Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 657-663  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Efficiency of the Solar Energy Usage by Winter  
Wheat Plantings Made with Different Crop  
Cultivation Technologies  
*
Olga V. Melnikova, Vladimir E. Torikov , Anatoliy S. Kononov, Viktor P. Kosianchuk,  
Evgeniy V. Prosyannikov, Alexei A. Osipov  
Federal State Budget Educational Institution of Higher Education Bryansk State Agrarian University, 2A, Sovetskaya street, village  
of Kokkino, Vygonichsky district, Bryansk region, 243365  
Received: 20/12/2019  
Accepted: 19/03/2020  
Published: 20/05/2020  
Abstract  
The paper presents the results of determining the efficiency of the solar energy usage by winter wheat crops cultivated with  
different technologies on the gray forest middle-loamy soil in the southwestern part of the Central region of Russia. The authors  
found that the photosynthetic active radiation (PAR) usage coefficient can be increased by agrotechnical methods of cultivation,  
primarily by optimizing the mineral nutrition of plants. It was shown that the application of mineral fertilizers in intensive  
60  
agricultural technologies (N60-90 P K120+N30+N30+pesticides) contributed to 1.8-2.0 times greater solar energy accumulation in the  
biomass of the winter wheat plantings Moskovskaya 56 and Nemchinovskaya 57, compared to biological technology (N  
control). When cultivating winter wheat Moskovskaya 56 and Nemchinovskaya 57 against a high background of mineral nutrition, in  
comparison with the control variant (N ), solar energy costs per unit of grain yield were reduced due to the formation of a higher  
0 0 0  
P K -  
0 0 0  
P K  
yield (5,75 -6,36 t/ha of grain). Such an “economical” expenditure of solar energy on an economically valuable part of the plantings’  
biomass can be explained by an increase in the PAR usage coefficient in crops by 2.82.9% at a high agricultural background,  
compared to the 1.41.6% increase of the control variant. A multiple correlation and regression analysis revealed a close positive  
relationship between the winter wheat grain yield and indicators of the dry plantings’ biomass (r = 0.998), total accumulated energy  
by plantings (r = 0.998), and the PAR usage by plantings (r = 0.998).  
Keywords: Winter wheat, Grain yield, Dry biomass, Solar energy, Photosynthetic active radiation (PAR), PAR usage coefficient  
Introduction1  
nitrogen (3-8). Nitrogen is the main element that has a greater  
1
effect on the processes associated with photosynthesis. It is  
part of protein, chlorophyll and nucleic acids. In this case,  
photosynthesis is a necessary condition for the conversion of  
nitrogen. Nitrogen deficiency causes a decrease in the amount  
of chlorophyll and enzymes involved in assimilation, and, as  
a result, reduces productivity. Fertilized plants better absorb  
the light energy necessary for the synthesis of organic  
substances (9). This tendency can be also detected in  
territories exposed to radioactive contamination with Cesium-  
Photosynthesis is an important process of plant life,  
which provides an expanded reproduction of organic matter  
in the plant world. The leaf-area duration of plants and crops,  
the intensity of photosynthesis, photosynthetic potential, the  
net productivity of photosynthesis and, therefore, the level of  
plant productivity to a large extent depend on the internal  
(genetic, physiological) characteristics of plants, as well as  
their response to the changing environmental conditions (1).  
The photosynthetic activity of plants in crops is the biological  
basis of crop yield (2).  
The photosynthetic activity of plants largely depends on  
the availability of mineral nutrition elements, and primarily  
1
37 as a result of the Chernobyl accident (10, 11).  
For the first time, the general terms for the principle of  
programming yield was substantiated by E.A. Mitscherlich.  
He created mathematical expression for the effect law of  
growth factors, according to which the plant yield (Y)  
increases with the introduction of increasing quantities of any  
growth factor (X), proportional to (C)  the value of the crop  
lacking to the maximum yield (A), that is to say:  
Corresponding author: Vladimir E. Torikov, Federal State  
Budget Educational Institution of Higher Education Bryansk  
State Agrarian University, 2A, Sovetskaya street, village of  
Kokkino, Vygonichsky district, Bryansk region, 243365.  
Email: torikov@bgsha.com.  
657  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 657-663  
У
Х
4) Determination of the plantings’ photosynthetic  
potential in total;  
(А У) С  
5
) Strict accounting and proper use of the basic  
This formula served as the starting point for the  
agriculture laws (equal significance and independence of the  
plants’ life factors, optimal and combined action of factors,  
returning and crop rotation, etc.);  
development of methods for calculating fertilizer doses for  
the planned crop. This was studied by A.T. Kirsanov in 1929.  
In the 30s, theoretical developments in crop programming  
and their practical application were carried out by A.G. Lorh  
and M.S. Savitsky in the experiments with potatoes and  
winter wheat. The whole complex of factors necessary for  
plant life was taken into account: regulation of the nutritional  
regime, water supply, carbon dioxide exchange of plants.  
M.S. Savitsky previously compiled the structural formula for  
the grain yield of winter wheat, and A.G. Lorh made a graph  
of the potato biomass growth. The implementation of these  
measures helped to obtain 528 centners of potatoes per 1 ha  
with a planned yield of 500 centners per 1 ha and a close to  
the planned winter wheat grain yield of 99.8 centners per 1 ha  
in the Moscow region.  
6) The fertilizer system development for the  
programmable high quality crop, with mandatory  
consideration of effective soil fertility and plant nutrient  
requirements in accordance with the planned level of yield;  
7) The development of a set of agrotechnical measures to  
ensure the achievement of the planned yield on the basis of  
soil and climatic conditions, biological characteristics of the  
cultivated crops and their varieties;  
8) Timely supply of the plants’ water needs;  
9) Development of the pest and disease control system;  
10) The technical support for the programming process  
(the availability of all required data and mathematical  
programs).  
Further the development of science required the creation  
of a general theory for obtaining planned high yields of  
agricultural crops. The most important scientific  
developments in this direction were carried out at the  
Moscow Agricultural Academy named after K.A. Timiryazev  
by I.S. Shatilov (1975), later by his student M.K. Kayumov  
For the effective cultivation of crops according to the  
developed program and obtaining the planned harvests, it is  
necessary to have sufficient information and strictly adhere to  
the adopted technology. We should note that some crop  
factors are difficult to control or even unmanageable (for  
example, climatic and weather conditions), which explains  
the inevitable deviations from the intended level of yield.  
Correction of agrotechnical practices, reclamation and other  
measures, depending on the sowing condition, weather  
conditions, the presence of pests, and diseases reduce the  
amplitude of these deviations, but cannot completely remove  
them.  
Programming doesn’t involve the obtaining of the  
maximum possible crop from a given area, but an optimal  
amount of crop in the specific soil-climatic and economic  
conditions of each field, this allows us to stably increase crop  
yields while increasing soil fertility. To do this, it is  
necessary to comprehensively assess the bioclimatic potential  
of the territory, according to the parameters of the solar  
radiation income, the sum of the effective temperatures  
during the growing season and the moisture supply of crops.  
The productivity of crops in agrophytocenosis primarily  
depends on the amount of photosynthetic active radiation  
(PAR) coming to the surface of the crop and the coefficient  
of its usage. PAR is the part of the radiant energy of the sun  
(with a wavelength of 0.38 - 0.72 microns), which plants  
absorb during photosynthesis (12). We found that the main  
mechanism for the formation of grain crop yields is the  
transpiration process, which driving force is the radiation  
balance and PAR. In the entire interval of accessible soil  
moisture, mineral fertilizers increase transpiration of grain  
crops and, consequently, their productivity (13).  
(1977, 1982) at the Agrophysical Institute and at St.  
Petersburg Agricultural State University by N.F. Bondarenko,  
E.E. Zhukovsky (1981); at the Belarussian Research Institute  
of Soil Science and Agricultural Chemistry by T.N.  
Kulakovskaya (1975); at the Research Institute of Irrigation  
Agriculture by A.A. Sobko (1984) and by many others.  
The theoretical basis for the development of crop  
programming as an independent scientific field contained the  
deepening of the crops photosynthetic productivity theory,  
the creation of the theory, describing the energy and mass  
transfer processes in the ecological system, the accumulation  
of agrometeorological information, which made possible to  
establish quantitative relationships between the level of crop  
productivity and meteorological indicators, as well as  
evaluate the effect of agrotechnical methods in various soil  
and climatic conditions. This theoretical basis also included  
the mathematical expression development for the production  
process, creation of complex mathematical models and  
methods for its modeling, creation of the theory and practical  
solutions, allowing to select the optimal agrotechnical  
methods for cultivating crops in specific soil and climatic  
conditions, basing on the meteorological forecasts and  
agroclimatic data.  
The main methodological principles of programming  
crop yields were formulated in 1975 by academician I.S.  
Shatilov (12):  
1
)
Determination of the phytomass productivity  
The whole set of agrotechnical measures must be adapted  
to ensure optimal conditions for photosynthesis. One of the  
factors that make possible to obtain high and stable crops is  
the cultivation conditions optimization. Its initial stage is to  
create the best conditions for photosynthesis and respiration  
of plants. Crop is formed due to solar energy and carbon  
dioxide in the atmosphere. Therefore, all agricultural  
techniques are aimed at increasing the efficiency of the solar  
energy usage by plants. Knowing the income of PAR during  
hydrothermal indicator, taking into account all samples of  
crop rotation. This helped to create crop rotations in which  
plants have the maximum solar energy usage and give the  
greatest yield of biological products per the area unit;  
2
) Determination of the yield level by the PAR usage  
coefficient of the cultivated plants;  
) Taking into account the potential of each cultivated  
crop or variety;  
3
658  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 657-663  
the growing season, it is possible to set the task of forming a  
crop with the highest PAR assimilation coefficient in order to  
increase the potential crop yield (12). Therefore, the study of  
the solar energy usage efficiency in crops is a very urgent  
task aimed at realizing their productive potential.  
region of Russia, where studies were conducted (14, 15). The  
potential yield of dry biomass (Уbiol.), provided by the income  
of PAR (with the usage coefficient 3% by grain crops), was  
calculated by Formula 1:  
푃퐴푅⋅К푃퐴푅⋅104  
У.  
=
(1)  
2
Materials and Methods  
The purpose of this work is to study the efficiency of the  
where Уbiol. is potential yield of the plant dry biomass,  
solar energy usage by winter wheat crops grown with various  
cultivation technologies. The soil of the test plot is gray forest  
middle-loamy, well cultivated. The humus content (according  
to Tyurin method) was 3.38-3.62%, рНКСL - 5.7-5.9; the  
content of mobile forms of phosphorus - 220-319 mg/kg of  
soil; exchange potassium - 215-247 mg/kg of soil. Field  
studies included phenological observations on the phases of  
development, taking into account the biomass and grain yield  
of winter wheat. Winter wheat (variety Moskovskaya 56 and  
Nemchinovskaya 57) was sown in a 4-full crop rotation: 1.  
vetch-oat mixture for herbage; 2. winter wheat; 3. potato; 4.  
spring barley. In the experiment, we studied 4 technologies  
for the cultivation of winter wheat, differing in the level of  
intensification:  
kg/ha; QPAR is PAR income for the crop growing season  
2
(from seedlings to harvest), kJ/cm ; KPAR is PAR usage  
coefficient in crops, %; q is energy value (of a whole plant),  
kJ/kg. During the autumn-summer vegetation of winter wheat  
(
(
150 days), the PAR in the territory of the experimental site  
2
QPAR) amounted to 144.54 kJ/cm , with the energy value (q)  
of the whole winter wheat plant 18631 kJ/kg, the potential  
4
yield of dry biomass will be: Уbiol. = 144.54 x 3.0 x 10 /  
1
8631 = 232 cwt/ha = 23.2 t/ha. To transfer dry biomass to  
the main product (grain), the coefficient of economic  
efficiency Кe.e.= 0.4 was used. The calculation of the possible  
yield (Уо) of absolutely dry main product (grain) was carried  
out according to Formula 2:  
1
. High intensive technology (the calculate NPK norms  
60 120  
for a programmable grain yield level of 7 t/ha) - N90P K  
from autumn) + N30 + N30 + pesticides + aftereffect of  
organic fertilizers in crop rotation.  
. Intensive technology (the calculate NPK norms for a  
programmable grain yield level of 6 t/ha) - N60  
Уо = У.  К..  
(2)  
(
Уo = 232 x 0.4 = 92.8 t/ha = 9.3 t/ha  
2
The yield of the winter wheat grain (Уs) at standard  
humidity (Bc = 14%) was found by Formula 3:  
60  
P K120 (from  
autumn) + N30 + N30 + pesticides + aftereffect of organic  
fertilizers in crop rotation.  
Уо 100%  
Ус   
3
. Traditional technology (the calculate NPK norms for a  
1
00% Вс  
programmable grain yield level of 5 t/ha) - N60  
60  
P K120 (from  
(3)  
autumn) + N30 + pesticides + aftereffect of organic fertilizers  
in crop rotation.  
Ус = 92.8 x 100 / (100 - 14) = 107.9 cwt/ha = 10.8 t/ha  
It can be seen from the calculations that in the  
southwestern part of the Central region of Russia with the  
PAR usage coefficient of 3.0%, winter wheat plantings can  
provide the grain yield up to 10.79 t/ha. Table 1 shows the  
theoretically possible levels of winter wheat grain yield at  
different coefficients of PAR usage by crops. An increase in  
the PAR usage coefficient by every 0.5% can provide an  
increase in the yield of winter wheat grain by 1.8 t/ha.  
4
. Biologized technology (extensive) - without the use of  
mineral fertilizers (N ), aftereffect of organic fertilizers  
0 0 0  
P K  
in crop rotation (manure 40 t/ha applied to potatoes; shredded  
straw 7 t/ha applied after harvesting spring barley), without  
pesticides control variant.  
In the autumn, azophoska (N:P:K  16:16:16) and  
potassium chloride KCl (60% rate application) were applied  
as mineral fertilizers for the presowing cultivation. Nitrogen  
fertilizing of crops was carried out twice with ammonium  
nitrate NH  
during the resumption of spring vegetation and the second -  
30 at the beginning of the shoot stage. The following  
4
NO  
3
(34.5% rate application): the first - N30  
Table 1: Theoretically possible winter wheat grain yield at  
different PAR usage coefficients of crops, t/ha  
N
pesticides were used in the experiments: seed dressers: Tabu,  
VSK + Oplot, VSK (0.5 l/t + 0.6 l/t); herbicides in the  
tillering phase in the spring: Bomba Mix, VDG, SE + Lastic  
Top, MKE (0.28 l/ha + 0.5 l/ha); retardant at the end of the  
tillering phase - Stabilan, VR (1.5 l/ha); fungicide at the shoot  
phase - Akanto Plus, KS (0.6/ha). The distribution of plots in  
the experiment is systematic, 3-fold repetition, the total plot  
2
2
area is 220 m , including the registration plot - 75 m .  
3
Results and discussion  
Basing on the programming methods for crop  
Note*. Grain yield is given at std humidity (14%).  
productivity by M.K. Kayumov (12), we calculated the  
theoretically possible yield of winter wheat grain, provided  
by the income of PAR in the southwestern part of the Central  
The efficiency of the solar energy usage by crops (KPAR  
can be increased by agrotechnical methods of cultivation,  
)
659  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 657-663  
primarily by optimizing the mineral nutrition of plants. Long-  
term research of Yermokhin Y.I. and Ermolaev O.T. (16)  
revealed the high efficiency of the solar energy usage by  
cereal plants at the optimal level and ratio of nitrogen and  
phosphorus in plants. So, in winter wheat, the accumulation  
of solar energy increases with an increase in the in plants,  
during the earing-flowering stage, of the following  
substances content: nitrogen  up to 3.8-4.2%; phosphorus –  
up to 0.23-0.35%. By the method of Ermokhin Y.I. and  
Ermolaev O.T. the accumulation of solar energy by plants  
can be calculated using the formula for photosynthesis:  
The ratio of grain to straw was determined by the analysis  
of a sheaf sample. In the variants with high intensive and  
intensive technologies, the ratio of grain to straw was 1:1.15;  
in the variant with traditional technology  1:1.22; in control  
variant 1:1.24. When calculating the mass of the root  
system, we used the data, obtained by A.F. Neklyudova, V.D.  
Kinshakova, V.M. Chernakov (17), who established that in  
winter wheat the ratio of aboveground mass to underground  
mass is 1:1. Thus, we can conclude that with dry biomass of  
winter wheat plantings of 21.0 t/ha in the variant with high  
60  
intensive technology (N90P K120+N30+N30+pesticides), the  
total accumulated solar energy by plantings was 317.6 kJ/ha,  
which is 2 times higher than in the control variant with  
biologized technology (without introducing mineral  
fertilizer). In 2014, as in 2013, in the variant with high  
intensive technology, the total accumulated energy amounted  
to 356.9 kJ/ha, which is 2 times more than in the variant with  
biologized technology. With the traditional technology of  
wheat cultivation, the total accumulated energy by plantings  
was 308.5 kJ/ha with the dry biomass of 20.4 t/ha (Table 3).  
A similar trend was noted in the period of 2015.  
푒푛푒푟ꢁ푦 푠푢푚 2,722 퐽  
О →ꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢂꢃ С  
6
СО  
2
+ 6Н  
2
6
Н
12  
О
192  
6
+ 6О  
2
264  
108  
180  
It expresses the essence of the phenomenon. In the light  
in a green plant, from extremely oxidized substances –  
carbon dioxide and water, organic substances (glucose) are  
formed and molecular oxygen is released. We calculated the  
accumulation of solar energy by the winter wheat plantings  
Moskovskaya 56 and Nemchinovskaya 57 on the  
experimental plots with different cultivation technologies  
Table 3: Solar energy accumulation by winter wheat crops of  
(
Tables 2-4):  
the Moskovskaya 56 variety (2016)  
1
90 60  
.
High  
Intensive  
N P K120+N30+N30+pesticides):  
Technology  
Dry mass, t/ha  
(
6
21,0 푡/ℎ푎 ×10 ×2,722  
Total accumulated  
ꢄꢅ5ꢆꢆ,ꢅ J/ha  
. Intensive technology (N60  
Total accumulated energy  
ꢈꢉ33ꢅꢄ,ꢄ J/ha  
energy  
=
=
180  
3
2
P
60  
K120+N30+N30+pesticides):  
6
9,ꢇ 푡/ℎ푎 ×10 ×2,722  
1
=
=
=
=
180  
High Intensive  
(N90  
P
60  
K
120+N30+N30  
6.36  
5.83  
5.40  
5.5  
5.0  
6.3  
5.8  
11.8  
10.8  
23.6  
21.6  
356.9  
326.6  
+
pesticides)  
3
60  
. Traditional technology (N60P K120+N30+pesticides):  
6
Intensive  
(N60P K120+N30+N  
60 3  
1
8,2 푡/ℎ푎 ×10 ×2,722  
80  
Total accumulated energy  
=
1
0
+ pesticides)  
ꢈꢅ5ꢈꢈꢊ,ꢊ J/ha  
. Biologized Technology (N  
Traditional  
4
0 0 0  
P K ):  
(N60P  
60  
K120+N30  
+
4.6  
2.6  
5.6  
3.2  
10.2  
5.8  
20.4  
11.6  
308.5  
175.4  
6
1
0,8 푡/ℎ푎 ×10 ×2,722  
80  
pesticides)  
Biologized  
(N P K ) - control  
0 0 0  
Total accumulated energy  
ꢄꢆ33ꢈꢋ,ꢋ J/ha  
=
1
3.01  
Table 4: Solar energy accumulation by winter wheat crops of  
Table 2: Solar energy accumulation by winter wheat  
plantings of the Moskovskaya 56 variety (2015)  
the Moskovskaya 56 variety (2017)  
Dry mass, t/ha  
Total  
Total  
Dry mass, t/ha  
accumulated  
energy by  
the  
accumulate  
d energy by  
the  
plantings,  
kJ/ha  
plantings,  
kJ/ha  
High Intensive  
1
5
0.  
High Intensive  
(
N
90  
P
60  
K120+N30  
+
5.75  
4.9  
4.5  
5.6  
5.2  
21.0  
19.4  
317.6  
293.4  
(N90  
P
60  
K120+N30+N30  
5.58  
5.10  
4.8  
4.4  
5.5  
5.1  
10.3  
9.5  
20.6  
19.0  
311.5  
287.3  
N30+pesticides)  
+
pesticides)  
Intensive  
Intensive  
(N60P K120+N30+N  
60 3  
(
N
60  
P
60  
K120+N30  
5.27  
9.7  
30  
+N +  
0
+ pesticides)  
pesticides)  
Traditional  
Traditional  
(
N
60  
P
60  
K120+N30  
+
4.64  
2.61  
4.0  
2.2  
4.9  
2.7  
8.9  
4.9  
17.8  
9.8  
269.2  
148.2  
(
N
60  
P
60  
K
120  
4.71  
4.1  
2.4  
5.0  
3.0  
9.1  
5.4  
18.2  
10.8  
275.2  
163.3  
pesticides)  
Biologized  
(N P K ) - control  
0 0 0  
30  
+N +  
pesticides)  
Biologized  
(
N
0
P
0
K
0
) -  
2.84  
control  
In the variant with high intensive technology, with the  
total biomass of 20.6 t/ha, the plantings’ total accumulated  
660  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 657-663  
energy was 311.5 kJ/ha. In the transition from biologized  
technology to traditional, the total accumulated energy  
increased by 82% and amounted to 269.2 kJ/ha (Table 4).  
Similar calculations were performed for the winter wheat  
variety Nemchinovskaya 57. Analyzing the data for the  
variety Nemchinovskaya 57, we can conclude that the  
introduction of the mineral fertilizers’ calculate norms in  
agricultural technologies contributed to an increase in solar  
energy accumulation in crops in 1.7-1.9 times, compared to  
(Table 7). Using Formula (1) to calculate the theoretically  
possible biological crop yield, we derive a formula for  
calculating the PAR usage coefficient (KPAR, %) by crops:  
Уbiol. q  
Q10  
КPAR  
4
(4)  
where Yboil is actually obtained biological productivity of  
winter wheat (total dry biomass) in the experiment, kg/ha;  
Q
PAR is PAR income for the growing season of the crop  
0 0 0  
the control variant of the biologized technology (N P K ).  
2
(144.54), kJ/cm ; and q is energy value of the whole plant  
Studies have shown that on average, over 3 years, winter  
wheat plantings of Nemchinovskaya 57 accumulated more  
solar energy than Moskovskaya 56 (2.7% with high intensive  
technology, 3.2% with intensive technology, 4.4% with  
traditional technology and 12.5% with biologized  
technology) (Table 5).  
(18631), kJ/kg. For example, in 2013, the yield of the winter  
wheat dry biomass Moskovskaya 56 in the variant with high  
intensive technology amounted to 21 t/ha = 210 kg/ha (Table  
2
). By introducing the value in the formula, we obtain the  
PAR usage coefficient of 2.7%:  
Уbiol. q  
Q 10  
210cwt / ha18631kJ / kg  
2,7%  
2
Table 5: Accumulation of solar energy (kJ/ha) by winter wheat crops  
with different cultivation technologies, on average for 2015-2017  
КPAR  
4
144,54kJ / cm 10000  
Agrotechnologies  
Moskovskaya  
Nemchinovskaya 57  
5
6
The calculated coefficients of the PAR usage in winter  
wheat crops, depending on the cultivation technologies, are  
presented in Table 7. The calculations showed that, on  
average, over 3 years of research, winter wheat crops  
Moskovskaya 56 and Nemchinovskaya 57 most effectively  
used solar energy (KPAR = 2.6-2.9%) on a high agricultural  
High Intensive  
3
3
28.6  
02.4  
337.7  
312.5  
(
N
90  
P
60  
K120+N30+N30+pesticides)  
Intensive  
(N P K120+N30+N30+pesticides)  
60 60  
Traditional (N60 120+N30+pesticides)  
60  
P K  
284.3  
162.3  
297.4  
185.5  
Biologized (N P K ) - control  
0 0 0  
background with N60  
90 60  
- P K120, using two nitrogen fertilizers  
The results of the studies in Table 6 show that, when  
cultivating winter wheat against a high background of  
mineral nutrition, the solar energy costs of the plantings’  
biomass decreased per unit of grain yield due to higher  
yields. So, in control variants with biologized technology,  
N30 and the plant protection products in cultivation  
technologies. When cultivating winter wheat with biologized  
technology, without the use of readily soluble mineral  
fertilizers, the average coefficient of the PAR usage by  
Moskovskaya 56 variety was 1.4%, and by Nemchinovskaya  
5
7.5-58.5 J of the solar energy were spent per 1 kg of grain,  
while with the introduction of  
120+N30+N30+pesticides in the variant with high  
intensive cultivation technology, energy costs decreased to  
5.7-56.2 J/kg of grain.  
5
7 variety it was 1.6%.  
90 60  
N P K  
Table 7: The coefficients of the PAR usage by winter wheat  
crops depending on cultivation technologies, %  
5
Agrotechnologies  
2015  
2016  
2017  
Average  
Moskovskaya 56  
Table 6: The solar energy costs of the winter wheat plantings’  
High Intensive  
120+N30+N30+pesticides)  
Intensive (N60 120+N30+N30+ pesticides)  
Traditional (N60 120+N30+pesticides)  
Biologized (N ) - control  
2
.7  
3.0  
2.7  
2.8  
biomass, per unit of grain yield, (J/kg)  
90 60  
(N P K  
P
60  
K
P K  
60  
2.5  
2.3  
2.8  
2.6  
2.4  
2.3  
2.6  
2.4  
Agrotechnologies  
2015  
2016  
2017  
Average  
Moskovskaya 56  
0
0
P K  
0
1
.4  
Nemchinovskaya 57  
1.5  
1.3  
1.4  
High Intensive  
120+N30+N30+pesticides)  
Intensive (N60 120+N30+N30+ pesticides)  
Traditional (N60 120+N30+pesticides)  
5
5.2  
56.1  
55.8  
55.7  
90 60  
(N P K  
P
60  
K
P
60  
55.7  
58.4  
56.0  
57.1  
56.3  
58.0  
56.0  
57.8  
High Intensive  
60  
(N90P K120+N30+N30+pesticides)  
Intensive (N60 120+N30+N30+pesticides)  
2
.8  
3.1  
2.9  
2.7  
2.5  
2.9  
2.7  
K
60  
P K  
Biologized (N ) - control  
0
P
0
K
0
57.5  
58.3  
56.8  
57.5  
2.6  
Nemchinovskaya 57  
High Intensive  
Traditional (N60 120+N30+pesticides)  
P
60  
K
2
.4  
2.8  
1.7  
2.4  
1.4  
2.5  
1.6  
5
6.5  
56.0  
55.9  
57.9  
56.2  
55.9  
57.2  
56.2  
56.0  
57.6  
Biologized (N P K ) - control  
0 0 0  
1.6  
(
N
90  
P
60  
K120+N30+N30+pesticides)  
Intensive (N60 120+N30+N30+pesticides)  
60  
P K  
56.2  
57.7  
Thus, we can conclude that the use of mineral fertilizers  
together with pesticides in cultivation of winter wheat with  
intensive technologies contributed to an increase in the PAR  
usage coefficient by 2.9%, which is 1.3% higher in absolute  
Traditional (N60 120+N30+pesticides)  
60  
P K  
Biologized (N  
0
P
0
K
0
) - control  
59.5  
58.7  
57.4  
58.5  
This “economical” expenditure of solar energy by winter  
0 0 0  
terms, compared to biologized technology (N P K , without  
wheat crops when cultivated with high intensive technology  
pesticides control variant).  
(
(
N
N
90  
P
P
60  
K
K
120+N30+N30+pesticides)  
120+N30+N30+pesticides)  
and  
technology  
intensive  
can be  
Using multiple correlation and regression analysis, 24  
correlation pairs of dependent features were processed. The  
analysis (Table 8, Figure 1) made it possible to identify a  
close positive relationship between winter wheat grain yield  
60  
60  
explained by an increase in the PAR usage coefficient up to  
.8-2.9% due to a more balanced mineral nutrition of plants  
2
661  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 657-663  
and indicators of the plantings’ dry biomass (r = 0.998), total  
accumulated energy by the plantings (r = 0.998) and the  
plantings’ PAR usage coefficient (r = 0.998).  
decrease in the costs of solar energy for the plantings’  
biomass per unit of crop was observed, due to an increase in  
the PAR usage coefficient in the plantings. This was  
facilitated by the most favorable conditions for the growth  
and development of winter wheat plants in these  
experimental variants.  
Table 8: Correlation matrix of the winter wheat grain yield  
(
1
Y, t/ha) dependence on the plantings’ dry biomass (X , t/ha),  
the total accumulated energy (X , kJ/ha), the cost of solar  
energy for grain formation (X , J/kg) and the PAR usage  
coefficient in plantings (X , %)  
2
4
Conclusion  
The efficiency of the solar energy usage by crops can be  
3
4
improved by agrotechnical methods of cultivation, primarily  
by optimizing the mineral nutrition of plants. The  
introduction of mineral fertilizers in intensive agricultural  
У
Х
1
Х
2
Х
3
Х
4
У
1.000  
0.998  
0.998  
-0.659  
0.998  
Х
1
1.000  
1.000  
-0.612  
0.999  
technologies (N60-90  
60  
P K120+N30+N30+pesticides) contributed  
Х
2
Х
3
Х
4
1.000  
-0.612  
0.999  
to 1.8-2.0 times greater solar energy accumulation in the  
biomass of winter wheat plantings Moskovskaya 56 and  
Nemchinovskaya 57, compared to biologized technology  
1.000  
-0.622  
1.000  
0 0 0  
(N P K - control variant). When cultivating winter wheat  
Moskovskaya 56 and Nemchinovskaya 57 against a high  
background of mineral nutrition, in comparison with the  
An inverse correlation relationship (r = -0.659) between  
the winter wheat grain yield and the solar energy costs for the  
plantings biomass per 1 kg of grain was revealed, which  
confirms the highest efficiency of the PAR usage by high-  
yielding crops in variants with intensive cultivation  
technologies.  
0 0 0  
control variant (N P K ), the costs of solar energy per unit of  
grain harvest was reduced due to the formation of a higher  
yield (5.75-6.36 t/ha of grain). Such an “economical” usage  
of the solar energy by an economically valuable part of the  
plantings’ biomass can be explained by an increase in the  
PAR usage coefficient in crops up to 2.82.9% at a high  
agricultural background, compared to 1.41.6% in control  
variant. Multiple correlation and regression analysis revealed  
a close positive relationship between winter wheat grain yield  
and indicators of the plantings’ dry biomass (r = 0.998), total  
accumulated energy by plantings (r = 0.998), and their PAR  
usage coefficient (r = 0.998).  
References  
1
.
Nichiporovich AA. Photosynthetic activity of plants as the basis  
of their productivity in the biosphere and farming. A. A  
Nichiporovich. Photosynthesis and the production process.-M.:  
Nauka. 1988:5-28.  
2
.
Gulyanov YA, Dosov DZ. Features of leaf area formation and  
photosynthetic potential with a different combination of winter  
wheat fertilizer methods in the southern chernozems of the  
Orenburg Urals. The Orenburg State Agrarian University  
Reporter. 2014;3:26-29.  
Figure 1: Graphical representation for the correlation matrix of the  
winter wheat grain yield (Y, t/ha) dependence on the plantings’ dry  
3. Kozhuhar TV, Kirichenko EV, Kokhan SS. The effect of mineral  
fertilizers and the presowing seed treatment with biological  
agents on the chlorophyll content in winter wheat leaves.  
Agrochemistry. 2012;1:6167.  
4. Belous NM, Kharkevich LP, Shapovalov VF, Spravtseva EV.  
Efficiency of mineral fertilizers and growth regulator in winter  
wheat crops during radioactive soil contamination. In the  
collection: Problems of the agriculture ecologization and ways to  
solve them. Materials of the national scientific-practical  
conference. Bryansk State Agrarian University. 2017:33-37.  
biomass (X  
of solar energy for grain formation (X  
coefficient in plantings (X , %)  
1
, t/ha), the total accumulated energy (X , kJ/ha), the cost  
2
3
, J/kg) and the PAR usage  
4
The dependence of the analyzed characteristics can be  
expressed by the mathematical equations of linear regression:  
У(Х  
У(Х  
У(Х  
У(Х  
1
2
3
4
) = 4,87 + 1,73 (Х – 18,27)  
) = 4,87 – 0,097 (Х – 276,4)  
) = 4,87 – 0,082 (Х – 56,9)  
) = 4,87 + 0,043 (Х – 2,35)  
5
.
Belous NM, Melnikova OV, Malyavko GP, Bogomaz AV,  
Smolsky EV, Bogomaz RA, Pronichev VV. Winter crops:  
biology  
and  
cultivation  
technologies.  
Practical  
recommendations. Bryansk, Publishing house of the Bryansk  
State Agricultural Academy. 2013:5-6.  
6
.
Belous NM, Draganskaya MG, Belous IN, Belchenko SA.  
Efficiency of crop cultivation technologies in crop rotation in the  
southwest of the Non-Black Sea Zone of Russia. Monograph.  
Bryansk, Publishing house of the Bryansk State Agricultural  
Academy. 2012:105-108.  
Thus, we found that in the experimental variants with  
high intensive 120+N30+N30+pesticides) and  
intensive (N60 120+N30+N30+pesticides) technologies of  
the winter wheat (Moskovskaya 56 and Nemchinovskaya 57)  
cultivation with the highest grain yield of 5.75-6.36 t/ha, a  
60  
(N90P K  
60  
P K  
662  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 657-663  
7
.
Belous NM, Torikov VE, Melnikova OV. The results of a long-  
term field experiment with fertilizers No. 30 of the geographic  
network (the year of laying the experiment 1983). In the  
collection: Results of the long-term studies in the system of the  
geographical network experiments with fertilizers of the Russian  
Federation. Moscow, Publisher: All-Russian Research Institute  
of Agrochemistry named after D.N. Pryanishnikov. 2012:27-37.  
Belous NM, Torikov VE, Shpilev NS, Melnikova OV, Malyavko  
GP, Naumova MP, Nesterenko OM. Winter crops: biology and  
cultivation technologies. Bryansk, Publishing house of the  
Bryansk State Agricultural Academy, 2010:15-19.  
8
.
.
9
1
1
Pronko VV, Korsakov KV. Efficiency of the humic acids salts in  
the cultivation of winter wheat in the southern chernozems of the  
Volga region. Agrochemistry. 2011;8:51-59.  
0. Pakshina SM, Belous NM, Shapovalov VF, Smolsky EV, Sitnov  
1
37  
DM. The impact of crops on the Cs bio removal indicators.  
Ukrainian Journal of Ecology. 2017;7(2): 184-190.  
1. Belous NM, Smol'skii EV, Chesalin SF, Shapovalov VF.  
1
37  
Potassium fertilizers to reduce Cs accumulation and increase  
fodder crop harvesting on the radionuclide-polluted floodplain  
pastures. Sel'skokhozyaistvennaya Biologiya. 2016;51(4):543-  
5
52.  
1
1
2. Kayumov MK. Programming the productivity of field crops.  
Moscow, Rosagropromizdat. 1989:p. 186.  
3. Pakshina SM, Torikov VE, Belous NM, Melnikova OV.  
Influence of transpiration on grain productivity. Research  
Journal of Pharmaceutical, Biological and Chemical Sciences.  
2
016;7(1):1486-1493.  
1
1
1
4. Melnikova OV. Bioclimatic potential of field crop productivity  
in the south-west of the Central region of Russia. The Bryansk  
State Agricultural Academy reporter. 2011;2:59-69.  
5. Melnikova OV, Torikov VE. Issue of bioclimatic potential of the  
field crops productivity in the south-west of the Central region of  
Russia. Agroconsultant. 2011;2:51-60.  
6. Ermokhin YI, Ermolaev OT. The absorption of solar energy by  
plants at an optimal balanced mineral nutrition. In the collection  
of the scientific-practical conference “Safety Problems.  
Technology and Management”. Omsk, Publishing house of  
Omsk State Agrarian University. 2012:59-66.  
1
7. Neklyudov AF, Kinshakova VD, Chernakov VM. Crop rotation  
is the basis of the crop. Omsk, Omoksar. 1998:p.53.  
663