Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 794-796  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Biogas Generation from Rice Cooking Wastewater  
Nadim Reza Khandaker*, S M Shabab Islam, Umme Farah Shakin  
Department of Civil and Environmental Engineering, North South University, Dhaka, Bangladesh  
Received: 13/08/2019  
Accepted: 16/04/2020  
Published: 20/05/2020  
Abstract  
Rice is the staple of all families of South Asia and South East Asia. The process of cooking rice involves boiling the rice in water which  
leaves a byproduct of decanted liquid. The research showed that the wastewater generated from cooked rice could be used to generate biogas  
5
with a biogas generation potential of 190 ± 46 mL/g BOD (5.38 ± 0.75 L of biogas/per L of Maar) with the methane content of 78 %. First  
2
order reaction defines the kinetics of biogas production with the intent of fitting between modelled and observed data (r ) of 0.961. The first  
-
1
order kinetics constant “k” was determined to be 0.2 d . Further a family of four produces 1.0 L of starch rich wastewater per day that has  
the potential to produce 5.38 L of biogas with 78 % methane content. Further a household reactor was built out of recycled plastic chemical  
drum seeded with cow dung fed with waste rice cooking wastewater handling the wastewater decanted from the daily rice cooking for a  
family of five. The biogas generated was used as demonstration to fire a biogas household burner. The experimental program shows the  
potential for the use of starch rich wastewater in an urban setting to augment the energy needs for cooking.  
Keywords: Biogas generation potential, Cooked rice decant wastewater, Kinetics  
Introduction1  
The overall intention of the experimental program was to  
1
introduce domestic rice wastewater in the energy diversification  
to stride for sustainable development of South Asian and East  
Asian countries future and to identify a source which is readily  
available can produce a positive sustainable solution at the  
household level.  
Bangladesh is a country whose economy is natural gas driven.  
Natural gas is used for electricity generation, fertilizer production,  
process heating, electricity generation, and household cooking.  
About 70% of Bangladesh’s energy demand is met through  
natural gas but in recent times, the demand of natural gas has been  
exceeding the supply (1). The government has started to put in  
place measurers that limit supply. Natural gas supply has been  
limited for domestic use placing an undue burden to the urban  
population. However, amidst all the crisis, we may have found a  
simple potential solution from a very unlikely source in the form  
of wastewater generated from rice cooking that serves as the  
substrate for biological methane generation. Rice is a staple food  
in Bangladeshi households. People rely on it as the chief source  
of their dietary needs at least twice per day. The process of  
preparing rice involves boiling it in water and this process gives  
off a white starchy liquid which is referred to as “Bhaather Maar”,  
and in this study this rice rich wastewater was used to conduct a  
Biological Methane Potential (BMP) study (2) to ascertain how  
much biogas can be produced from waste water generated from  
rice cooking. In a controlled experimental program wastewater  
generated from cooking rice was characterized, using methane  
generating reactors at the bench scale a BMP study was conducted  
to ascertain the quantity and quality of the biogas generated from  
Maar. The study was further expanded to actual application where  
a waste acetone empty plastic drum was converted to a biogas  
generator and installed in a urban house as a field trial. The  
generated biogas was used to fire a household level cooking  
burner to demonstrate the practical efficacy of using waste cooked  
rice water to produce biogas for domestic use.  
2 Materials and Methods  
Raw wastewater: The rice cooking wastewater was obtained  
from actual wastewater generated from cooking rice in a typical  
household of urban Bangladesh, in average 1.0 L of rice  
wastewater is generated per day from a family of 4 persons. A  
seven-day composite sample was used to characterize the  
wastewater used in the study.  
Seed: The BMP study seed was seven-day old crow dung  
and for the pilot reactor the seed source was fresh cow dung.  
Analysis: The rice cooking wastewater was analyzed for  
5
COD, BOD , TS, and pH as per standard methods (4). The biogas  
generated was measured using the piston displacement method  
where the piston in the syringe reactor moves up with daily biogas  
production the displacement volume is noted by reading off the  
gradation lines existing in the syringes used as the BMP reactors  
(3).  
BMP Reactor Configuration: The bench scale BMP reactor  
were 150 ml plastic disposable syringes with a liquid volume of  
20 ml (Figure 1). The BMP syringe reactors were operated as  
batch rector with an incubation period of 34 days. In the BMP  
study the rice wastewater was fed directly to the reactor at the  
initiation of the study. The food to microorganism ratio (F/M) for  
the BMP study was 0.02. The daily biogas production was  
Corresponding author: Nadim Reza Khandaker, Department of Civil and Environmental Engineering, North South University, Dhaka,  
Bangladesh. E-mail: nadim.khandaker@northsouth.edu.  
7
94  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 794-796  
monitored and noted and at the end of the study the biogas quality  
was measured in terms of methane and carbon dioxide  
percentage. The data generated was plotted and modelled using  
Spreadsheet in accordance to established protocols modelling  
anaerobic transformation substrates (4, 5, 6, 7, 8).  
3
Results and Discussion  
In line with research trends of using easily biodegradable  
wastewater to produce bioenergy (9, 10), the research program  
investigated the use of rice cooking wastewater rich in starch  
to produce biogas for cooking in domestic houses. The  
composite rice cooking wastewater characterized and used in  
the study is given in Table 1. This a highly biodegradable  
5
wastewater with high BOD , wastewater and should be very  
suitable for methane generation an anaerobic process. The  
BMP study conducted using the rice cooking starch  
wastewater using syringe reactor seeded with cow dung at an  
3
5 5  
F/M ratio of 0.02 at a BOD loading rate of 0.5 Kg BOD /m  
within the range of operation of low rate reactors for anaerobic  
wastewater treatments currently being designed and  
constructed (2).  
Figure 1: Syringe reactor used in the BMP study  
Table 1: Characteristics of the rice cooking wastewater used  
in the BMP study  
Field Trial: The field trial reactor was a 100 L waste acetone  
drum with to witch two ports retrofitted to be the feed port which  
had a feed tube going to the bottom of the drum (Figure 2). The  
biogas was vented through a line in the cap of the second port and  
directly connected by a quarter inch gas hose pipe to a biogas  
home burner. The reactor was operated in a batch feed mode with  
daily feeding of the race starch wastewater. The initial seed  
volume was 15 L of 5% solids cow dung slurry. The reactor was  
operated till the methane content of the biogas was sufficiently  
high enough to sustain the flame in the burner.  
pH  
BOD5  
(mg/L)  
Density  
(g/ml)  
TS  
(mg/L)  
VS  
fraction  
(%)  
8.3 ±  
0.1  
23450 ±  
796  
0.95 ±  
0.01  
0.47 ±  
0.01  
98.7  
The biogas production trends for the BMP reactors are  
shown in Figure 3. From the onset the BMP reactors producing  
biogas and gas production was completed within 15 days of  
operation. The mean ± Standard Deviation total biogas  
production for the four reactors in the BMP test was 190 ± 46  
5
mL/g BOD (5.38 ± 0.75 L of biogas/per L of Maar). Also the  
biogas production trend showed that the system did not require  
any period of acclimation prior to achieve the high degree of  
waste stabilization shown by rapid biogas production  
indicating that Maar is easily degradable by the anaerobic  
culture. The kinetics of biogas production by the degradation  
of Maar by the anaerobic microorganism is defined by Figure  
4
. The Figure shows that first order kinetics curve fitting of  
predicted verses observed biogas production using Equation 1  
to calculate the theoretical biogas production trend using the  
optimized by curve fitting of the first order rate coefficient “k”  
-
1
value of 0.2 day . The goodness of fit data between the  
modelled data and the experimentally observed data showed a  
2
very good fit (r = 0.961).  
Biogas  
t
= Biogasmax x (1-e-kt  
)
(1)  
t
is biogas at any time in ml biogas/gBOD  
5
where Biogas ,  
Biogas is maximum biogas production in ml biogas/gBOD  
t
5
, t  
-
1
is time in days, and k is rate constant, day . The time to reach  
max biogas production was 2.4 days a short time frame  
indicating that the Maar is easily anaerobically biodegradable  
and the system has the microorganism to readily degrade the  
rice cooking wastewater and produce biogas. The methane  
content of the biogas measured in the end of the test was 78%  
showing that the biogas generated from Maar has high methane  
content close to that of methane gas supplied to household the gas  
supply companies. In the field trial reactor, the gas production  
was observed within three days of feeding after reactor startup but  
the gas produce would not be burn. It was suspected that the  
methane content of the biogas was low for we had used fresh cow  
Figure 2: Field trial biogas reactor and burner  
7
95  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 794-796  
dung to seed the reactor and that the methanogenic population was  
not sufficient to produce a high quality biogas with respect to  
methane content. After a month of sustained operation, the biogas  
produced would burn in a blue flame (Figure 5) indicating that the  
produced biogas had methane content sufficient enough to  
combust.  
In an overall prospective the result of the BMP study and the  
field trial showed the potential of Maar a substrate for biogas  
production producing a biogas with high methane content. A  
waste product such as Maar that is dumped down the drain can be  
used in the energy mix to as a source of renewable energy in the  
context of south Asia and South East Asia.  
4
Conclusions  
The research showed that the wastewater generated from  
cooked rice could be used to generate biogas with a biogas  
generation potential of 190 ± 46 mL/g BOD (5.38 ± 0.75 L of  
5
biogas/per L of Maar) with the methane content of 78 %. First  
order reaction defines the kinetics of biogas production with the  
2
intent of fitting between modelled and observed data (r ) of 0.961.  
-
1
The first order kinetics constant “k” was determined to be 0.2 d .  
Field trial showed the viability of the concept at applied level.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Figure 3: Cumulative biogas production with days of operation  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses. Manuscript writing was done by Nadim  
Reza Khandaker.  
References  
1
2
3
4
5
6
.
.
.
.
.
.
Hydrocarbon Unit Energy and Mineral Resources Division Ministry  
of Power, Energy and Mineral Resources Goverment of Bangladesh.  
Energy Scenario Bangladesh 2017-2018. 2019 January.  
Young JC, Tabak HH. Multilevel protocol for assessing the fate and  
effect of toxic organic chemicals in anaerobic treatment processes.  
Water Environ Res. 1993; 65: p. 34-45.  
American Public Health Association. Standard Methods for  
Examination of Water and Wastewater, 17 edition. Washington D.C:  
American Public Health Association; 1989.  
Khandaker NR, Young JC. Effect of culture acclimation on the  
kinetics of aldicarb insecticide degradation under methanogenic  
conditions. J Agric Food Chem. 2000; 48: p. 1411-1416.  
Ali Arasteh Nodeh SA. Clean to Clean: Using Paper Waste to  
Produce Fermentable Sugar for Bioethanol Production. Journal of  
Environmental Treatment Techniques. 2017; 5(1).  
Goli1 A, Shamiri A, Khosroyar S, Talaiekhozani A, Sanaye R, Azizi  
K. A Review on Different Aerobic and Anaerobic Treatment  
Methods in Dairy Industry Wastewater. Journal of Environmental  
Treatment Techniques. 2019; 7(1).  
Figure 4: First order modeled profile of biogas product to observed  
data  
7
8
.
.
Young JC, Khandaker N. Kinetics of carbofuran insecticide  
conversion under methanogenic conditions. Journal of  
Environmental Science and Health, Part B. 1999; 34(5).  
Young JC, Khandaker NR. Kinetic assessment of the effect of  
carbamate insecticides on anaerobic transformation of co‐substrate  
reactions. Journal of Environmental Science and Health, Part B.  
1
997; 32(1).  
9
1
.
Young JC, Khandaker NR. Effect of Culture Acclimation on the  
Kinetics of Aldicarb Insecticide Degradation under Methanogenic  
Conditions. Journal of Agricultural and Food Chemistry. 2000; 48(4).  
0. Sarker MS, Rahman MM, Khandaker NR. Defining the kinetics of  
the novel application of anaerobic acetogenics for treating textile  
dyeing wastewater. Earth Syst. Environ. 2018 May; 4.  
Figure 5: A blue flame indicating produced biogas had methane  
content  
7
96