Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 718-726  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Enhancing the Physical, Mechanical, Oxygen  
Permeability and Photodegradation Properties of  
Styrene-acrylonitrile (SAN), Butadiene Rubber  
(
BR) Composite by Silica Nanoparticles  
1 2 1 3  
Nooredin Goudarzian , Soheil Samiei , Fatemeh Safari , Seyyed Mojtaba Mousavi *, Seyyed  
4
5
Alireza Hashemi , Sargol Mazraedoost  
1
Department of Applied Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran  
Department of Applied Polymer, Shiraz Branch, Islamic Azad University, Darab, Iran  
2
3
Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan  
4
Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore,  
5
Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. 71348-14336  
Received: 13/02/2020  
Accepted: 07/04/2020  
Published: 20/05/2020  
Abstract  
Polymer-nanosilica composite was prepared using Silica nanoparticles as reinforcing fillers in Styrene-acrylonitrile (SAN).  
Copolymer Styrene-acrylonitrile (SAN) is such warm, soft clear resins that because of having suitable Physical and mechanical  
properties, have excellent resistance against chemical also low solvent and cost toward another copolymer styrene that caused to be in a  
category of much used of them. The effect of increasing nano-silica loadings on the mechanical properties of BR nanocomposites was  
also studied. Its defect is its fragility that, with its alloying with Butadiene Rubber, prevents its fragility. Basically, with adding inorganic  
Nano bits, changed strength and modulus of elasticity of plastics while increasing Nano bits decrease the strength of the hit. In this study,  
copolymer Styrene-acrylonitrile considered as a matrix and for increasing mechanical qualities used Nano bits silica diacid. Results of  
automated tests (XRD), (TGA), (HDT), and (SEM) were a sign of improvement of mechanical and thermal qualities. Nowadays, due to  
using lots of plastics in various industries, this probability exists that destroyed whit being exposed to direct solar radiation. So light  
destroyed plastics is very important. In this project whit using Oxoperoxidant blend prepared with the ability of light destruction, so that  
after one and three months, results show to destroy its lights.  
Keyword: Permeability, Oxoperoxidant, Styrene-acrylonitrile, Degradation  
advantage of the low cost of production and in the high-  
1
Introduction1  
performance features. Studies on nano-silica dispersions in  
polymer matrices like poly(methyl methacrylate) (6-8),  
polyethylene (9), and poly (ethylene oxide- 600) (10), were  
reported. Studies were reported on polymer nanocomposites  
based on silica and polymers like poly (vinyl alcohol) (11), poly  
In the last decade, polymer nano-composites have drawn  
significant interest from both industry & academia because  
they often exhibit remarkable improvements in material  
properties at an excellent level with very low nanofiller loading  
when compared to pristine polymer or conventional  
composites. Polymer nanocomposites are a particular class of  
polymer composites, a type of reinforced polymer having a  
two-phase material with the reinforcing phase having at least  
one dimension in the 10-9 m (nm) scale. It constitutes a new  
class of material having nano-scale dispersion, typically 1-100  
nm, of the filler phase in a given matrix. The outstanding  
reinforcement of nano-composites is primarily attributed to the  
large interfacial area per unit volume or weight of the dispersed  
(vinyl pyrrolidone), and chitosan. The mechanical and thermal  
properties of polymer nanocomposites were found to be  
enhanced compared to the pristine polymers. Acrylonitrile-  
Butadiene Rubber (NBR), is a synthetic Rubber, the most  
widely used rubber in automobiles components such as fuel  
hoses, gaskets, rollers, and other products in which oil  
resistance is required along with heat resistance properties (12-  
1
4). Rubbers are reinforced with fillers to improve their  
2
performance by incorporating materials of conventional fillers  
such as carbon blacks, silica, clay, talc and calcium carbonate,  
etc. In recent trends, Rubber Nanocomposites made out of  
nanofillers were found to exhibit remarkable property  
enhancements compared to conventional micro composites  
phase (e.g., 750 m /g). Silica is an abundant compound over the  
earth employed mainly in industries to produce silica gels,  
colloidal silica, fumed silica, and so on (1). The nano-sized  
silica particles are unusual because they are applied in  
emerging areas like medicine and drug delivery etc. Silica  
nanoparticles have been used in the industry to reinforce the  
elastomers as a rheological solute (2-5). Silica nanocomposites  
have been attracting some scientific interest as well due to the  
(15-18). Polymer nanocomposites with layered silicates which  
are made using typical fillers, (19-21) and carbon nanotubes  
had attracted significant interest in the improvement of  
Corresponding author: Seyyed Mojtaba Mousavi, Department of Chemical Engineering, National Taiwan University of Science and  
Technology, Taiwan. E-mail: kempo.smm@gmail.com.  
7
18  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 718-726  
structural properties and the development of new materials  
having different functional properties (22-25). Sadhu and  
Bhowmick reported the effect of acrylonitrile content on the  
mechanical, dynamic mechanical, and rheological properties of  
the nanocomposite. The Role of an Organic modifier used with  
montmorrilite on the formation of nanocomposite in the melt  
compounding process has been studied by Kim and White.  
Rajkumar et al. studied the effect of liquid NBR as dispersion  
media for dispersing nano graphite in the NBR matrix, and  
consequently, polymer nanocomposites were found to improve  
its thermal stability (26-31). In the current studies, Styrene-  
acrylonitrile(SAN), Butadiene Rubber (BR), was used as  
dispersion media to disperse the nano-silica in a polymer matrix  
using conventional mixing techniques. SAN -Nanosilica based  
Nanocomposites were prepared using BR as dispersion media  
and conventional mixing processes. The effect of Nanosilica on  
mechanical and thermal and photodegradation properties of  
polymer nanocomposites was studied. The dispersion of the  
silica nanoparticle in the polymer matrix was studied using  
scanning electron microscopy [SEM] combined with FTIR.  
The effect of an increase in nano-silica loadings on the physical  
properties like tensile strength, modulus, and Elongation at the  
break, retention properties after air aging were studied, and  
momentous changes were found in the properties of SAN/ (BR)  
polymer nanocomposite (32-37).  
composites, Oxoperoxidant mixture, and nano-particles with  
different amounts were inserted into the SAN-BR sample, and  
the samples were prepared. Weight percentages combinations  
of the prepared samples are presented, as shown in Table 1.  
The test specimens, i.e., dumbbell specimens, punched out  
from the compression molded sheet using Die Cas per ASTM  
D
412 and utilized for determining physicomechanical  
properties at the cross-head rate of 500 mm per minute using a  
universal testing machine (UTM, Zwick 1445). The aging  
studies were carried out. Evaluate the physical and mechanical  
properties of all samples with the following conditions for  
tensile and impact testing standards for injection (see fig. 2).  
3
Results and Discussion  
3
3
.1 Mechanical properties test results  
2
.1.1 Investigating the effect of SAN/BR/nano SiO /oxo/on  
mechanical properties  
The mechanical properties of the films depend on  
intermolecular forces of their polymeric manufacturer chains,  
the nature of the polymer, fillers, and process conditions. The  
mechanical properties of pure SAN/BR and SAN/BR/nano  
2
sio /oxo suspension are shown. Moreover, in Figures3 and 5.  
these results were compared with each other. As can be seen in  
Figure.5, with the presence of SAN with coupler agent BR, the  
tensile strength of sample B has increased in comparison with  
sample A. Generally, SAN/BR are non-polar polymer and polar  
copolymer respectively. Their mixture in any weight  
percentage can cause the formation of two-phase morphology.  
This phenomenon indicates that the SAN/BR are immiscible.  
However, with an increase in tensile strength, it seems that BR  
caused an increase incompatibility between two phases and  
strengthened the joint surface interactions. By an increase in the  
interface, the stress transfer to the minor stage SAN/BR/nano  
2
Materials and Methods  
Butadiene Rubber (BR JSR -230), Styrene-acrylonitrile  
(SAN), Nano-silica powder obtained from Nanoshell USA,  
Styrene acrylonitrile (SAN), (SAN w1540) was supplied by  
Iran Petro Chemical Co., Ltd. (Iran), [MFR =50 g/10 min (200  
3
°C  
/21.6  
Kg),  
Density  
=
1.04  
g/cm ].  
Styrene/Butadiene/Styrene (SBS) was supplied by Amole  
Plastic Co, Ltd. Iran. Casein is a commercial material; it was  
brought from local suppliers and used as received, nano-silica  
used in this study is commercially available as fine amorphous,  
nonporous and typically spherical particles, white color,  
specific gravity 1.12, p the size of nano-silica particles was  
determined by solving them in an ethylene glycol solvent. The  
size of the nanoparticles is determined to be 61.5 nm. Figure 1  
depicts the diagram of the nanoparticle size (PSA) of the  
nanoparticles.  
2
SiO /oxo occurred more convenient during the process and  
caused its uniform distribution in the context of a matrix. On  
the other hand, very high BR adhesion can act as a crosslinking  
agent. Therefore, by applying external tension, concentrated  
stress on the BR can cause stress loss, and avoid the creation of  
stress concentration areas on holes and cracks. Also, as can be  
seen in Figure 5, elongation in sample B has decreased poorly,  
which is due to the high adhesion force of BR and its strong  
interaction with SAN. It seems that this strong interaction and  
surface adhesion did not let the polymer chains move and  
caused a decrease in elongation. Moreover, as can be seen in  
Figure 5, the amount of Tensile strength and elongation of  
samples has decreased in comparison with sample 3% nano sio  
that is due to the nature of BR that has less modulus than SAN.  
2
350  
300  
250  
200  
150  
Figure 1: It depicts the diagram of nanoparticle size (PSA) of the  
nanoparticles  
In the first step, the combination of Styrene Acrylonitrile  
(
SAN) and Butadiene Rubber /nano sio  
2
and using the  
100  
50  
0
Oxoperoxidant blend was manually mixed to prepare samples.  
The materials mentioned above percentages combination  
mixed in a bag by hand to compare the effect of SAN and BR  
over impact and flexibility of the SAN, and because the  
materials were new and fully packed was delivered from the  
manufacturing factory, there was no need to dewatering and gas  
0
1
2
3
4
Nano SiO )%(  
2
removing. Adding nano sio  
into SAN, BR combination. To evaluate the biodegradation of  
2
and using Oxoperoxidant blend  
Figure 3: Diagram of the impact index of samples containing different  
weight percentage nano sio  
2
%
7
19  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 718-726  
Table 1: Formulation for preparation of SAN/BR Nano-composites  
Sample  
SAN (%)  
BR (%)  
N (%)  
OXO (%)  
SAN/BR  
95  
90  
5
-
-
-
-
SAN/BR(A)  
SAN/BR(B)  
SAN/BR(C)  
SAN/BR(D)  
SAN/BR 0% N)E)  
10  
80  
20  
-
-
70  
30  
-
-
60  
40  
-
-
79  
20  
1
3
-
-
(F)/N 20% SAN/BR  
77  
20  
-
OXO0.5(G)/ SAN/BR  
OXO1(H)/ SAN/BR  
79.6  
79.2  
19.9  
19.8  
0.5  
1
-
OXO2(L)/ SAN/BR  
78.4  
19.6  
-
2
Figure 2: Steps of the manufacturing method, also in step 1, numbers 1-10 shows 1-engine, 2-feeder, 3-cooling jacket, 4-thermocouple, 5-screw  
Table 2: Terms of molding injection, molding blends injection  
Rate Injection  
Process Temperature  
°C)  
Mold Temperature  
(°C)  
Pressure injection  
(Mpa)  
Samples  
풎풎  
(
( 풔  
)
SAN/BR  
180-220  
40  
25-35  
15  
N/SAN/BR  
180-230  
180-220  
50  
40  
30-40  
25-35  
15  
15  
OXO/N/SAN/BR  
7
20  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 718-726  
400  
350  
300  
250  
200  
150  
100  
4
3.5  
3
2.5  
2
1.5  
1
5
0
0.5  
0
0
0
20  
BR )%(  
40  
60  
0
1
2
3
4
(
%) Nano SiO2  
Figure 4: Diagram of the impact index of samples containing  
different weight percentage BR%  
Figure 7: Diagram of the melt flow index of samples containing  
different weight percentage nano sio  
2
By observing the obtained results form (see fig 6 and7)  
diagram it can be concluded that by rising SAN/BR/nano  
sio /oxo percentage the amount of Hank elastomeric materials  
2
in the sample increases and consequently, the fluency decreases  
and the viscosity also increases thus resulting, melt flow index  
reduces.  
1
00  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
120  
SAN/BR20/N1  
100  
SAN/BR20  
SAN/BR20/N3  
Tensile strength (Mpa)
ا  
80  
60  
40  
20  
0
Elongation (%)  
0
1
2
3
4
Nano SiO )%(  
2
Figure 5: Diagram of the Tensile strength and elongation index of  
samples containing different weight percentage nano SiO  
2
8
7
6
5
4
3
2
1
0
0
200  
400  
600  
800  
Temperature (°C)  
Figure 8: Diagram of Thermal Stability of Blend by TGA  
3
.2 Thermogravimetric analysis (TGA)  
Shimadzu TGA-50 performed TGA test under flowing  
nitrogen (20 푚푙⁄푚푖) atmosphere by 10 ℃⁄푚푖푛 temperature  
growth rate. 6mg of each sample was placed in a platinum pan,  
and the change in weight vs. temperature was measured .The  
above figure shows the results of samples' thermal stability  
containing various percentage combinations of elastomer  
polyolefin. Thermal resistance with 1,3% nanoparticles of  
weight increase of SAN/BR/nano sio /oxo matrix has increased  
2
that was due to the formation of the network in the SAN/BR  
matrix. By the further increase in the percentage of nano  
0
10  
20  
%) BR  
30  
40  
50  
(
Figure 6: Diagram of the melt flow index of samples containing  
different weight percentage Nano BR  
2
sio /oxo in combination, the degradation is shifted to lower  
temperatures that are due to reduction of percentage  
combination of SAN/BR in other words, the decreasing in  
percentage composition of C-N functional group and, by  
increasing Acrylonitrile group, alloy’s thermal resistance rises.  
Also, according to the diagram can be seen that thermal  
7
21  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 718-726  
degradation of sio  
about 220°C and thermal resistance of sio  
2
nano-particles and cheese powder starts at  
nano-particles,  
2
cheese powder, and OXO are lower that SAN/BR matrix alloy,  
thus bu increasing their percentages, thermal destruction occurs  
faster (see Fig 8).  
XRD DIAGRAM  
6
00  
00  
5
3
.3 Heat temperature results test (HDT)  
400  
Nanoparticle silica, the thermal stability matrix, is a  
3
00  
00  
polymer that illustrations in Figure (9), increased the matrix  
polymer of the crystallinity network, strengthen is because of  
HDT Increased, postponed has been lattice crystal crumble  
Completely.  
2
100  
0
1
1
20  
00  
Figure 10: X-Ray Diffraction (XRD) test  
80  
60  
40  
20  
0
3
.5 Oxygen permeability tests results  
Results of samples' oxygen permeability can be seen in  
Table 3. In Fig. 11 the effects of oxygen permeability for  
samples were compared. As can be seen, with the presence in  
sample D, the amount of oxygen permeability in comparison  
with sample E was increased. As mentioned in the steam  
2
permeability section, it seems that aggregation nano Sio in the  
polymer context can lead to the creation of gaps in the polymer  
context. Thus, gas molecules have the opportunity to pass. The  
results of the mechanical properties section justified this  
possibility.  
0
1
2
3
4
(
%) Nano SiO2  
Figure 9: heat temperature results for samples  
3
2
Oxygen permeability (Cm /m d bar)  
3
.4 X-Ray Diffraction (XRD) test results  
Figure 10 shows the XRD results of pure sio  
As can be seen, the related peak to the closite 30B in 2θ is 81.3,  
which shows that the distance between the layers of sio  
2
and sample.  
1
1
8
6
2
nanoparticle is about 34.18. But this peak in the sample with  
polymeric context has vanished that is due to foliating of NC  
layers. As mentioned in the mechanical test sections, presence  
of OXO as a compatible agent and on the other hand presence  
14  
1
2
0
8
6
4
2
0
1
of SAN/BR/nano sio  
sio , because OXO polar chains have better compatibility with  
nano-size particles [61.5nm]. Due to applied shear force during  
the process, it has penetrated the nano sio layers and has turned  
2
/oxo can lead to better dispersion of nano  
2
2
these layers apart. By an increase in distance of silicate layers  
in nanoparticles, the dispersion quality of nanofillers will  
increase, and their interaction with the polymeric substrate will  
be improved. Also, XRD results justified the mechanical  
properties.  
H
G
F
E
D
Figure 11: Amount of oxygen permeability for the samples  
Table 3: Effects of oxygen permeability  
3
2
Sample code  
Relative humidity (%)  
Temperature (℃)  
Oxygen permeability (Cm /m d bar)  
D
E
F
24  
24  
24  
24  
24  
23  
23  
23  
23  
23  
8.63  
15.4  
14.32  
15.86  
7.46  
G
H
7
22  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 718-726  
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h)  
(i)  
(
j)  
Figure 12: Microscopic images of samples containing different weight percentage of (a,b), (c,d), (e,f), (g,h), (i,j)  
Also, the presence of nano SiO  
can lead to an increase in oxygen permeability of this sample in  
comparison with sample E. On the other hand, the presence of  
nano sio and oxo in sample G, increasing the oxygen  
2
permeability of this sample in comparison with samples. In  
fact, according to what has been observed, each one of nano  
2
in the sample F formulation  
directed to a significant increase in the amount of oxygen  
permeability. Also, the same situation has been observed for  
steam permeability. Also, as mentioned in the steam  
permeability section and by citing to the XRD and SEM results,  
these results justified the distribution of fillers between the  
layers and foliation of nanoparticles. It seems that the  
placement of the silicate sheets with high surface to volume  
ratio between the polymer chains has increased the oxygen  
sio  
2
and oxo can lead to an increase in oxygen permeability.  
Also, the simultaneous effect of these two factors can be  
7
23  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 718-726  
passage route distance in the film. Thus these silicate sheets  
acted as oxygen blockers in the context of a matrix. Also, the  
highest oxygen blocking is related to the nanocomposite film.  
Therefore, the order of oxygen permeability for different  
samples is as follows.  
UV irradiation time and energy of UV light increase,  
yellowness at the surface of SAN/BR/nano sio  
samples becomes more. SEM Analysis. The surface  
identification and distribution of SAN/BR/nano sio /oxo 0.5%  
2
/oxo copolymer  
2
and 2 % nanocomposites, and 30 and 90 days (day) after the  
photodegradation was carried out by SEM analysis (see fig 13  
to 16).  
3
.6 Scanning Electron Microscopy (SEM)  
The electron microscope was used to capture from the  
surface of the samples (a,b),(c,d),(e,f),(g,h),(i,j) SAN/BR  
composite that extracted from the soil to investigate surface and  
microstructure of alloys containing various weight percentages  
of the samples weight percent of oxo before degradation, one  
and three months afterward. The below figures present the  
waste, and polymer phases rupture due to chain separation  
increasing in oxo and Sio  
general, with the departure of oxo and Sio  
2
nano-particles percentages. In  
nano-particles from  
2
the polymer matrix, the polymer chains are disjointed. This  
phenomenon is due to the termination of a link between the  
materials and the polymer. On one side, the interactions of the  
2
polar functional groups of whey protein and Sio nano-particles  
on the other side Non-polar and aliphatic groups is destructed  
by separation of molecules. The ruin of these interactions leads  
to polymer chains rupture, chain length reduction, and also, the  
molecular weight that with increasing the percentage of Sio  
2
nano-particles and oxo, this reduction has more significant  
results. The SEM images approved biodegradation of these  
alloys after one and three months. The rupturing of polymeric  
phases due to ruptured chains with holes formed in the polymer  
observed. Finally, composites showed appropriate degradation  
about mechanical and thermal properties, and flow-ability can  
be used in full applications such as home appliances and  
packaging industries (see fig 12).  
Figure 13: SEM test of sample 0.5% oxo the 30 days’ time (day) after  
the photodegradation  
3
.7 Microscopic images (SEM) photodegradation study  
The typical synthetic polymer that can be attacked includes  
SAN and BR whit oxo, where tertiary carbon bonds in their  
chain structures are the centers of attack. Ultraviolet rays  
interact with these bonds to form free radicals, which then react  
further with oxygen in the atmosphere, creating carbonyl  
groups in the main chain. The showing surfaces of products  
may then discolor and crack, and in extreme cases, complete  
product disintegration can occur. Oxidation tends to start at  
tertiary carbon atoms because the free radicals formed here are  
more stable and longer-lasting, making them more susceptible  
to attack by oxygen. The carbonyl group can be further  
oxidized to break the chain, this weakens the material by  
lowering its molecular weight, and cracks start to grow in the  
regions affected. Biodegradable SAN/BR can be biologically  
degraded by photo UV to give lower molecular weight  
molecules. This research aims to understand and find a  
relationship between photooxidative degradation and  
Figure 14: SEM test of sample 2% oxo the 30 days time (day) after  
the photodegradation  
2
yellowing of SAN/BR/nano SiO /oxo copolymer. Furthermore,  
find a simple method for following the degradation. By  
changing the microstructure of SAN/BR/nano, sio2 /oxo  
copolymer UV oxidation can induce photooxidative  
degradation of the copolymer. The butadiene phase is the main  
responsible phase that causes the photo-oxidative degradation  
in SAN/BR/nano SiO  
oxidative degradation of SAN/BR/nano sio  
begins, like all polymers, at the surface, which is directly  
subjected to UV light. The surface of the SAN/BR/nano sio  
oxo copolymer, however, shows more damage when compared  
to the interior part and other polymers. Photo-oxidative  
degradation of SAN/BR/nano SiO /oxo copolymer leads to  
2
/oxo copolymer degradation. Photo-  
2
/oxo copolymer  
2
/
2
Figure 15: SEM test of sample 0.5% oxo the 90 days’ time (day)  
color development (degradation) on the surface of the UV aged  
samples. Surface degradation is one of the measures of the  
extent of photo-oxidative degradation. This means that as the  
after the photodegradation  
7
24  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 718-726  
2
3
.
.
Chrissafis K, Paraskevopoulos KM, Papageorgiou GZ, Bikiaris  
DN. Thermal and dynamic mechanical behavior of  
bionanocomposites: fumed silica nanoparticles dispersed in poly  
(vinyl pyrrolidone), chitosan, and poly (vinyl alcohol). Journal of  
applied polymer science. 2008;110(3):1739-49.  
Mousavi SM, Hashemi SA, Ghasemi Y, Amani AM, Babapoor A,  
Arjmand O. Applications of graphene oxide in case of  
nanomedicines and nanocarriers for biomolecules: review study.  
Drug metabolism reviews. 2019;51(1):12-41.  
4
5
.
.
Mousavi S, Zarei M, Hashemi S. Polydopamine for Biomedical  
Application and Drug Delivery System. Med Chem(Los Angeles).  
2
018;8:218-29.  
Amani AM, Hashemi SA, Mousavi SM, Abrishamifar SM, Vojood  
A. Electric field induced alignment of carbon nanotubes:  
methodology and outcomes. Carbon nanotubes-recent progress:  
IntechOpen; 2017.  
6
7
.
.
Sargsyan A, Tonoyan A, Davtyan S, Schick C. The amount of  
immobilized polymer in PMMA SiO2 nanocomposites determined  
from calorimetric data. European Polymer Journal.  
2
007;43(8):3113-27.  
Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM. Model  
polymer nanocomposites provide an understanding of confinement  
effects in real nanocomposites. Nature materials. 2007;6(4):278-  
82.  
Figure 16: SEM test of sample 2% oxo the 90 days’ time (day) after  
the photodegradation  
8. Mousavi SM, Farsi M, Azizi M. Enhancement of rheological and  
mechanical properties of bitumen using styrene acrylonitrile  
copolymer. Journal of Applied Polymer Science. 2015;132(17).  
4
Conclusion  
9
.
Chrissafis K, Paraskevopoulos K, Pavlidou E, Bikiaris D. Thermal  
degradation mechanism of HDPE nanocomposites containing  
fumed silica nanoparticles. Thermochimica Acta. 2009;485(1-  
2):65-71.  
In this paper, Preparation of the Oxoperoxidant and  
physical,  
photodegradation of nanocomposite using the SAN/BR/nano  
SiO /oxo was studied. The results cleared that water adsorption  
increased in the presence of sio nanoparticles. Besides, to  
mechanical,  
and  
oxygen  
permeability,  
10. Jia X, Li Y, Cheng Q, Zhang S, Zhang B. Preparation and  
properties of poly (vinyl alcohol)/silica nanocomposites derived  
from copolymerization of vinyl silica nanoparticles and vinyl  
acetate. European Polymer Journal. 2007;43(4):1123-31.  
2
2
study the photodegradation of nanocomposite samples under  
the soil, XRD and SEM were used. Their results revealed that  
the existence of the hydroxyl group increased the degradation  
of the sample.  
1
1. Lee J, Lee KJ, Jang J. Effect of silica nanofillers on isothermal  
crystallization of poly (vinyl alcohol): In-situ ATR-FTIR study.  
Polymer testing. 2008;27(3):360-7.  
Additionally, adding the Oxoperoxidant to samples had a  
positive effect on its degradation. The effect of the addition of  
Nano-silica fillers in SAN/BR Nanocomposites using liquid  
12. Mousavi SM, Hashemi SA, Amani AM, Esmaeili H, Ghasemi Y,  
Babapoor A, et al. Pb (II) removal from synthetic wastewater using  
Kombucha Scoby and graphene oxide/Fe3O4. Physical Chemistry  
Research. 2018;6(4):759-71.  
2
nano sio and oxo dispersion media using conventional mixing  
1
3. Mousavi S, Aghili A, Hashemi S, Goudarzian N, Bakhoda Z,  
Baseri S. Improved morphology and properties of nanocomposites,  
linear low density polyethylene, ethylene-co-vinyl acetate and  
nano clay particles by electron beam. Polymers from Renewable  
Resources. 2016;7(4):135-53.  
techniques was investigated. The addition of Nano-silica  
increases the thermal resistance of polymer nanocomposites.  
Improvement in and physical, mechanical properties were  
found at higher loading of Nanofillers. Also, the simultaneous  
effect of these two factors can be led to a significant increase in  
the amount of oxygen permeability. Besides, the same situation  
has been observed for steam permeability.  
14. Mousavi M, Hashemi A, Arjmand O, Amani AM, Babapoor A,  
Fateh MA, et al. Erythrosine adsorption from aqueous solution via  
decorated graphene oxide with magnetic iron oxide nano particles:  
kinetic and equilibrium studies. Acta Chimica Slovenica.  
2
018;65(4):882-94.  
Ethical issue  
1
5. Vollath D, Szabó DV. Synthesis and properties of nanocomposites.  
Authors are aware of and comply with best practices in  
publication ethics, specifically with regard to authorship  
Advanced Engineering Materials. 2004;6(3):117-27.  
16. Mousavi S, Esmaeili H, Arjmand O, Karimi S, Hashemi S.  
Biodegradation study of nanocomposites of phenol novolac  
epoxy/unsaturated polyester resin/egg shell nanoparticles using  
natural polymers. Journal of Materials. 2015;2015.  
7. Bahrani S, Hashemi SA, Mousavi SM, Azhdari R. Zinc-based  
metalorganic frameworks as nontoxic and biodegradable  
platforms for biomedical applications: review study. Drug  
metabolism reviews. 2019;51(3):356-77.  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests, and compliance with policies  
on research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
1
Competing interests  
18. Hashemi SA, Mousavi SM, Arjmand M, Yan N, Sundararaj U.  
Electrified single‐walled carbon nanotube/epoxy nanocomposite  
via vacuum shock technique: Effect of alignment on electrical  
conductivity and electromagnetic interference shielding. Polymer  
Composites. 2018;39(S2):E1139-E48.  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution to  
data collection, data analyses, and manuscript writing.  
1
9. Wu Y-P, Wang Y-Q, Zhang H-F, Wang Y-Z, Yu D-S, Zhang L-Q,  
et al. Rubberpristine clay nanocomposites prepared by co-  
coagulating rubber latex and clay aqueous suspension. Composites  
Science and Technology. 2005;65(7-8):1195-202.  
2
0. Hashemi SA, Mousavi SM, Faghihi R, Arjmand M, Sina S, Amani  
AM. Lead oxide-decorated graphene oxide/epoxy composite  
towards X-Ray radiation shielding. Radiation Physics and  
Chemistry. 2018;146:77-85.  
References  
1
.
Barik T, Sahu B, Swain V. Nanosilicafrom medicine to pest  
control. Parasitology research. 2008;103(2):253.  
7
25  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 718-726  
2
1. Hashemi SA, Mousavi SM. Effect of bubble based degradation on  
the physical properties of Single Wall Carbon Nanotube/Epoxy  
Resin composite and new approach in bubbles reduction.  
Composites Part A: Applied Science and Manufacturing.  
2
016;90:457-69.  
2
2
2. Ajayan PM, Zhou OZ. Applications of carbon nanotubes. Carbon  
nanotubes: Springer; 2001. p. 391-425.  
3. Coleman JN, Khan U, Gun'ko YK. Mechanical reinforcement of  
polymers using carbon nanotubes. Advanced materials.  
2
006;18(6):689-706.  
2
2
2
4. Mousavi SM, Hashemi SA, Arjmand M, Amani AM, Sharif F,  
Jahandideh S. Octadecyl amine functionalized Graphene oxide  
towards hydrophobic chemical resistant epoxy Nanocomposites.  
ChemistrySelect. 2018;3(25):7200-7.  
5. Mousavi SM, Goudarzian N, Hashemi S. Unsaturated polyester  
resins modified with cresol novolac epoxy and silica nanoparticles:  
processing and mechanical properties. International Journal of  
Chemical and Petroleum Sciences. 2016;5(1):13-26.  
6. Sadhu S, Bhowmick AK. Preparation and properties of  
nanocomposites based on acrylonitrilebutadiene rubber, styrene–  
butadiene rubber, and polybutadiene rubber. Journal of Polymer  
Science Part B: Polymer Physics. 2004;42(9):1573-85.  
2
2
7. Sadhu S, Bhowmick AK. Unique rheological behavior of rubber  
based nanocomposites. Journal of Polymer Science Part B:  
Polymer Physics. 2005;43(14):1854-64.  
8. Mousavi SM, Hashemi SA, Amani AM, Saed H, Jahandideh S,  
Mojoudi F. Polyethylene terephthalate/acryl butadiene styrene  
copolymer incorporated with oak shell, potassium sorbate and egg  
shell nanoparticles for food packaging applications: control of  
bacteria growth, physical and mechanical properties. Polymers  
from Renewable Resources. 2017;8(4):177-96.  
2
3
3
3
3
3
9. Hashemi SA, Mousavi SM, Ramakrishna S. Effective removal of  
mercury, arsenic and lead from aqueous media using Polyaniline-  
Fe3O4-silver diethyldithiocarbamate nanostructures. Journal of  
Cleaner Production. 2019;239:118023.  
0. Mousavi SM, Hashemi SA, Babapoor A, Medi B. Enhancement of  
Rheological and Mechanical Properties of Bitumen by  
Polythiophene Doped with Nano Fe 3 O 4. JOM. 2019;71(2):531-  
4
0.  
1. Mousavi S, Arjmand O, Talaghat M, Azizi M, Shooli H.  
Modifying the properties of polypropylene-wood composite by  
natural polymers and eggshell Nano-particles. Polymers from  
Renewable Resources. 2015;6(4):157-73.  
2. Mousavi S, Arjmand O, Hashemi S, Banaei N. Modification of the  
epoxy resin mechanical and thermal properties with silicon  
acrylate and montmorillonite nanoparticles. Polymers from  
Renewable Resources. 2016;7(3):101-13.  
3. Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani AM,  
Savar Dashtaki A, et al. Green synthesis of silver nanoparticles  
toward bio and medical applications: review study. Artificial cells,  
nanomedicine, and biotechnology. 2018;46(sup3):S855-S72.  
4. Mousavi S, Hashemi S, Zarei M, Amani A, Babapoor A.  
Nanosensors for Chemical and Biological and Medical  
Applications. Med Chem (Los Angeles). 2018;8(8):2161-  
0
444.1000515.  
3
3
5. BARIKBIN B, MAAREFAT A, RAHGOSHAI R, MORAVVEJ  
H, MOHTASHAM N, YOUSEFI M. Malva sylvestris in the  
treatment of hand eczema. 2010.  
6. Mousavi SM, Hashemi SA, Zarei M, Bahrani S, Savardashtaki A,  
Esmaeili H, et al. Data on cytotoxic and antibacterial activity of  
synthesized Fe3O4 nanoparticles using Malva sylvestris. Data in  
brief. 2020;28:104929.  
3
7. Tech JET. Investigating the Activity of Antioxidants Activities  
Content in Apiaceae and to Study Antimicrobial and Insecticidal  
Activity of Antioxidant by using SPME Fiber Assembly  
Carboxen/Polydimethylsiloxane (CAR/PDMS). Journal of  
Environmental Treatment Techniques. 2020;8(1):214-24.  
7
26