Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 744-749  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Effects of Different Wastewater Treatment  
Processes on Occurrence and Prevalence of  
Antibiotic Resistant Bacteria and Their Resistance  
Genes  
1
2
3
4
Mahdi Asadi-Ghalhari , Rahim Aali *, Mohammad Aghanejad , Reza Fouladi Fard , Hassan  
5
6
7
8
9
Izanloo , Ali Shahryari , Hamed Mirhossaini , Mohsen Mehdipour Rabori , Reza Ghanbari  
1
Research Center for Environmental pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical  
Sciences, Qom, Iran  
Research Center for Environmental pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical  
Sciences, Qom, Iran  
2
3
Department of Environmental Health Engineering, Khoy University of Medical Sciences, Khoy, Iran. Email: mamamaxy01@yahoo.com  
4
5
Research Center for Environmental pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical  
Sciences, Qom, Iran  
Research Center for Environmental pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical  
Sciences, Qom, Iran  
6
Department of Environmental Health Engineering, Gorgan University of Medical Sciences, Gorgan, Iran  
Department of Environmental Health Engineering, Arak University of Medical Sciences, Arak, Iran  
7
8
Department of Environmental Health Engineering, Kerman University of Medical Sciences. Kerman, Iran  
9
Department of Environmental Health Engineering, Qazvin University of Medical Sciences, Qazvin, Iran  
Received: 14/01/2020  
Accepted: 13/04/2020  
Published: 20/05/2020  
Abstract  
This study aimed to explore the difference between hospital and municipal wastewater treatment processes regarding the reduction  
of antibiotic-resistant bacteria (ARB) and antibiotic resistant genes (ARGs). Samples were collected from raw and final effluent of four  
different wastewater treatment plants (WWTPs). ARB were evaluated by modified HPC method. Extraction and purification of DNA  
from the samples were conducted by Freeze-Thaw and DNA extraction kit. Real-time PCR (qPCR) was utilized to obtain the quantity  
of Sul1 and ErmB genes in the samples. For standard control in qPCR, was used plasmid containing each gene sequence. The average  
7
7
ARB concentration in the raw wastewater and effluent was 1.03×10 -6.63×10 CFU/100mL. Quantitative range of the Sul1 and ErmB  
1
0
5
9
genes were obtained as 0-8.3×10 Copies/100 mL and 9.29×10 - 9.64×10 Copies/100 mL, respectively. The results show that urban  
wastewaters play a more significant role than hospital wastewaters in the emission of sulfonamides and erythromycin-resistant bacteria  
and genes to the environment. Findings revealed that conventional wastewater treatment plants cannot be regarded as reliable barriers  
for the control of these agents.  
Keywords: Antibiotic-resistant bacteria, ARGs,Hospital wastewater,Urban wastewater, Real-time PCR, Sul1, ErmB  
and hospital wastewaters are the most important sources that  
1
Introduction1  
release these contaminants to the environment (4). Wastewater  
treatment plants are one of the most important and recent  
obstacles in the emission of resistant bacteria and genetic  
elements to the environment (11). Researchers have not  
reached a consensus regarding the effects of WWTPs yet. Some  
have reported the reducing effect of these plants. Others,  
however, have mentioned the increasing effects of treatment  
plants on the emission of agents that can develop antibiotic  
resistance. A number of studies have regarded the effect of  
urban WWTPs, and other researchers believe the hospital  
WWTPs to be more efficient. Research shows that the destiny  
of various antibiotic resistance factors in the environment is  
contingent upon different factors, including the type of  
treatment processes, procedure of operation, wastewater  
Increasing concerns have been reported about the negative  
impacts of antibiotic residuals on the environment (1-3). The  
major representation of this problem is the development of  
antibiotic resistance (4-6). Antibiotic resistance has been  
reported all around the world. The WHO has mentioned  
antibiotic resistance as one of the three major problems of the  
st  
2
1 century (4, 7). This resistance has been observed across a  
wide variety of environments such as water, soil, air, and  
wastewater (8, 9). Antibiotic resistance can be developed by  
different ways, including the direct entrance of resistant  
bacteria from therapeutic settings or the antibiotic residual  
pressure in environmental resources (10). The developed  
resistance can cause changes in the natural ecosystems. Urban  
Corresponding author: Rahim Aali, Research Center for Environmental pollutants, Department of Environmental Health Engineering,  
Faculty of Health, Qom University of Medical Sciences, Qom, Iran. E mail: r.aali@qum.ac.ir.  
7
44  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 744-749  
organic load, the variety of wastewater microorganisms, the  
amount of discharged antibiotics, conditions of hospitals,  
consumption patterns of antibiotics and the economic and  
cultural situation of a society. In Iran, the consumption of  
antibiotics has not become standardized in therapeutic settings  
and the society. Iran is among countries with the highest  
antibiotic consumption. Antibiotic resistance has been reported  
in almost all clinical, agricultural, and animal husbandry studies  
and against all antibiotic groups (12-16). Limited research has  
been conducted on antibiotic resistance in the Iranian  
environment (17). In this research, two antibiotic groups, i.e.  
sulfonamides (STX) and erythromycins (ER), were  
investigated because of their wide application in therapeutic,  
agricultural, and animal husbandry environments, as well as  
their informal use by the people. The common coding genes  
2.3 Quantitate PCR  
Plasmid DNA was used as the standard control in real-time  
PCR (qPCR). Fresh PCR products of ermB and sul1 were  
separated and excised from the agarose gel. The gel fragments  
were purified with a gel extraction kit (Gel purification kit, Cat  
NO: K-3035-1, Bioneer, USA) and ligated into the PTZ 57R  
vector. DNA was transformed into Escherichia coli Top 10  
2
using CaCl and heat-shock. Clones containing the correct  
insert were confirmed by PCR amplification with m13  
universal primer [F-m13 (5-ttgtaaaacgacggccagt-3) and R-m13  
(5-acaggaaacagctatgaccatg-3)] and sequencing (14). Plasmids  
were purified and plasmid concentration was then determined  
®
by spectroscopy (Nano drop ND1000). The copy number of  
each plasmid was calculated using the molecular weight of  
nucleic acid and length (in base pairs) of the cloned plasmid.  
To generate the standard curve, the threshold cycle (Ct) value  
was used for each concentration. The qPCR was used to  
quantify the concentrations of ermB and sul1 genes. Prior work  
had shown that ermB and sul1 genes were present in substantial  
concentrations in wastewater. The qPCR was carried out on the  
applied bio systems (Applied Bio systems, USA) using the  
SYBER green method. All qPCR reactions were performed in  
(
Sul1, ErmB) in relation to these two antibiotic groups were  
also studied quantitatively.  
2
Materials and Methods  
1
.2 Sampling and enumeration of antibiotic resistant bacteria  
Samples were collected from wastewater treatment plants  
in Isfahan province, Iran. Four sampling sites were selected to  
study antibiotic-resistant bacteria (ARB) and antibiotic  
2
0 µL of reaction mixture (23). T-tests were run to compare  
quantity averages in influents and effluents. McNamara  
statistical test was used to compare the examination results  
from just before and after the WWTPs. ANOVA was employed  
to compare the variation results from different sites. Finally,  
Pearson’s correlation coefficients were used to determine the  
correlations between HPC (heterotrophic plate count),  
incidence of ARB, and ARG genes (SPSS 16 for Windows,  
SPSS Inc., Chicago, IL).  
1 2  
resistant genes (ARGs). The first (MW ), second (MW ), and  
third (MW ) sampling sites were the influent and effluent of  
3
municipal WWTPs with different processes, conventional  
activated sludge (two-step), conventional activated sludge, and  
stabilization pond, respectively. The capacity of these WWTPs  
4
4
4
3 -1  
were 25×10 , 13×10 and 9×10 m d , respectively. The  
disinfection process of all WWTPs were chlorination. The  
1
fourth sampling site (HW ) was the influent and effluent of  
extended aeration supported with high-speed sand filter. Its  
3
-1  
capacity was 890 m d , and its disinfection process was  
chlorination. To determine ARB concentration, samples were  
3 3 Results and Discussion  
3.1 ARB and ARGs in wastewater sources  
The average concentrations of ARB and ARGs in influent  
diluted and 0.1 mL of each dilution was spread on R  
amended individually with erythromycin (15µg mL ),  
2
A (Difco),  
-1  
6
7
and effluent were obtained to be 5.39×10 -4.22×10 and  
-
1
9
9
sulfamethoxazole (50 µg mL ), and additional antifungal  
nystatin (18, 19). Plates were incubated for 48h at 37˚C. ARB  
results were derived by comparing heterotrophic and ARB  
cultivable concentrations (20, 21). All assays were performed  
in duplicate. Positive samples were rechecked.  
1.38×10 -9.29×10 Copies/100 mL, respectively (Fig 1, 2 and  
3). Results in all of figures were shown by standard deviation.  
Raw wastewater  
Final effluent  
1.00E+08  
.00E+06  
1.00E+04  
1
2
.2 DNA extraction and qualified PCR  
DNA was extracted from original samples. Fifty mL of the  
original samples was prepared (centrifuged at 6000 rpm for 15  
min) and the pellet was resuspended in 300 µL of distilled  
water. The pellets were frozen in liquid nitrogen and boiling  
water for three times (22). The DNA was extracted and purified  
by DNA extraction kit (promega wizard genomic DNA  
purification kit, Madison, WI) according to the manufacturer’s  
manual. Primer pairs were used to amplify sul1 and ermB  
genes, as taken from Munir et al (19). The total volume of the  
reaction mixture (25µL) contained 0.5 µL of each primer, 1.5  
1
.00E+02  
.00E+00  
1
HPC  
ARB  
HPC  
ARB  
Municipal  
Hospital  
Sites  
Figure 1: Compare of raw and effluent in municipal and hospital  
wastewater  
µL MgCl  
2
, 0.5 mM dNTP, 2.5 µL PCR buffer, 1 µL of template  
These values are larger than the means of ARGs and ARB  
achieved in other studies (19, 24, 25). This can be due to  
insufficient management of WWTPs in Iran and the nature of  
the produced wastewater. The generated wastewater in Iran has  
a larger organic load compared with Western countries because  
of different nutritional patterns. For example, Kim et al (2006a)  
reported a strong relationship between organic load and the  
ARB growth rate. Previous studies have reported a high organic  
load in the studied urban WWTPs in Isfahan province, Iran  
(26). In addition, high quantitative values of resistant genes in  
wastewater can be due to high population and horizontal gene  
transfer (19, 27).  
DNA and 5 units of Taq DNA polymerase (22). All PCR assays  
contained a positive and a negative control. PCR amplification  
was performed using a thermal cycler (Corbett, Australia). The  
PCR profile included initial denaturation at 94˚C for 10 min,  
denaturation at 94 ˚C for 45 s, annealing (varied) for 30 s, and  
extension at 72˚C for 45s for 30 cycles, followed by a final  
extension at 72˚C for 10 min. PCR products (6 µL) were mixed  
with 2 µL of DNA safe stain and loaded on 1.5% agarose gel.  
Gels were viewed on a UV trans illuminator, and DNA  
fragment sizes were compared with the 100-bp ladder (14).  
7
45  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 744-749  
3
2
2
1
1
5
0
.00E+08  
.50E+08  
.00E+08  
.50E+08  
.00E+08  
.00E+07  
.00E+00  
2.50E+08  
2.00E+08  
1.50E+08  
1.00E+08  
5.00E+07  
0.00E+00  
Raw wastewater  
Final effluent  
Raw wastewater  
Final effluent  
HPC  
STX  
ER  
HPC  
STX  
ER  
MW2  
MW1  
(
b)  
(a)  
2
.50E+08  
.00E+08  
.50E+08  
.00E+08  
.00E+07  
.00E+00  
3.00E+08  
2.50E+08  
2.00E+08  
1.50E+08  
1.00E+08  
2
Raw wastewater Final effluent  
Raw wastewater  
Final effluent  
1
1
5
0
5.00E+07  
.00E+00  
0
HPC  
STX  
ER  
HPC  
STX  
ER  
HW3  
MW3  
(c)  
(d)  
Figure 2: Compare of ABR and HPC in municipal (a,b and c) and hospital (d) wastewater treatment plants  
The results of this study revealed a moderate reduction in  
ARB and ARGs in the WWTPs. The findings of other studies  
are in agreement with the results of this study (19, 28). The rate  
of ARB and ARGs discharge to the environment through  
not agree with the reports of Huang et al. (2012) and Rodriquez-  
Mozaz et al. (2015) regarding the great effect of treatment on  
the reduction of antibiotic resistance (31). The investigation of  
the resistance developed by individual ARB and ARGs  
revealed that the resistance patterns in the raw wastewater and  
effluent were not necessarily similar (Fig 2 and 4).  
7
wastewaters was very high (the output range of ND-7.7×10  
9
CFU/100mL and ND-8.29×10 Copies/100 mL). The findings  
of this research generally show that the identified values are  
much larger than the values of ARB and ARGs available in the  
receiver sources such as water resources (19, 29). Therefore,  
abundant release of these agents causes a high pressure on  
water resources and natural ecosystems (30). The results of the  
effluent indicated that although ARB and ARGs were slightly  
affected during the treatment stages, conventional wastewater  
treatment facilities could not have a significant effect on the  
removal of ARB and ARGs. Thus, the findings of this study do  
The pattern obtained based on quantitative results of genes  
in raw wastewater and effluent indicated that the Sul1 gene had  
the highest value in the input and output (Fig 4). In a study  
conducted by Munir et al. (2011), the quantitative value of sul1  
gene identified in the WWTPs was the highest (19). These  
results are also in accordance with those of the investigation of  
Rodriquez-Mozaz et al. (2015). The high frequency of this gene  
can be due to the high frequency of genetic elements in the  
wastewater.  
3
2
2
1
1
5
0
.00E+10  
.50E+10  
.00E+10  
.50E+10  
.00E+10  
.00E+09  
.00E+00  
2.50E+08  
2
1
1
.00E+08  
.50E+08  
.00E+08  
Raw wastewater  
Final effluent  
5.00E+07  
.00E+00  
0
raw  
final effluent  
raw  
final effluent  
HPC  
STX  
ER  
wastewater  
wastewater  
MW2  
Municipal  
Hospital  
(
b)  
Total  
(
a)  
Figure 3: Compare of ARGs in hospital and municipal wastewater treatment plants  
7
46  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 744-749  
3
.2 ARB and ARGs in municipal and hospital wastewater  
The results of this study indicate that the average ARB and  
ARGs are larger in urban wastewaters (UWW) than in hospital  
wastewaters (HWW) (Fig 1 and 3). This can be due to the  
higher microbial load of UWW, presence of organic and  
nutrient materials to bacterial growth, and easy transmission of  
resistance among bacterial population because of receiving  
wastewater from a wider spectrum of sources (32, 33).  
Excessive use of antibiotics, especially oral antibiotics by  
people and the subsequent release of antibiotics from body to  
the UWW are not negligible. Geli et al. (2012) and Udekwe et  
al. (2009) have suggested that the increased resistance to  
vancomycin in the US in 1980s could have been a result of the  
over-consumption of oral vancomycin to control C. difficile  
1-1.5 log. This plant has a strong management system. From  
among the studied treatment plants, MW had the lowest  
1
reduction percentage, possessing a dual active sludge process.  
This plant has no significant effect on ARB removal, despite  
benefiting from a dual process. It also suffers from a poor  
management system. The pattern of ARB reduction indicates  
that in addition to the effect of the process type, the operation  
procedure also affects the efficiency of ARB removal. The  
3
MW process is a stabilization pond. Some researchers attribute  
the reduction of ARB and ARGs in this process to solar  
radiation. The present study showed that the level of log  
reduction for STX and ER was equal to 1.43. This reduction is  
1.44 for ARGs (ermB and sul1).  
Investigating the effects of sunlight on resistant bacteria,  
Mezrioui and Echab (1995) observed that these ponds can  
cause an increase in population of these bacteria. Rizzo et al.  
(2013) attribute the increased number of resistant strains of  
E.coli in aeration lagoons to the support of the process type  
from the mentioned strains (32).  
(34). This trend can also be applied to other antibiotics. Overall,  
many researchers consider UWW as a key source of ARB and  
ARGs’ emission into the environment (19) The lower levels of  
ARB and ARGs by hospitals in comparison with the UWW  
may be attributed to the vast application of disinfection and  
acidic compounds, as well as the transmission of these  
compounds into the wastewater. This is not in congruence with  
the findings suggesting that HWW are richer in ARB and ARGs  
4
Conclusions  
Municipal wastewater plays a more significant role in  
(24, 35). These studies attribute higher ARB and ARG levels to  
discharging ARB and ARGs into the environment. This study  
proves that although the processes of UWW treatment can be  
effective to some extent in removing genes, they are not  
successful to sustainable and reliable controlling of the  
bacterial resistant genes to the environment. Performance of  
treatment plants based on their process demonstrated that the  
process of active sludge with a widespread aeration mechanism  
supported by a dual disinfection system together with sand  
filter is the most efficient method. It seems that multiple  
disinfection systems complemented by a sand filter are  
effective and efficient in the removal of bacteria and genetic-  
the high concentration of antibiotics in the HWW and in turn,  
the increased chance of contact between bacteria and antibiotics  
and resistant strains (24). Some studies consider the wide  
application of antibiotics in hospital as a selective advantage  
for ARB. In an investigation of the biofilm of urban and  
hospital wastewaters, Shwarz et al. (2003) demonstrated that  
ARB was higher in UWW and ARGs in HWW. In addition,  
some researchers argue that the mechanisms of resistance  
development in the HWW and UWW are different (36). The  
incidence of antibiotic resistance in the treatment plants  
effluent is not necessarily similar in different antibiotics and  
microbial groups.  
resistant elements. Furthermore, the poor performance of MW  
1
plant benefiting from a dual system of active sludge highlights  
the fact that in addition to the process type, management can  
play a major role in this regard  
3
.3 The effect of WWTPs on ARB and ARGs  
As can be seen in Fig 2, the reduction of ARB in the HW  
3
treatment plant had the highest percentage (over 2 logs) among  
the studied treatment plants. This hospital treatment plant  
possesses an extended aeration process supported by a dual  
disinfection system (CL+UV) and rapid sand filter. Although  
STX and ER were not detected in the effluent, the results of  
quantitative ARGs indicated that ermB was identified and  
Aknowledgment  
We would like to thank the staff of hospitals and municipal  
WWTPs in Isfahan and Research Center for Environmental  
Pollutants in Qom University of Medical Sciences.  
5
measured in the effluent (9.64×10 copies/100 mL). The lack of  
Ethical issue  
identification of resistant bacteria in the effluent is possibly  
related to the dual system of disinfection and filtration. On the  
other hand, positive results of molecular experiments indicated  
that genetic parts (genome DNA, plasmid, etc.) related to ARB  
existed in the wastewater. This shows that cultivation-based  
tests on their own are not reliable for investigation of the status  
of ARB and ARGs in environmental sources. Thus, the  
application of cultivation-based and molecular tests can present  
reliable results for the estimation of the level of activity and the  
genetic makeup of resistant agents (37). Our results  
demonstrated that the reduction of ARB and ARGs had taken  
place desirably. Rizzo et al. (2013) believe that rapid passage  
over surfaces of infiltration systems is not suitable for the  
process of conjugation of microorganisms and can cause sexual  
cell damage in them (32). It seems that more studies are  
required based on the applied advanced systems for the removal  
of contributing factors to the development of resistance in  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
3
WWTPs (36). According to the results of the study, after HW ,  
the MW plant had the second highest reduction of ARB with  
2
7
47  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 744-749  
4
4
3
3
2
2
1
1
5
0
.50E+10  
.00E+10  
.50E+10  
.00E+10  
.50E+10  
.00E+10  
.50E+10  
.00E+10  
.00E+09  
.00E+00  
2.50E+10  
.00E+10  
1.50E+10  
.00E+10  
5.00E+09  
.00E+00  
2
Raw wastewater Final effluent  
Raw wastewater  
Final effluent  
1
0
Sul1  
ErmB  
Sul1  
ErmB  
MW2  
MW1  
(
b)  
(
a)  
1
8
6
4
2
0
.00E+11  
.00E+10  
.00E+10  
.00E+10  
.00E+10  
.00E+00  
4.00E+10  
3
2
1
0
.00E+10  
.00E+10  
.00E+10  
.00E+00  
Raw wastewater  
Final effluent  
Raw wastewater  
ErmB  
Sul1  
Sul1  
ErmB  
HW3  
MW3  
(
d)  
(
c)  
Figure 4: Quantities average of Sul1 and ermB genes in different WWTPs  
1
0. Vaz-Moreira I, Nunes OC, Manaia CM. Bacterial diversity and  
antibiotic resistance in water habitats: searching the links with the  
References  
1
.
Barancheshme F, Munir M. Strategies to Combat Antibiotic  
Resistance in the Wastewater Treatment Plants. Frontiers in  
microbiology. 2018;8:2603.  
human  
microbiome.  
FEMS  
microbiology  
reviews.  
2
014;38(4):761-78.  
1
1. Zhang S, Han B, Gu J, Wang C, Wang P, Ma Y, et al. Fate of  
antibiotic resistant cultivable heterotrophic bacteria and antibiotic  
resistance genes in wastewater treatment processes. Chemosphere.  
2
.
Mostafaloo R, Mahmoudian MH, Asadi-Ghalhari M.  
3
BiFeO /Magnetic Nanocomposites for the Photocatalytic  
Degradation of Cefixime From Aqueous Solutions under Visible  
Light. Journal of Photochemistry and Photobiology A: Chemistry.  
2
015;135:138-45.  
1
1
2. Noorbakhsh Sabet N, Japoni A, Mehrabani D, Japoni S. Multi-drug  
resistance bacteria in Qom hospitals, Central Iran. Iran Red  
Crescent Med J. 2010;12:501-3.  
3. Dallal MMS, Doyle MP, Rezadehbashi M, Dabiri H, Sanaei M,  
Modarresi S, et al. Prevalence and antimicrobial resistance profiles  
of Salmonella serotypes, Campylobacter and Yersinia spp. isolated  
from retail chicken and beef, Tehran, Iran. Food Control.  
2
019:111926.  
3
.
Mostafaloo, R., Asadi-Ghalhari, M., Izanloo, H., Zayadi, A.  
Photocatalytic degradation of ciprofloxacin antibiotic from  
3
aqueous solution by BiFeO nanocomposites using response  
surface methodology. Global Journal of Environmental Science  
and Management, 2020; 6(2): 191-202.  
4
5
.
.
Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M,  
Sànchez-Melsió A, et al. Occurrence of antibiotics and antibiotic  
resistance genes in hospital and urban wastewaters and their impact  
on the receiving river. Water Research. 2015;69:234-42.  
Kamani H, Bazrafshan E, Ashrafi SD, Sancholi F. Efficiency of  
sono-nano-catalytic process of TiO2 nano-particle in removal of  
erythromycin and metronidazole from aqueous solution. Journal of  
Mazandaran University of Medical Sciences. 2017;27(151):140-  
2
010;21(4):388-92.  
1
1
4. Fallahi G-H, Maleknejad S. Helicobacter pylori culture and  
antimicrobial resistance in Iran. The Indian Journal of Pediatrics.  
2
007;74(2):127-30.  
5. Askarian M, Zeinalzadeh A, Japoni A, Alborzi A, Memish ZA.  
Prevalence of nasal carriage of methicillin-resistant  
Staphylococcus aureus and its antibiotic susceptibility pattern in  
healthcare workers at Namazi Hospital, Shiraz, Iran. International  
Journal of Infectious Diseases. 2009;13(5):e241-e7.  
6. Aali R, Ghanbari R. Antibiotic Resistance in Environment and its  
Public Health Risks in Iran. Journal of Environmental Health and  
Sustainable Development. 2017;2(4):371-3.  
7. Aali R, Nikaeen M, Khanahmad H, Hejazi Z, Kazemi M,  
Hassanzadeh A. Occurrence of tetracycline resistant bacteria and  
resistance gene(tetW) in hospital and municipal wastewaters.  
Fresenius Environmental Bulletin. 2014;23(10a):2560-6.  
8. Gao P, Munir M, Xagoraraki I. Correlation of tetracycline and  
sulfonamide antibiotics with corresponding resistance genes and  
resistant bacteria in a conventional municipal wastewater treatment  
plant. Science of The Total Environment. 2012;421422(0):173-  
5
4.  
6
.
Al-Musawi TJ, Kamani H, Bazrafshan E, Panahi AH, Silva MF,  
Abi G. Optimization the effects of physicochemical parameters on  
the degradation of cephalexin in sono-Fenton reactor by using box-  
Behnken response surface methodology. Catalysis Letters.  
1
1
2
019;149(5):1186-96.  
7
8
.
.
Organization WH. Antimicrobial resistance global report on  
surveillance: 2014 summary. 2014.  
Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D.  
Environmental risk assessment of pharmaceutical residues in  
wastewater effluents, surface waters and sediments. Talanta.  
1
1
2
006;69(2):334-42.  
9
.
Ghanbari R, Shahryari A, Asgari E, Hosseinpoor S, Yeganeh J,  
Salighehdar Iran N, et al. Environmental cycle of antibiotic  
resistance encoded genes: A systematic review. The Journal of  
Qazvin University of Medical Sciences. 2017;21(5):71-55.  
8
3.  
9. Munir M, Wong K, Xagoraraki I. Release of antibiotic resistant  
bacteria and genes in the effluent and biosolids of five wastewater  
utilities in Michigan. Water Research. 2011;45(2):681-93.  
7
48  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 744-749  
2
0. J.P.brooks SLm, C.Rensing, C.P. Gerba, and I.L.Pepper.  
Occurrence of antibiotic-resistant bacteria and endotoxin  
associated with the land application of biosolids. Can J Microbial.  
2
007;53:616-22.  
2
2
1. Yeganeh J, Mehrdadi N, Baghdadi M, Aali RJJoMUoMS. Effect  
of Zero Valent Iron Nanoparticles on Removal of Antibiotic  
Resistant Genes of Heterotrophic Bacteria in Urban Wastewater.  
2
018;28(160):28-44.  
2. Koike S KI, Oliver HD, Yannarell AC, Chee-Sanford JC, Aminov  
RI, Mackie RI. Monitoring and source tracking of tetracycline  
resistance genes in lagoons and groundwater adjacent to swine  
production facilities over a 3-year period. Appl Environ Microbiol.  
2
007;73(15):4813-23.  
2
3. Pei R, Kim S-C, Carlson KH, Pruden A. Effect of River Landscape  
on the sediment concentrations of antibiotics and corresponding  
antibiotic resistance genes (ARG). Water Research.  
2
006;40(12):2427-35.  
2
2
4. Reinthaler FF, Posch J, Feierl G, Wüst G, Haas D, Ruckenbauer  
G, et al. Antibiotic resistance of E. coli in sewage and sludge.  
Water Research. 2003;37(8):1685-90.  
5. Auerbach EA, Seyfried EE, McMahon KD. Tetracycline resistance  
genes in activated sludge wastewater treatment plants. Water  
Research. 2007;41(5):1143-51.  
2
2
6. Aali R, Nikaeen M. Detection of enteroviruses in biosolids. Health  
system research. 2013;9(4):370-7.  
7. Aminov R, Garrigues-Jeanjean N, Mackie R. Molecular ecology  
of tetracycline resistance: development and validation of primers  
for detection of tetracycline resistance genes encoding ribosomal  
protection proteins. Applied and environmental microbiology.  
2
001;67(1):22-32.  
2
2
3
8. Rijal G, Zmuda J, Gore R, Abedin Z, Granato T, Kollias L, et al.  
Antibiotic resistant bacteria in wastewater processed by the  
Metropolitan Water Reclamation District of Greater Chicago  
System. Water Science and Technology. 2009;59(12):2297-304.  
9. Xi C, Zhang Y, Marrs CF, Ye W, Simon C, Foxman B, et al.  
Prevalence of Antibiotic Resistance in Drinking Water Treatment  
and Distribution Systems. Applied and Environmental  
Microbiology. 2009;75(17):5714-8.  
0. Iwane T, Urase T, Yamamoto K. Possible impact of treated  
wastewater discharge on incidence of antibiotic resistant bacteria  
in river water. Water science and technology: a journal of the  
International Association on Water Pollution Research.  
2
001;43(2):91.  
3
3
3
1. Huang J-J, Hu H-Y, Lu S-Q, Li Y, Tang F, Lu Y, et al. Monitoring  
and evaluation of antibiotic-resistant bacteria at a municipal  
wastewater treatment plant in China. Environment international.  
2
012;42:31-6.  
2. Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, et  
al. Urban wastewater treatment plants as hotspots for antibiotic  
resistant bacteria and genes spread into the environment: A review.  
Science of The Total Environment. 2013;447:345-60.  
3. Schlüter A, Szczepanowski R, Kurz N, Schneiker S, Krahn I,  
Pühler A. Erythromycin resistance-conferring plasmid pRSB105,  
isolated from a sewage treatment plant, harbors a new macrolide  
resistance determinant, an integron-containing Tn402-like  
element, and a large region of unknown function. Applied and  
environmental microbiology. 2007;73(6):1952-60.  
3
3
4. Geli P, Laxminarayan R, Dunne M, Smith DL. “One-Size-Fits-  
All”? Optimizing Treatment Duration for Bacterial Infections.  
PloS one. 2012;7(1):e29838.  
5. Hadi M sR, ebrahimzadeh namvar A.M, Karimi M, Solaimany  
Aminabad M. antibiotic Resistance of Isolated Bacteria from  
Urban and Hospital Wastewaters in Hamedan city. IranJHealth&  
environ. 2011;4(1):105-14.  
3
3
6. Tuméo E, Gbaguidi-Haore H, Patry I, Bertrand X, Thouverez M,  
Talon D. Are antibiotic-resistant Pseudomonas aeruginosa isolated  
from hospitalised patients recovered in the hospital effluents?  
International Journal of Hygiene and Environmental Health.  
2
008;211(1-2):200-4.  
7. Menceloglu YZ, Balcioglu IA. Comparison of the effectiveness of  
chlorine, ozone, and photocatalytic disinfection in reducing the  
risk of antibiotic resistance pollution. Journal of Advanced  
Oxidation Technologies. 2011;14(2):196-203.  
7
49