S. et al. (2012). Composition  
and fate of gas and oil released to the water column during the Deep  
water horizon oil spill. Proc. Natl. Acad. Sci. 109, 2022920234.  
[30] Kester, D. R., Duedall, I. W., Connors, D. N. et al. (1967).  
Preparation of artificial seawater, Limnol. Oceangr. 12 (1), 176179  
[31] Subha, R. and Namasivayam, C. (2010). ZnCl2-Modified activated  
carbon from biomass coir pith for the removal of 2-chlorophenol by  
adsorption process. Bioremediation J. 14 (1), 1-9, DOI:  
10.1080/10889860903455360  
[
[
[
1
5251528.  
[32] Demirbas, A. (2004). Combustion characteristics of different  
biomass fuels. Prog. Energy Combust. Sci. 30, 219230.  
12] Lim, T. T. and Huang, X. (2007). Evaluation of kapok (Ceiba  
pentandra (L.) Gaertn.) as a natural hollow hydrophobicoleophilic  
fibrous sorbent for oil spill cleanup. Chemosphere 66, 955963.  
13] Husseien, M., Amer, A. A., Azza El-Maghraby et al. (2009a). A  
comprehensive characterization of corn stalk and study of carbonized  
corn stalk in dye and gas oil sorption. J. Anal. Appl. Pyrol. 86, 360–  
[33] Ilaboya, L. R., Oti, E. O., Ekoh, G. O. et al. (2013). Performance of  
Activated carbon from cassava peels for the treatment of effluent  
wastewater. Iranical J. Energy and Environ. 4(4), 361-375.  
[34] Angın, D. (2013). Effect of pyrolysis temperature and heating rate on  
biochar obtained from pyrolysis of safflower seed press cake.  
Bioresour. Technol. 128, 593597.  
3
63.  
[
[
[
[
[
[
[
14] Zou, J., Liu, X., Chai, W. et al. (2014). Sorption of oil from simulated  
seawater by fatty acid-modified pomelo peel. Desalination and Water  
Treatment, DOI:10.1080/19443994.2014.941302  
15] Ifelebuegu, A. O., Nguyen, T. V., Ukotije-Ikwut, P. et al. (2015).  
Liquid-phase sorption characteristics of human hair as a natural oil  
spill sorbent. J. Environ. Chem. Eng. 3, 938-943.  
16] Abdelwahab, O. (2014). Assessment of raw luffa as a natural hollow  
oleophilic fibrous sorbent for oil spill cleanup. Alexandria  
Engineering Journal 53, 213218.  
17] Yusof, N. A., Mukhair, H., Abd. Malek, E. et al. (2015). Esterified  
coconut coir by fatty acid chloride as biosorbent in oil spill removal.  
BioResources 10 (4), 8025-8038.  
18] Hussein, M., Amer, A. A., El-Maghraby, A. et al. (2009b).  
Availability of barley straw application on oil spill cleanup. Int. J.  
Environ. Sci. Tech., 6 (1), 123130.  
19] Nwadiogbu, J. O., Okoye, P. A. C., Ajiwe, V. I. E. et al. (2014).  
Hydrophobic treatment of corn cob by acetylation: kinetic and  
thermodynamic studies. J. Environ. Chem. Eng. 2, 16991705  
20] Sun, X. F., Sun, R. C., and Sun, J. X. (2004). Acetylation of  
sugarcane bagasse using NBS as a catalyst under mild reaction  
conditions for theproduction of oil sorption-active materials.  
Bioresource Technol. 95, 343350.  
[35] ASTM D2867-09 (2009). "Standard Test Methods for Moisture in  
Activated Carbon”, ASTM International, West Conshohocken, PA,  
10.1520/D2867-09  
[36] ASTM D2854-70 (2009). “Standard Test Method for Apparent  
Density of Activated Carbon”, ASTM International, West  
Conshohocken, PA. DOI: 10.1520/D2854-70.  
[37] Evbuomwan, B. O. and Ezeh, C. P. (2013). Comparative study of the  
physiochemical and structural properties of brown and green coconut  
fibre as low-cost adsorbents. JORIND 11(1), 59-66.  
[38] Sidik, S. M., Jalil, A. A., Triwahyono, S. et al. (2012). Modified oil  
palm leaves adsorbent with enhanced hydrophobicity for crude oil  
removal. Chem. Eng. J. 203, 918.  
[39] ASTM D1533-00 (2005). Annual Book of ASTM Standards, vol.  
l0.3, American Society of Testing and Materials, Philadelphia.  
[40] Al Zubaidy, I. A. H., Zaffar, U., Chowdhury, N. et al. (2015).  
Adsorption study of bio-degradable natural sorbents for remediation  
of water from crude oil in: 6th International Conference on  
Environmental Science and Technology Volume 84 of IPCBEE  
(2015) DOI: 10.7763/IPCBEE. 2015. V84. 24  
[41] Chen, Y., Yang, H., Wang, X. et al. (2012). Biomass-based pyrolytic  
polygeneration system on cotton stalk pyrolysis: influence of  
temperature. Bioresour. Technol. 107, 411418.  
[
[
21] Mahdi, Z., Yu, Q., and El Hanandeh, A. (2018). Investigation of the  
kinetics and mechanisms of nickel and copper ions adsorption from  
aqueous solutions by date seed derived biochar, Environ. Chem. Eng.  
[42] Lee, C. L., H`ng, P. S., Paridah, T. et al. (2017). Effect of reaction  
time and temperature on the properties of carbon black made from  
palm kernel and coconut shell. Asian J. Sci. Res. 10, 24-33.  
[43] Suman, S. and Gautam, S. (2017). Pyrolysis of coconut husk  
biomass: Analysis of its biochar properties, Energy Sources, Part A:  
Recovery, Utilization, and Environmental Effects. DOI:  
10.1080/15567036.2016.1263252  
[44] Olafadehan, O. A., Jinadu, O. W., Salami, L. et al. (2012). Treatment  
of brewery wastewater effluent using activated carbon prepared from  
coconut shell. Int. J. Appl. Sci. Technol. l2 (1), 165-178.  
[45] Yao, Y., Gao, B., Inyang, M. et al. (2011). Biochar derived from  
anaerobically digested sugar beet tailings: characterization and  
phosphate removal potential. Bioresour. Technol. 102, 62736278.  
[46] Inyang, M., Gao, B., Pullammanappallil, P. et al. (2010). Biochar  
from anaerobically digested sugarcane bagasse. Bioresour. Technol.  
101, 88688872.  
[47] Keller, G. E., Anderson, R. A., and Yon, C. M. (1987). Adsorption  
In: Handbook of Separation Process Technology”, edited by  
Rousseau R. W., Wiley-Interscience, New York.  
6
, 1171-1181.  
22] El Hanandeh, A., Abu-Zuryk, R. A., Hamdneh, I. et al. (2016).  
Characterization of biochar prepared from slow pyrolysis of  
Jordanian olive oil processing solid waste and adsorption efficiency  
2+  
of Hg ions in aqueous solutions. Water Sci. Technol. 74, 1899-1910.  
23] Li, B., Yang, L., Wang, C. Q. et al. (2017). Adsorption of Cd (II)  
from aqueous solutions by rape straw biochar derived from different  
modification processes. Chemosphere 175, 332-340.  
[
[
[
24] Nguyen, H. N. and Pignatello, J. J. (2013). Laboratory tests of  
biochars as absorbents for use in recovery or containment of marine  
crude oil spills. Environ. Eng. Sci. 30 (7), 374-380.  
25] Nguyen, T. H., Cat, L. V., Anh, P. V. et al. (2016). Research on oil  
adsorption capacity of carbonized material derived from agricultural  
by-product (corn cob, corn stalk, rice husk) using in oily wastewater  
treatment. VNU J. Sci.: Nat. Sci. Technol. 32 (3), 105-111  
[
[
26] Silvani, L., Vrchotova, B., Kastanek, P. et al. (2017). Characterizing  
biochar as alternative sorbent for oil spill remediation. Sci. Rep. 7,  
[48] Gray, M., Johnson, M. G., Dragila, M. I. et al. (2014). Water uptake  
in biochars: the roles of porosity and hydrophobicity. Biomass and  
Bioenergy 61, 196 - 205.  
[49] Aisien, F. A. and Aisien, E. T. (2012). Application of activated  
recycled rubber from used tyres in oil spill cleanup. Turkish J. Eng.  
Env. Sci. 36, 171 177.  
4
3912.  
27] Kandanelli, R., Meesala, L., Kumar, J. et al. (2018). Cost effective  
and practically viable oil spillage mitigation: Comprehensive study  
with biochar. Marine Pollution Bulletin 128, 3240.  
7
06  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 694-707  
[
50] Hussein, M., Amer, A. A. and Sawsan, Is. Ib. (2009c). Oil spill  
sorption using carbonized pith bagasse: application of carbonized pith  
bagasses as loose fibres. Global Nest J. 11 (4), 440-448.  
51] Rengasamy, R. S., Das, D., and Karan, C. P. (2011). Study of oil  
sorption behavior of filled and structured fiber assemblies made from  
polypropylene, kapok and milkweed fibers. J. Hazard. Mater.186 (1),  
Batch kinetics and isothermal modeling studies, Polycyclic Aromatic  
Compounds 39 (1), 23-43. DOI:10.1080/10406638.2016.1255650.  
[59] Sathasivam, K., and Haris, M. R. H. M. (2010) Adsorption kinetics  
and capacity of fatty acid-modified banana trunk fibers for oil in  
water. Water, Air, Soil Pollut. 213, 413423.  
[60] Koyuncu, H. (2008). Adsorption kinetics of 3-hydroxybenzaldehyde  
on native and activated bentonite. Appl. Clay Sci. 38, 279287.  
[61] Agarry, S. E. and Ogunleye, O. O. (2014). Chemically treated kola  
nut pod as low-cost natural adsorbent for the removal of 2,4-  
dinitrophenol from synthetic wastewater: batch equilibrium, kinetic  
and thermodynamic modeling studies. Turkish J. Eng. Environ. Sci.  
38, 11- 40.  
[62] Uzoije, A. P., Onunkwo-A, A., and Egwuonwu, N. (2011). Crude oil  
sorption onto groundnut shell activated carbon: kinetic and isotherm  
studies. Res. J. Environ. Earth Sci. 3(5), 555-563.  
[63] Asadpour, R., Bin Sapari, N., Isa, M. H. (2014). Enhancing the  
hydrophobicity of mangrove bark by esterification for oil adsorption.  
Water Sci. & Technol. 70 (7), 1220-1228.  
[64] Elkady, M. F., Mohamed Hussien, and Reham Abou-rady (2015).  
Equilibrium and kinetics behavior of oil spill process onto  
synthesized Nano-activated carbon. Amer. J. Appl. Chem. 3 (3-1), 22-  
30.  
[65] Sánchez-Galván, G., Mercado, F. J., and Olguín, E. J. (2013). Leaves  
and roots of Pistia stratiotes as sorbent materials for the removal of  
crude oil from saline solutions. Water Air Soil Pollut. 224 (2), 112.  
doi:http://dx.doi.org/10.1007/s11270-012- 409 1 421-0.  
[
5
2
26532. doi:http://dx.doi.org/10.1016/j. jhazmat.20 10.11.031.  
1146290.  
[
[
[
[
[
[
52] Lin, J., Shang, Y., Ding, B. et al. (2012). Nanoporous polystyrene  
fibers for oil spill cleanup. Mar. Pollut. Bull. 64 (2), 347352.  
doi:http:// dx.doi.org/1 0.1016/j.marpolbul.2011.11.002. 22136762.  
53] Novak, J. M., Busscher, W. J., Watts, D. W. et al. (2012). Biochars  
impact on soil-moisture storage in an ultisol and two aridisols. Soil  
Sci. 177(5), 310-320.  
54] Al Zubaidy, I. A. (2012). Effect of activation of date palm kernel  
powder on the remediation process of oil polluted water. Int. J.  
Environ. Poll. Remed. 1 (1), 54-59.  
55] Okiel, K., El-Sayed, M., and El-Kady, M. Y. (2011). Treatment of  
oilwater emulsions by adsorption onto activated carbon, bentonite  
and deposited carbon. Egyptian J. Petrol. 20, 915.  
56] Toyoda, M., Moriya, K., Aizawa, J. et al. (2000). Sorption and  
recovery of heavy oils by using exfoliated graphite Part I" Maximum  
sorption capacity. Desalination 128, 205-211.  
57] Soloviev, A. V., Haus, B. K., McGauley, M. G. et al. (2016). Surface  
dynamics of crude and weathered oil in the presence of dispersants:  
Laboratory experiment and numerical simulation. J. Geophys. Res.  
Oceans 121, 35023516.  
58] Agarry, S. E. (2019). Anthracene bioadsorption from simulated  
wastewater by chemically-treated unripe plantain peel bioadsorbent:  
[66] Wang, J., Zheng, Y., and Wang, A. (2013). Investigation of  
acetylated kapok fibers on the sorption of oil in water. J. Environ. Sci.  
25 (2), 246253. doi: 411 http://dx.doi.org/1 0.1016/S1001-  
[
0
742(12)60031-X. 23596942  
7
07