Journal of Environmental Treatment Techniques  
0202, Volume 8, Issue 2, Pages: 625-633  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Artificial Neural Network (ANN) Modeling of  
Cavitation Mechanism by Ultrasonic Irradiation  
for Cyanobacteria Growth Inhibition  
4
Esmaeel Salami Shahid , Marjan Salari , Majid Ehteshami , Solmaz Nikbakht Sheibani  
1
2*  
3
1
Ph.D. Candidate of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran  
2
*
Department of Civil Engineering, Sirjan University of Technology, Kerman, Iran  
Associate Professor, Civil and Environmental Eng. Dept. KN Toosi Univ. of Technology, Tehran, Iran  
M.Sc. Candidate, Environment Eng. Dept. Shiraz University, Shiraz, Iran  
3
4
Received: 03/12/2019  
Accepted: 12/02/2020  
Published: 20/05/2020  
Abstract  
Cyanobacteria produce toxins that affect animals and human’s health. Therefore, modeling concentration of this type of algae  
is necessary. This study employs artificial neural network (ANN) modeling method to simulate the cavitation mechanism by  
ultrasonic irradiation on cyanobacteria concentration variation in treated water. The proposed model used parameters such as power  
intensity, frequency and the time of ultrasound irradiation as input variables. The results showed that proportional value of  
0
cyanobacteria concentration to the initial concentration (C/C ). The data obtained from a laboratory experiment and number of data  
in the existed study was not enough for ANN modeling, the data expanded to 7280 data sets from the original 28 data sets obtained  
by the experimental study. A feed-forward learning algorithm with 20 neurons in the first (hidden) layer and one neuron in the  
-5  
second layer was developed with the MSE value equals to 2.72×10 . Model results were used for predicting the cell density value.  
Furthermore, a novel formulation was presented to correlate the C/C values with the cell density. To verify the accuracy of the  
ANN and developed equation, the value of cell density was predicted by studies performed by other researchers. In this case the  
0
-
4
MSE was 1.55×10 .  
Keywords: Artificial Neural Networks, Cyanobacteria, Modeling, Ultrasonic irradiation, Water Quality  
Introduction1  
et al., 2004). Therefore, ultrasonic irradiation, due to its  
advantages, including safety, cleanliness and energy  
conservation, can be a suitable way to reduce pollution in  
aquatic resources containing harmful algae. Only a few  
researches have been developed since cyanobacterial bloom  
control by ultrasound is a fairly new field. Moreover, the  
ultrasonic process is not affected by the toxicity and low  
biodegradability of compounds (Fu et al., 2007). Ultrasound  
waves affect larger molecules faster than smaller ones  
1
Cyanobacteria affect animals and human’s health due to  
poison production. The presence of this type of algae in  
nutrient-rich drinking water reserves has adverse effects in  
terms of taste, smell and health (Leclercq et al., 2014).  
Hence, it is necessary worldwide to control the blooms of  
algae and to remove the garbage before the distribution of  
water in an appropriate manner in accordance with the WHO  
guidelines and customer expectations (Leclercq et al., 2014).  
Today, ultrasonic devices have various applications in  
different fields of science, industry, medical practice and so  
forth (Sharma et al., 2011). One of the innovative techniques  
for improvement of water/wastewater treatment process is  
the application of ultrasonic waves; that does not require the  
addition of oxidants or catalyst and does not generate  
additional waste streams as compared to adsorption or  
ozonation processes (Zhang et al., 2009; Wang and Yuan  
(Yamamoto et al., 2015). The ultrasonic method uses  
electrical energy to induce physical, chemical and biological  
treating effects as shown in Fig.1 (Kasaai, 2013). Sound  
waves with a frequency between 20 KHz to 200 MHz are  
called ultrasonic waves. When an ultrasonic wave enters a  
liquid, it can cause cavitation (Wu et al., 2012). Fig.2  
illustrates the ultrasonic range due to its applications. In  
addition, bloom-forming cyanobacteria participate in  
diverse consortia, and symbioses with a broad array of  
microorganisms, higher plants and animals, which help  
2
016). The ultrasonic method is known to have a detrimental  
effect on the structure and function of organisms (Hongwei  
Corresponding author: Marjan Salari, Department of Civil  
Engineering, Sirjan University of Technology, Kerman,  
6
25  
Journal of Environmental Treatment Techniques  
0202, Volume 8, Issue 2, Pages: 625-633  
alleviate environmental stresses and limitations (Pilli et al.,  
reactors was 1200 and 800 ml cyanobacterial suspension that  
was filled in experiments (Lee et al., 2002; Ma et al., 2005).  
Cyanobacteria, or blue-green algae, occur worldwide often  
in calm, nutrient-rich waters. Some species of cyanobacteria  
produce toxins that affect animals and humans. People may  
be exposed to cyanobacteria toxins by drinking or bathing in  
contaminated water. The most frequent and serious health  
effects are caused by drinking water containing toxins or by  
ingestion during recreational water contact like swimming.  
Cyanobacteria can also cause problems for drinking water  
treatment systems. Therefore, studying and modeling the  
concentration of this type of algae is necessary to prevent its  
adverse effects on humans and animals.  
2
011; Rajasekhar et al., 2012). In this study, the apparent gap  
between experimental data and modeling, by trying to  
determine if artificial intelligence models can predict  
cavitation mechanism for inhibiting algal growth. According  
to the best author’s knowledge, artificial neural network  
modeling and network performance evaluation are not  
considered in order to determine the cavitation mechanism  
by ultrasonic irradiation to control cyanobacterial citrate  
growth.  
2
.1 Cavitation process  
When a liquid is sonicated, dissolved gas molecules are  
entrapped by micro-bubbles that grow and expand upon  
rarefaction of the acoustic cycle; these micro-bubbles then  
release extreme temperatures upon adiabatic collapse (Hao  
et al., 2004; Lin et al., 2008). The process is based on the  
phenomenon of acoustic cavitation, which involves the  
formation, growth, and sudden collapse of micro-bubbles  
that generate short-lived, localized “hot spots” in an  
irradiated liquid (Wang et al., 2007).  
The high-temperatures (5000 K) and pressures (1000  
atm) induced by cavitation's in collapsing gas bubbles in  
aqueous solution lead to the thermal dissociation of water  
molecules into reactive free radicals H0 and OH0 (Shimizu  
et al., 2007; Goel et al., 2004 ). There are three possible  
reaction sites in ultrasonically irradiated homogeneous  
liquids: (i) the gaseous interiors of collapsing cavities; (ii)  
the interfacial liquid region between cavitation's bubbles and  
the bulk solution, where high-temperatures (ca. 1000-2000  
K) and high temperature gradients exist; and (iii) the bulk  
solution at ambient temperature, where small amounts of  
OH0 diffuse from the interface. The sonochemical effect  
takes place at the gas-liquid interface due to the oxidation of  
organic molecules by OH0 and, to a lesser extent, in the bulk  
solution or the pyrolytic decomposition inside the bubbles  
Figure 1: Physical, chemical and biological effects of electrical  
energy (Kasaai, 2013)  
(Li et al., 2008; Eren, 2012). Hydrophilic and non-volatile  
compounds such as dyes mainly degrade through OH0  
mediated reactions in the bulk solution and at the bubble-  
liquid interface, while hydrophobic and volatile species  
degrade thermally inside the bubbles (Merouani et al., 2015;  
Wu et al., 2012).  
Figure 2: Diagram of the ultrasonic range (Wu et al., 2012)  
Cavitation  
temperature/pressure fields and free radicals (such as OH  
and H , etc) in liquids (Fig. 3) (Pang et al., 2011).  
phenomena  
produce  
high  
0
2
Material and Methods  
Three ultrasonic devices, two beaker systems (operating  
2 2  
O
at 200 kHz and 1.7 MHz, respectively) and one horn system  
operating at 20 kHz), are employed in this study. The  
Cavitation consists of the repetition of three distinct steps:  
formation (nucleation), rapid growth (expansion) during the  
cycles until it reaches a critical size, and violent collapse in  
the liquid in less than a microsecond (Chowdhury and  
Viraraghavan, 2009) as shown in Fig. 4. Parameters that  
affect cavitation are liquid temperature, external pressure,  
liquid viscosity, amount and type of solved gases, the surface  
tension of a liquid (Fu et al., 2007). All these parameters are  
related to the liquid but the parameters of sound wave that  
are effective discuses below:  
(
ultrasonic generator designed in our laboratory consists of a  
voltage-controlled oscillator (VCO) (Zhang et al., 2009),  
power amplifier, matched impedance and feedback unit. The  
ultrasound at 20 kHz was emitted from a titanium horn  
dipped into the cyanobacterial suspension, and the ultrasonic  
at higher frequencies (200 kHz and 1.7 MHz) was emitted  
from the piezo-electric discs of lead zirconate titanate fixed  
on the underside of the beaker reactors with epoxy. Each  
frequency required a specific emitter. Their ultrasonic  
powers dissipated in the medium were measured  
calorimetrically (Paerl, 2018). The volume of ultrasonic  
2.2 Cavitation near surfaces  
The most important effects of ultrasonic on liquid-solid  
6
26  
Journal of Environmental Treatment Techniques  
0202, Volume 8, Issue 2, Pages: 625-633  
systems are mechanical and attributed to asymmetric  
cavitation. In addition, shockwaves that have the potential to  
create microscopic turbulence are produced within  
interfacial films surrounding nearby solid particles (Pang et  
al., 2011).  
generate larger values of acoustic pressure. An increase in  
the value of Pa lead to a more and violent collapse (Hongwei  
et al., 2004).  
Hence frequency has a diverse relation with the bubble  
sizes, in (relatively) low-frequency irradiations (16-  
1
00KHz) will produce large cavitation bubbles which results  
in high temperature and pressure in the cavitation zone  
Tsaih et al., 2004). As the frequency increases the cavitation  
(
zone becomes less violent and, in the MHz, range no  
cavitation's is observed and the main mechanism is acoustic  
streaming (Hongwei et al., 2004). I, is the power intensity of  
the ultrasonic wave in terms of the energy transmitted per  
unit time per unit normal area of fluid:  
2
1  
(2)  
I  Pa,max (2  c)  
where ρ is density of a medium/liquid, c is velocity of sound  
in that medium and P is the maximum pressure amplitude  
a
of the wave (Hongwei et al., 2004; Shchukin et al., 2011).  
Increasing intensity will increase the cavitation and also  
violent collapse of bubbles (Tsaih et al., 2004). This increase  
will continue until reaching an optimum point and after that  
point increase in power, the intensity will reduce the rate of  
cavitation. For example, Mutiarani et al., showed that  
removing turbidity increases with increasing power to 60  
watts and decreases for powers beyond 60w (Zhang et al.,  
Figure 3: Reaction zone in cavitation process (Aadapted from  
Duong Pham et al., 2009)  
2
016). Whereby the effect of power on removal efficiency  
(of microcystins) was studied using 30, 60 and 90 watt in the  
constant frequency of 20 KHz after 1, 5, 10, 20 minutes of  
exposure to the ultrasonic samples. The results are shown in  
Fig.5.  
Figure 4: Growth and implosion of cavitation bubbles in aqueous  
solution under ultrasonic irradiation (Merouani et al., 2015)  
Asymmetric collapse leads to the micro-jet formation of  
solvent that collides with the solid surface at tremendous  
force, resulting in newly exposed, highly reactive surfaces as  
well as corrosion and erosion. These phenomena increase the  
rate of mass transfer near the catalyst surface (Chowdhury  
and Viraraghavan, 2009).  
2
.3 Acoustic pressure  
The acoustic pressure is a sinusoidal wave dependent on  
time (t), frequency (f) and the maximum pressure amplitude  
of the wave, Pa, max and is represented by the following  
equation (Kuna et al., 2017; Hongwei et al., 2004):  
Figure 5: The decrease of Turbidity at 28 kHz and 1 Hour of  
Irradiation time with variation of Power (Hatanaka et al., 2002)  
This phenomenon may be explained by bubble shielding  
effect. When the power intensity is high enough, a dense  
cloud of navigational bubbles accumulates around the  
ultrasonic transducer. The cavitation bubbles attenuate  
sound waves due to both scattering and absorption and thus  
impede the propagation of sound waves, especially at the  
resonant size (Mutiarani and Trisnobudi 2012).  
This study intends to develop the ANN model(s) to  
simulate the concentration of microsystems after using  
ultrasonic waves to remove them or changing those  
(
1)  
Pa  P  
a,max  
sin(2.f .t)  
where, Pa is the acoustic pressure which directly  
proportional to more and violent collapse of bubbles, Pa,  
max is the maximum pressure amplitude of the wave which  
directly proportional to the input power of the transducer, t  
and fare time and frequency of ultrasonic waves,  
respectively (Hongwei et al., 2004; Shchukin et al., 2011). A  
sufficiently large increase in the intensity of ultrasound will  
6
27  
Journal of Environmental Treatment Techniques  
0202, Volume 8, Issue 2, Pages: 625-633  
pollutants to removable compounds. Input variables such as  
time, frequency and power of the applied ultrasonic are used  
to determine the proportional (C/C0) as the target value of  
the model(s). The data from Ma, et al., are used in this study  
(
Rajasekhar et al., 2012). Then the results are verified by  
distinct study made by Hao et al., 2004 and Zhang et al.,  
016. Ultrasonic wave may Influence Cyanobacteria in  
2
several ways: (a) sinking Cyan bacteria by rapture vehicles  
that filled with gases which causes the flotation of  
Cyanobacteria; (b) disruption of photosynthesis; (c) damage  
of cell membranes due to lipid peroxidation; and (d)  
differential susceptibility to ultrasonic waves at different  
stages in the cell division cycle (Gerde et al., 2012; Zhang et  
al., 2006). Most experiments in this field are performed in  
frequencies between 20-28 KHz and in some researchers  
used frequencies up to 1.7 MHz (Lee et al., 2002; Ma et al.,  
2
005). Therefore, this study evaluates the effect of different  
ultrasonic frequencies such as 20,150,410 and 1700 KHz (in  
constant power of 30w) after 1,5,10 and 20 minutes of  
irradiation on Microcystis as the typical representative of  
bloom-forming algae.  
Figure 7: (a) Effect of ultrasonic irradiation (20 kHz, 30 W) for  
different time on Microcystis suspension, including changes of  
Microcystis biomass (Lee et al., 2002) and (b) Cyanobacterial  
biomass as a function of time during ultrasonic irradiation at 20 kHz,  
4
0W (Ma et al., 2005)  
2
.4 Artificial Neural Network Method  
The artificial neural network (ANN), as its name  
implies, is a technique for simulation of the human brain  
functions during the problemsolving process, which has  
been developed and originated about 60 years ago. The  
neural network approach can be applied to the powerful  
computation of complex nonlinear relationships, just as  
humans apply knowledge gained from past experience to  
new problems or situations (Tang et al., 2004). Thus, for  
modeling parameters that don’t have a simple (linear)  
relationship with input data, ANN method can be employed  
effectively. The MLF (multilayer feed-forward) networks  
trained with back-propagation algorithm are the most  
popular type of networks (Salami et al., 2016 a,b; Salari et  
al., 2018). For example, models that marked by (*) in Table2  
have used feed-forward networks for their development  
Figure 6: (a) The removal of microcystins dissolved in water after  
ultrasonic irradiation at 20 kHz and various powers of 30, 60, and  
9
0 W with time (Hatanaka et al., 2002) and (b) The removal of  
microcystins dissolved in water after ultrasonic irradiation at 30W  
and various frequencies of 20, 150, 410 kHz, and 1.7 MHz with time  
(Tang et al., 2004).  
(Hao et al., 2004)  
2
.5 Structure of the Networks  
The basic architecture consists of three types of neuron  
Also, some research worked on the effect of ultrasonic  
layers: input, hidden, and output layers. Fig. 10 shows a two-  
layer network. In feed-forward ANN networks, the signal  
flow from input to output units, strictly in a feed-forward  
direction (Samani et al., 2007; Koncsos, 2010). Hidden  
layers consist of a different number of neurons. Fig. 8 shows  
a parameter such as “a” is the output of neuron and “p is  
the input. Parameters w and p are weight and bias  
respectively. All parameters denoted as matrices, and can be  
expressed as (Salami et al., 2015).  
irradiation on cyanobacteria. Their work is very similar to  
Ma et al., 2005). In both works (see Fig.6) they used UV–  
(
vis spectrophotometer (Ultra-Spec 2000, Amersham  
Biosciences AB, Uppsala, Sweden). Furthermore, Ma et al.,  
calibrated the device on 684 nm and Hao et al., found an  
optical density of cell suspension of 560 nm as an optimum.  
The initial concentration in both experiments was 2µg/L.  
Therefore, it is possible to compare the results of the current  
ANN model with (Ma et al., 2005; Hao et al., 2004).  
6
28  
Journal of Environmental Treatment Techniques  
0202, Volume 8, Issue 2, Pages: 625-633  
(
l1)  
(l)  
i, j  
e(w,b)  
  
w
i, j  
w
(l)  
(5)  
(6)  
w
i, j  
(
l1)  
(l)  
i, j  
e(w,b)  
(l)  
bi, j  
  
b
i, j  
b
m
e(w,b)  
1
(i)  
(i)  
(l)  
i, j  
(l)e(w,b;  
x y  
,
)   
(
l)  
w
m i1  
(7)  
w
i, j  
w
i. j  
Figure 8: A two layer feed-forward network  
m
e(w,b)  
1
(i)  
(i)  
(l)  
i, j  
(l)e(w,b;  
x y  
,
)   
(
l)  
b
bi, j  
m  
i
1
bi. j  
(8)  
R
T
T
a  f (net)  f (n)  f (w .p  b)  f ( wR .p  b)  
(3)  
4)  
R
i1  
1
1
=
푚푠푒 = ∑ 푒2  
2
(9)  
∑(푡 − 푎 )  
(
p   
p , p ,..., p  
, w   
w , w ,..., w  
1
2
R
1
2
R
푖ꢀꢁ  
푖ꢀꢁ  
where α is the learning rate. In this study, the mean square  
error (MSE) is the criterion for comparing the outputs.  
Where ti is the target (real) value and ai is the network  
output. Two feed-forward networks with back propagation  
learning rule (Eqs.9-12) are used to develop the models in  
MATLAB environment. The design parameters of the  
networks have been. Other training parameters of the models  
are shown in Table 1.  
The most common "f" functions are presented in Fig. 9.  
These transfer functions transfer output of each layer to a  
simpler more useful expression for calibrating the wi and bi  
(
s) in next layer/step.  
Table 1: Training parameters  
Feed-Forward back  
α
0
0.001  
0.1  
Network type  
propagation  
Trainlm (Levenberg-  
Marquardt)  
α decrees  
Training function  
Adaptive learning  
function  
α increase  
10  
Train GDM  
maximum  
α
1
E+10  
Performance function  
Transfer function  
MSE  
min grad  
1.00E-10  
Tensing(x)  
The validation of all equations/models after  
development, have been tested with precision parameters  
such as R or R* and MAE. R* is used in cases that we had  
negative values of R. In other words, when >  
̇
푦̅ , R will be  
negative.  
i
y  y j  
j
1
Figure 9: Transfer functions  
The training process determines the ANN weights and is  
(10)  
j1  
y j  
R   
i
y j  
similar to the calibration of a mathematical model. In order  
to perform training correctly, we must iteratively continue  
and repeat the process of calibrating and optimizing the wi,  
bi(s), with the final target of minimizing the mean square  
error (MSE) value as possible as it is, the process will  
continue until the required precisions reached. In the  
following procedure, weights and biases will change every  
time the process is repeated. The calibration process for wi,  
bi(s) is as (Abraham et al., 2005):  
for y  y  R   
j
j 1  
y  
j
y j  
for y  y  R   
j
j
2
y  
j
R  R  
*
1
2
R   
i
|푦  − 푦|  
ꢃꢀꢁ  
푀퐴퐼 =  
(11)  
6
29  
Journal of Environmental Treatment Techniques  
0202, Volume 8, Issue 2, Pages: 625-633  
풎,풆  
풎  
풂 =  
(15)  
3
Results and Discussion  
3
.1 Data development  
where xm,0 is the C/C  
cell density in t = 0 , obtained from Fig. 6a, xm,e is C/C  
end time (T) , calculated with Eq. 11, x  
0
in t = 0 , calculated with Eq. 11, x  
0
is  
Fig.6 shows measured data that can be used in this study.  
0
in  
They are just 28 sets (12 sets obtained from Fig.6a and 16  
sets obtained from Fig.6b). Since the size of data sets did not  
look enough for developing a reliable ANN model, we used  
a simple interpolation method to expand these 28 sets of data  
to 7280 sets (Hao et al., 2004). To implement the procedure  
all three (input) parameters of time (t), power (I) and  
frequency (f) were prepared with smaller intervals compared  
to Fig 6 (a,b). Actually, the number of data was increased to  
a reasonably sufficient amount by simple interpolation. For  
example, in step 1, the irradiation duration was modified  
from 1 to 20 min, one minute by minute. In step 2, power  
changed from 30W to 90W by 10W each time, and in step 3  
the frequency range expanded from 20 to 400 KHz by 10  
KHz and from 500 KHz to 1.7 MHz by 100 KHz each time.  
Furthermore, all possible compositions of input parameters  
were considered in the potential range.  
e
is cell density in end  
time (T), obtained from Fig. 6a. Fig. 12 shows the results of  
the model and developed equation (Eq. 13) and their  
comparison with the real data (Fig.6a). The input parameters  
in Fig.6.b such as (I = 40W, f = 30 KHz, t = 0, 1, 2, …, 10  
min) were used in the generated model and the results of  
model (r) is converted to cell density using Eq. 13. Finally,  
the results of the proposed procedure is compared with the  
results of Hao et al., (2004) which is shown at Fig. 12b.  
In order to ensure the model accuracy, the original data  
(
28 data sets from Ma et al., (2005) removed from learning  
data and just were used to validate the models after the  
development. Since Ln(C/C ) exhibited a rather linear  
0
relationship with time, it was chosen as the target value to  
obtain a more accurate and reliable model. The target values  
of 7280 data sets prepared and adjusted for modelling are  
presented in Fig. 10.  
Figure 10: 7280 obtained target values of 7280 data sets prepared  
for modeling  
In order to obtain the optimum removal rate at each  
condition, we consider all possible combinations of input  
values (time (t), power (I), frequency (f)) within the desired  
ranges which can describe the oscillating pattern of the target  
data C/C . The primary proposed models developed and  
0
verified assuming linear or polynomial correlations between  
input values time (t), power (I) and frequency (f) to the target  
0
parameter Ln(C/C ). However, the analysis showed a weak  
correlation for linear and polynomial models. Therefore,  
MATLAB software was used to generate ANN models by  
applying the input parameters such as I,t and f as feed data  
0
to predict Ln(C/C ) as the target element.  
Figure 11: Comparison between model results and real data  
In this regard, 7280 sets of data were used for modelling  
in which 70% for training, 15% for validation and the other  
3
.2 Cell density simulation  
Input parameters such as Fig. 6a data, (I = 30 W, f = 20  
1
5% for testing. The network that is used has one hidden  
layer with 20 neurons. After developing the model, all 7280  
sets of) input data were used to estimate Ln(C/C ) for each  
KHz, t = 0, 1, 2..., 9 min) were used as input parameters in  
the ANN model and C/C for all 10 conditions were  
simulated. Then a novel formula such as Eq. (13-15) is  
developed to show the relationship between the C/C and  
0
cell density.  
(
0
0
data set, the overall average MSE was 2.72×10-5 which  
implies how accurate the model is. Figure 11 shows all 28  
sets of original data that were used for modelling compared  
with model results. The average MSE for the following 28  
data sets was 3.15×10-4. Accordingly, the model outcome  
xm  
cell density  
0
is Ln of C/C .  
t.(a  a )  
(13)  
e
0
a0   
T
= 푒푟  
ꢆ  
=
(12)  
퐶0  
xm,0  
a0   
(14)  
x0  
6
30  
Journal of Environmental Treatment Techniques  
0202, Volume 8, Issue 2, Pages: 625-633  
4
Conclusion  
In recent times wastewater treatment by ultrasonic has  
become a popular treatment technique due to its ability to  
degrade pollutants at the end of treating products, i.e. CO  
2
,
water and organic acids. Ultrasonic dye degradation is a  
complete, irreversible degradation process that provides an  
appropriate, safe wastewater treatment method with non-  
toxic and stable products. The main achievement of this  
study is an ANN model that can simulate the value of  
0
Ln(C/C ), for cyanobacteria at minutes of ultrasound  
irradiation such as t; with frequency of ‘f’ and power  
intensity of ‘I’. By using parameters such as I, f and t (as  
input parameters), model will simulate the value of  
0
Ln(C/C ). Accuracy of the model demonstrated in all  
domains as Time: between 0 to 20 minutes, Power intensity:  
between 30 to 90 watts, Frequency between 20 KHz to 1.7  
MHz, Initial concentration of cyanobacteria: 2 µg/L. The  
model has the ability of adaptation with new data and can be  
updated/calibrated with new/different data. Result of the  
ANN model and Salami’s equation (that both made by data  
from Ma et al., 2005, verified completely with an  
outstanding, but similar work such as Hao et al., 2004. This  
study also shows a method for expanding data with a simple  
interpolation technique that can increase the number of data  
(sets) by:  
Figure 12: (a) the results of the model and Eq. 12 compared with  
real data and (b) Model verification using the comparative results of  
Breaking the differences between (existed) input  
parameters to smaller fractions and find values of target  
parameters (in those points) by interpolation  
Combining different experiment that is done in similar  
conditions  
Considering all possible combinations of input  
parameters; and it is a procedure that can be used to  
describe experimental data sets.  
(Hao et al., 2004)  
Whereby, the input parameters in Fig.6.b (I = 40W, f =  
3
0 KHz, t = 0, 1, 2, …, 10 min) were entered to model and  
the results (r) converted to cell density using Eq. 12 which  
can be compared to the results of (Hao et al., 2004). It worth  
to note that the model predicts the value of C/C closely near  
0
to 1 in time zero while the data less than one minute were  
not used at the model training stage. The model results can  
be used for:  
Acknowledgments  
The authors are grateful and thankful of Civil and  
Environmental Laboratory at Shiraz University for  
providing facilities and apparatus for the current study and  
analyses.  
-
-
Optimizing problems  
Calibrating measurement equipment  
-
Finding errors in measurements, caused by  
operator/equipment fault  
-
Reproducing missing/bad data  
The other main outcome of the current study is the  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
relation between C/C0-removal and cell density which leads  
to develop a promising state-of-the-art equation called  
Salami’s equation:  
(avoidance of guest authorship), dual submission,  
manipulation of figures, competing interests and compliance  
with policies on research ethics. Authors adhere to  
publication requirements that submitted work is original and  
has not been published elsewhere in any language.  
C
C0  
C /C0  
t.(a  a )  
0
(16)  
SalamiEq .  
e
a0   
T
where α is a factor that depends on the passed time, initial  
and endpoint values of the (C/C ) and it’s proportional to the  
value of cell density. The value of the (C/C ) can be obtained  
from the experiment and/or the presented ANN model. The  
model simulates C/C very close to 1 at time t equals to zero.  
It is obvious that C in time zero should be equals to C and  
thus the C/C must be 1. However, it should be considered  
that the model is just using times equals or above one minute  
and the fact that it can predict the behavior of target in time  
zero, indicate that the model has some kind of intelligence  
for predicting data that has never encountered before.  
Competing interests  
0
The authors declare that there is no conflict of interest  
that would prejudice the impartiality of this scientific work.  
0
0
Authors’ contribution  
All authors of this study have a complete contribution  
for data collection, data analyses and manuscript writing.  
0
0
6
31  
Journal of Environmental Treatment Techniques  
0202, Volume 8, Issue 2, Pages: 625-633  
2
2
0
1
Merouani S, Ferkous H, Hamdaoui O, Rezgui Y, Guemini M.  
A method for predicting the number of active bubbles in  
sonochemical reactors. Ultrasonics sonochemistry. 2015 Jan  
References  
1
Abbasi M, Asl NR. Sonochemical degradation of Basic Blue 41  
dye assisted by nanoTiO2 and H2O2. Journal of hazardous  
materials. 2008 May 30;153(3):942-7.  
1
;22:51-8.  
Muthukumaran S, Kentish SE, Stevens GW, Ashokkumar M.  
Application of ultrasound in membrane separation processes: a  
review. Reviews in chemical engineering. 2006;22(3):155-94.  
Mutiarani IM., and Trisnobudi A. Ultrasonic Irradiation in  
Decreasing Water Turbidity, 2009..  
Ma B, Chen Y, Hao H, Wu M, Wang B, Lv H, Zhang G.  
Influence of ultrasonic field on microcystins produced by  
bloom-forming algae. Colloids and Surfaces B: Biointerfaces.  
2
3
Abraham A. Artificial neural networks. Handbook of  
measuring system design. 2005 Jul 15.  
Barzamini R, Menhaj MB, Kamalvand S, Tajbakhsh A. Short  
term load forecasting of Iran national power system using  
artificial neural network generation two. In2005 IEEE Russia  
Power Tech 2005 Jun 27 (pp. 1-5). IEEE.  
2
2
2
3
4
Chowdhury P, Viraraghavan T. Sonochemical degradation of  
chlorinated organic compounds, phenolic compounds and  
organic dyesa review. Science of the total environment. 2009  
Apr 1;407(8):2474-92.  
2
005 Mar 25;41(2-3):197-201.  
2
2
4
5
Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli  
RY. Ultrasonic pretreatment of sludge: a review. Ultrasonics  
sonochemistry. 2011 Jan 1;18(1):1-8.  
Pang YL, Abdullah AZ, Bhatia S. Review on sonochemical  
methods in the presence of catalysts and chemical additives for  
treatment of organic pollutants in wastewater. Desalination.  
5
6
7
Pham TD, Shrestha RA, Virkutyte J, Sillanpää M. Recent  
studies in environmental applications of ultrasound. Canadian  
Journal of Civil Engineering. 2009 Nov;36(11):1849-58.  
Eren Z. Ultrasound as a basic and auxiliary process for dye  
remediation: a review. Journal of Environmental Management.  
2
011 Aug 15;277(1-3):1-4.  
2
012 Aug 15;104:127-41.  
2
2
2
2
3
6
7
8
9
0
Paerl HW. Mitigating toxic planktonic cyanobacterial blooms  
in aquatic ecosystems facing increasing anthropogenic and  
climatic pressures. Toxins. 2018 Feb;10(2):76.  
Rajasekhar P, Fan L, Nguyen T, Roddick FA. A review of the  
use of sonication to control cyanobacterial blooms. Water  
research. 2012 Sep 15;46(14):4319-29.  
Shimizu N, Ogino C, Dadjour MF, Murata T. Sonocatalytic  
degradation of methylene blue with TiO2 pellets in water.  
Ultrasonics sonochemistry. 2007 Feb 1;14(2):184-90.  
Shchukin DG, Skorb E, Belova V, Moehwald H. Ultrasonic  
cavitation at solid surfaces. Advanced Materials. 2011 May  
Fu H, Suri RP, Chimchirian RF, Helmig E, Constable R.  
Ultrasound-induced destruction of low levels of estrogen  
hormones in aqueous solutions. Environmental science &  
technology. 2007 Aug 15;41(16):5869-74.  
8
Goel M, Hongqiang H, Mujumdar AS, Ray MB. Sonochemical  
decomposition of volatile and non-volatile organic  
compoundsa comparative study. Water Research. 2004 Nov  
1
;38(19):4247-61.  
9
1
Gerde JA, Montalbo-Lomboy M, Yao L, Grewell D, Wang T.  
Evaluation of microalgae cell disruption by ultrasonic  
treatment. Bioresource technology. 2012 Dec 1;125:175-81.  
Hao H, Wu M, Chen Y, Tang J, Wu Q. Cavitation mechanism  
in cyanobacterial growth inhibition by ultrasonic irradiation.  
Colloids and Surfaces B: Biointerfaces. 2004 Feb 15;33(3-  
3
;23(17):1922-34.  
0
Salami ES, Salari M, Ehteshami M, Bidokhti NT, Ghadimi H.  
Application of artificial neural networks and mathematical  
modeling for the prediction of water quality variables (case  
study: southwest of Iran). Desalination and Water Treatment.  
4
):151-6.  
Hatanaka SI, Yasui K, Kozuka T, Tuziuti T, Mitome H.  
Influence of bubble clustering on multibubble  
1
1
1
2
2
016 Dec 1;57(56):27073-84.  
3
3
1
2
Salari M, Shahid ES, Afzali SH, Ehteshami M, Conti GO,  
Derakhshan Z, Sheibani SN. Quality assessment and artificial  
neural networks modeling for characterization of chemical and  
physical parameters of potable water. Food and Chemical  
Toxicology. 2018 Aug 1;118:212-9.  
Norman ES, Dunn G, Bakker K, Allen DM, De Albuquerque  
RC. Water security assessment: integrating governance and  
freshwater indicators. Water Resources Management. 2013 Jan  
sonoluminescence. Ultrasonics. 2002 May 1;40(1-8):655-60.  
Hao H, Wu M, Chen Y, Tang J, Wu Q. Cavitation mechanism  
in cyanobacterial growth inhibition by ultrasonic irradiation.  
Colloids and Surfaces B: Biointerfaces. 2004 Feb 15;33(3-  
4
):151-6.  
1
1
3
4
Kasaai MR. Input power-mechanism relationship for ultrasonic  
irradiation: Food and polymer applications.  
Koncsos T., The application of neural networks for solving  
complex optimization problems in modeling. In Conference of  
Junior Researchers in Civil Engineering, 2010. pp. 97-102.  
Kuna E, Behling R, Valange S, Chatel G, Colmenares JC.  
1
;27(2):535-51.  
3
3
3
4
Samani N, Gohari-Moghadam M, Safavi AA. A simple neural  
network model for the determination of aquifer parameters.  
Journal of Hydrology. 2007 Jun 30;340(1-2):1-1.  
Salami ES, Ehteshami M. Simulation, evaluation and prediction  
modeling of river water quality properties (case study: Ireland  
Rivers). International journal of environmental science and  
technology. 2015 Oct 1;12(10):3235-42.  
Chen D, Sharma SK, Mudhoo A. Handbook on applications of  
ultrasound: sonochemistry for sustainability. CRC press; 2011  
Jul 26.  
Tsaih ML, Tseng LZ, Chen RH. Effects of removing small  
fragments with ultrafiltration treatment and ultrasonic  
conditions on the degradation kinetics of chitosan. Polymer  
degradation and stability. 2004 Oct 1;86(1):25-32.  
Tang JW, Wu QY, Hao HW, Chen Y, Wu M. Effect of 1.7 MHz  
ultrasound on a gas-vacuolate cyanobacterium and a gas-  
vacuole negative cyanobacterium. Colloids and Surfaces B:  
Biointerfaces. 2004 Jul 15;36(2):115-21.  
Wang J, Jiang Y, Zhang Z, Zhang X, Ma T, Zhang G, Zhao G,  
Zhang P, Li Y. Investigation on the sonocatalytic degradation  
of acid red B in the presence of nanometer TiO2 catalysts and  
1
5
Sonocatalysis:  
a potential sustainable pathway for the  
valorization of lignocellulosic biomass and derivatives.  
InChemistry and Chemical Technologies in Waste Valorization  
2
017 (pp. 1-20). Springer, Cham.  
1
1
6
7
Lee TJ, Nakano K, Matsumura M. A novel strategy for  
cyanobacterial bloom control by ultrasonic irradiation. Water  
Science and Technology. 2002 Sep;46(6-7):207-15.  
Li M, Li JT, Sun HW. Decolorizing of azo dye Reactive red 24  
aqueous solution using exfoliated graphite and H2O2 under  
ultrasound irradiation. Ultrasonics Sonochemistry. 2008 Jul  
3
3
5
6
1
;15(5):717-23.  
1
1
8
9
Leclercq DJ, Howard CQ, Hobson P, Dickson S, Zander AC,  
Burch M. Controlling cyanobacteria with ultrasound.  
InINTER-NOISE and NOISE-CON Congress and Conference  
Proceedings 2014 Oct 14 (Vol. 249, No. 3, pp. 4457-4466).  
Institute of Noise Control Engineering.  
Lin JJ, Zhao XS, Liu D, Yu ZG, Zhang Y, Xu H. The  
decoloration and mineralization of azo dye CI Acid Red 14 by  
sonochemical process: rate improvement via Fenton's reactions.  
Journal of Hazardous Materials. 2008 Sep 15;157(2-3):541-6.  
3
3
7
8
6
32  
Journal of Environmental Treatment Techniques  
0202, Volume 8, Issue 2, Pages: 625-633  
comparison of catalytic activities of anatase and rutile TiO2  
powders. Ultrasonics sonochemistry. 2007 Jul 1;14(5):545-51.  
3
4
4
9
0
1
Wu TY, Guo N, Teh CY, Hay JX. Advances in ultrasound  
technology for environmental remediation. Springer Science &  
Business Media; 2012 Oct 20.  
Wang M, Yuan W. Modeling bubble dynamics and radical  
kinetics in ultrasound induced microalgal cell disruption.  
Ultrasonics sonochemistry. 2016 Jan 1;28:7-14.  
Wu X, Joyce EM, Mason TJ. Evaluation of the mechanisms of  
the effect of ultrasound on Microcystis aeruginosa at different  
ultrasonic frequencies. Water research. 2012 Jun 1;46(9):2851-  
8
.
4
4
2
3
Yamamoto K, King PM, Wu X, Mason TJ, Joyce EM. Effect of  
ultrasonic frequency and power on the disruption of algal cells.  
Ultrasonics sonochemistry. 2015 May 1;24:165-71.  
Zhang H, Zhang J, Zhang C, Liu F, Zhang D. Degradation of  
CI Acid Orange 7 by the advanced Fenton process in  
combination with ultrasonic irradiation. Ultrasonics  
sonochemistry. 2009 Mar 1;16(3):325-30.  
4
4
4
5
Zhang G, Zhang P, Liu H, Wang B. Ultrasonic damages on  
cyanobacterial photosynthesis. Ultrasonics Sonochemistry.  
2
006 Sep 1;13(6):501-5.  
Wang M, Yuan W. Modeling bubble dynamics and radical  
kinetics in ultrasound induced microalgal cell disruption.  
Ultrasonics sonochemistry. 2016 Jan 1;28:7-14.  
6
33