Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 646-651  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Financial Distress Prediction across Firms  
1
1
1
Ali Akbar Rafatnia *, Suresh A/L Ramakrishnan , Dewi Fariha Binti Abdullah , Fazel  
2
1
Mohammadi Nodeh , Mohammad Farajnezhad  
1
Azman Hashim International Business School, UTM, Malaysia  
2
Department of Management, Lahijan Branch, Islamic Azad University, Lahijan, Iran  
Received: 18/11/2019 Accepted: 15/02/2020 Published: 20/05/2020  
Abstract  
One of the most important events in a firm’s life is financial distress, which can propel sectors into financial and sustainable growth  
problems. Moreover, independent variables in the background of financial distress are accounting ratios, which are extracted from financial  
statements and macroeconomic variables that are mostly beyond the control of a firm or sector. The current study analysed the information  
related to a sample of 300 public Iranian companies, during the periods of 2000-2007 and 2009-2016. Logistic regression and decision trees  
were applied to the prediction of financial distress. It was found that the profitability, liquidity, leverage, interest rate, cash flow, accruals,  
and GDP were statistically significant in distinguishing distressed from non-distressed firms across sectors. The obtained results showed that  
the predictive performance of a DT model was more successful than the other model.  
Keywords: Prediction of Financial Distress, Accounting ratio, Decision Trees  
1
Introduction 1  
The prediction of financial distress is absolutely vital for  
Furthermore, the stakeholders of a firm are generally  
concerned about the accuracy of financial distress predictions  
during business activities. To increase the accuracy of financial  
distress predictions, some studies have introduced different  
statistical and artificial intelligence-based models. For example,  
the multivariate model proposed in (6) was the initial study based  
on the discriminant analysis approach. Literature contains some  
artificial intelligence models that can be effectively used in this  
regard, including Neural Networks (7), Decision Trees (8), and  
Support Vector Machines (9). Furthermore, to increase the  
accuracy of the financial distress predictions, not only the  
financial statements information, but also other available data  
such as macroeconomic factors and market information are taken  
into account. To do an empirical study, the performance of a  
sample of 300 listed Iranian companies, during the periods of  
2000-2007 and 2009-2016, was considered. The whole  
accounting information was extracted from financial reports. Two  
prediction techniques of logistic regression and decision trees  
were applied to the research. The reset of the paper is organized  
as follows. The literature review and hypothesis are presented in  
Section 2, the methodology in Section 3, and finally, the result of  
the study and conclusions are presented in Section 4.  
traders, creditors, and suppliers. To avoid any financial loss, they  
need to assess the financial risk of a firm before they make any  
decisions. Financial distress is not the same as bankruptcy. The  
former occurs while the firm is not able to meet its financial  
obligations due to a decrease in the firm’s operations and  
excessive costs, while the latter is a very last state in which  
corporations stop doing commercial enterprise due to financial  
distress. The bankruptcy needs to be confirmed by a courtroom  
determination; then, its assets are bought to pay and cover all  
obligations of creditors (1). Thus, financial distress does not  
necessarily lead to bankruptcy.  
Based on a review of literature, some researchers implicitly  
suppose that firms’ annual statements give an honest and genuine  
view of the financial state of agencies; although, some annual  
accounts are indeed unreliable (2). Some studies have stated that  
despite the fact that the hyperlink between earnings management  
and financial distress is clear, only few studies have covered such  
indicators in financial distress prediction (3). Earnings  
management can be interpreted beneficial, neutral, or pernicious  
(4, 5). Providing private information on future economic  
performance through management activities, the beneficial  
earnings management improves the financial statements of the  
company. This type of management can be interpreted as neutral  
if earnings management can be economically efficient for  
maximizing ones own utility. Finally, earnings management is  
recognized pernicious when it is about concealing and  
misrepresenting financial reports of the company.  
2
Literature Review  
Financial ratios are vital for predicting financial distress  
among firms and have been already used by some researchers (6,  
0), (11). Every business has its own economic characteristics  
based on its defined activities. In addition, choosing appropriate  
1
Corresponding author: Ali Akbar Rafatnia, International Business School, UTM, Malaysia. Email: rafatnia90@gmail.com and  
arali3@live.utm.my.  
6
46  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 646-651  
ratios well matched with the financial condition of any market is  
the key factor of the study. According to the results of few studies  
with high accuracy among ratios, accounting and macro ratios are  
used. Therefore, this study will attempt to answer the following  
research question:  
Research Question: What are the significant determinants of  
accounting ratios and macroeconomic level variables of financial  
distress prediction among the listed firms?  
shareholders during activities (22). The ratio of working capital  
to total assets is a significant factor that considers the liquidity in  
the firm. If the firm experience operating losses consistently, it  
will have a shrinkage in current liquidity in relation to total assets.  
According to literature, insolvency of businesses is instigated by  
the unsuitable practice of working capital measures, despite  
optimistic revenues or profitability due to such practices. Thus, it  
would be uncertain to just concentrate on profitability while  
overlooking liquidity (23). In addition, in (24), it was found that  
liquidity plays an important role in the determinants of the  
financial distress prediction. Alternatively, liquidity is one of the  
most significant indicators related to financial distress of firms.  
2
2
.1. Independent Variables  
.1.1. Accounting Ratios  
The financial distress researchers generally focus on the  
financial reports and market trends of the sectors during specific  
periods. All factors are collected through reliable available  
information.  
2.1.1.4 Earnings Management  
In the context of financial distress prediction, banks make  
lending decisions based on the firms’ financial statements  
disclosed (25-27). Financial information creates a loophole for  
firms by managing their earnings to obtain loans with more  
favorable terms. In this regard, the financial statements must  
provide reliable financial information to the external and internal  
stakeholders in accordance with International Financial  
Reporting Standards (IFRS) in a way to be well compared with  
others’ financial statements (28, 29). Collecting, preparing, and  
publishing the financial information is the managers’  
responsibility (30, 31). Earnings management as the process of a  
business uses the generally-accepted accounting procedures for  
the purpose of altering the earnings figures such as delayed  
recognition of expenses, premature recognition of revenue, and  
inventory methods such as last-in, first-out (Lifo) and first-in,  
first-out (Fifo) (32, 33). Remember that the motivation to manage  
earnings depends on the nature of the sectors. Various reasons  
have been suggested in literature for variations in earnings  
management activities including market development, the  
structure of ownership, economic factors, initial public offerings,  
and effective tax rates (34, 35). According to (36, 37), to avoid  
reporting annual losses, firms use earnings management methods.  
In addition, firms under financial distress are likely to take  
different measures in order to decrease the concern of future  
outcome events or any inherently uncertain conditions such as  
window-dressing financial statements (38, 39). In this study, the  
earnings management is discussed in terms of free cash flow of  
the firm and accruals, which is effective on financial distress  
prediction among different sectors.  
2
.1.1.1 Profitability  
A firm’s extreme survival is based on the profitability of its  
business. In fact, the profitability ratios indicate how well a firm  
has operated during the fiscal year. The static trade-off theory  
indicates that profitable firms are likely to have a high tax burden  
and low cost of bankruptcy (12). Moreover, the profitable firms  
have more capability to tolerate being indebted since they may be  
in a position to easily clear their debt on time. This indicator can  
have a significant role in the bankruptcy investigation. The extant  
studies on financial distress prediction found a significant  
relationship between profitability and financial distress (13).  
Their results suggested that financial distress intensities strongly  
decrease the level of profitability for all prediction horizons  
considered. In addition, the authors in (14) and (15) developed a  
prediction model of financial distress in Iran by Bayesian  
networks and genetic programming models, respectively. Their  
findings showed that when a firm has a good profitability level,  
creditors are sure that their interest’s expenses in the firm can be  
achievable. Moreover, in the context of the Iran economy, the  
authors in (14) found out that higher profitability makes higher  
efficiency and better liquidity, hence lowering default risk.  
Literature widely confirms the existence of a significant  
relationship between profitability and financial distress prediction  
(16).  
2
.1.1.2 Leverage  
One of the main variables that explain financial distress is the  
firm’s leverage that can pose a big risk to the firm due to its high  
costs (17). This proxy demonstrates the risk and capital structure  
of a firm. Leverage has been investigated by some researchers in  
terms of its negative effects on the firm performance (18). For  
example, in (19), a significant negative effect of leverage was  
explored on the company’s risk in the non-financial sector. In  
addition, the authors in (20) found out that through the use of the  
agency argument, the benefits of leverage outweigh its cost. The  
most commonly-used leverage ratio in financial distress  
prediction is the debt ratio that is measured by dividing the total  
debt over total assets. Furthermore, some studies have concluded  
that the debt ratio is a significant factor in identifying the firms'  
assets to meet the obligations (21).  
2.1.1.5 Macroeconomic Variables  
Macroeconomic factors affect the feasibility of a firm, and  
these external factors are generally beyond the instant control of  
sectors (40, 41). Moreover, the macroeconomic variables causing  
financial distress are the interest rate, inflation, gross domestic  
product, monetary policy, oil price, financial crisis, and debt  
crisis. According to the authors in (42-47), macroeconomic  
indicators affect financial distress prediction. Consistently, an  
interest rate is the main macroeconomic indicator that affects the  
corporate success or failure (48). Furthermore, in (49), the  
interest rate is considered as an important variable that is effective  
on the company’s flexibility and adaptability. It has been also  
suggested that variation in inflation influences firms because of  
the rising cost of production or it may generate higher prices that,  
in turn, causes lower demand. Accordingly, GDP represents the  
economic performance among sectors and any decline in GDP  
causes the recession and other financial crises (50, 51). Financial  
2
.1.1.3 Liquidity  
A firm is able to pay off the obligations in a timely manner  
and indicate its performance improvement when it holds a high  
liquidity ratio. Therefore, the firms also can pay dividends to  
6
47  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 646-651  
distress causes significant losses not only to the firms' activities,  
but also to society as a whole. Thus, the high accuracy of  
prediction models is very vital to stakeholders, management, and  
employees as the models provide timely warnings. Generally,  
macroeconomic conditions have good explanatory power for  
financial distress prediction and are useful in modeling credit risk  
between independent variables and dependent variable classes.  
There are two main applications of logistic regression. First, this  
method forecasts the category membership. The logistic  
regression determines the likelihood of non-distressed over the  
probability of distressed, and the results of the analysis are  
presented in the form of a probability ratio. Second, this method  
verifies the associations and strengths among the variables.  
Coefficients of regression can be used to evaluate odds ratios for  
all of the independent variables separately (55). Decision trees are  
one of the most popular methods for classification and  
forecasting. The main reason behind their recognition is their  
easiness and transparency as well as interpretability. The  
accuracy of classification or prediction in different applications is  
a crucial factor. For instance, in credit scoring applications, the  
model's ability to demonstrate the reasons is extremely critical as  
it affects the decisions to predict credit scoring. In this regard, in  
comparison with some statistical and data mining techniques, a  
decision tree is able to depict rules of classification. Thus, this  
technique is more attractive in order to classification applications  
(56). The main difference between decision trees and linear and  
logistic regression is that regarding the decision trees, models  
commence by generating classification of observation into groups  
and continue by obtaining a score for each group. However, in the  
logistic regression methods, first, a score is generated; then, a  
classification is done based on a discriminant rule. In order to  
present the idea and estimate the probability of financial distress  
of the firm, let us start by considering the following model of logit  
regression; where the Logit of π is the probability of firm failure,  
(52). In this regard, the current study will apply the three  
important macroeconomic variables, i.e., the interest rate,  
inflation, and gross domestic product to accurate prediction of  
financial distress.  
Table 1: Formulation of Independent Variables  
Variables  
Formulation  
Accounting Variables  
Profitability  
Liquidity  
EBIT /Total Asset  
Working Capital / Total  
Assets  
Current Liabilities / Total  
Equity  
Leverage  
Earning Management  
Operating cash flow -- capital  
expenditure  
Free cash flow  
Accrual  
Net income-cash-dividends  
/
Total Asset  
Macroeconomic level  
Central Bank of Iran  
1 n  
and X through X represent any of the independent variables  
used to predict firm failure.  
Interest rate  
GDP  
1 1 2 2 3 3 k k  
Logit(π) =β0 + β X + β X + β X +…+ β X  
Per capita  
1
푃 =  
푒+1(22)  
Inflation  
Consumer Price Index (CPI)  
As the decision tree (DT) is a non-parametric and preliminary  
procedure, it can learn from samples by process of  
generalization (Figure 1). Commonly, DT refers to binary trees  
that comprise a set of subdivisions (paths from roots to leaf  
nodes), leaf nodes (objects classes), and nodes (decision rules),  
which categorize objects based on their characteristics (57).  
a
1
.2 Dependent Variable  
Dependent variable of financial distress is also a dummy  
variable, and if the value of the financial distress variables gets 1  
in a year, it is considered that the firm was unable to settle the  
debt on that given year, or it has gone into financial distress on  
that year (Central Bank of Iran, 2014). The criterion for  
classifying firms into their financial conditions such as normal or  
distressed firms is based on the listed firm that is specially treated  
(ST) by the Teheran Stock Exchange. According to the Iran  
Business Law, Article 141, if the accumulated losses of a firm are  
more than 50% of stockholder equity, the firm is considered as a  
distressed firm (53).  
3
Methodology  
Technological advancements and a rise in the availability and  
power of computerization in the 1990s enabled researchers of  
financial distress prediction to resort to a more extensive range of  
methods. Today, financial distress prediction models are utilizing  
both statistical analyses and artificial intelligence to upgrade the  
decision support tools and to enhance the decision-making  
processes (54). Logistic regression and decision trees are applied  
to the current study. The Logistic regression studies the outcome  
of several independent variables to predict the relationship  
Figure1: Structure of Decision Trees  
4
Empirical Results  
This study examined the significant financial distress  
determinants of Iranian firms listed on the Tehran Stock  
6
48  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 646-651  
Exchange (TSE) across non-financial sectors. This study executes  
a sector-wise analysis of 300 non-financial Iranian firms across  
sectors. The selected firms were chosen from a dataset for periods  
of 2000-2007 and 2009-2016 across sectors. In addition, the  
current study extracted the financial information from the firms  
based on the Commercial Law, Act 141 of Tehran Stock  
Exchange, which classifies firms as distressed if the retained  
losses are more than 50% of their capital. As discussed, the  
following equation provides the association between the  
accounting and macroeconomic factors using logistic regression  
analysis.  
profitability and liquidity are negatively associated with financial  
distress. In addition, leverage ratio and free cash flow are  
positively associated with financial distress. Moreover, accrual  
variable is found statistically significant and finally, interest rate,  
inflation rate, and GDP are persistently maintained significant to  
the probability of financial distress across sectors. In general, the  
significant relationship between accounting and macroeconomic  
factors and the probability of financial distress across sectors  
show that firms among sectors tend to affect the probability of  
financial distress by its determinants.  
Table 5: Classification of decision tree model of overall  
FD = βo + β  
1
PROFit + β  
(INT) + β  
2
LEVit + β  
(GDP)+ €  
3
LIQ it + β  
I
4
FCF it + β  
5
ACRit  
independent variables  
+
β
6
(INF) + β  
7
8
Predicted  
Overall  
Non  
Non  
Distress  
Distress  
Percentage  
Table 2: Model summary of accounting and macroeconomic level  
determinants based on logistic regression  
9
75  
42  
86  
31  
141  
24  
87.4  
50.1  
85.1  
status Distress  
Predicted  
Non  
Distress  
Distress  
Overall  
Percentage  
Distress  
Percentage  
Non  
Distress  
9
88  
25  
90.4  
Status  
Table 5 shows the classification table of the practical results  
using the decision tree model. It is observed that the classification  
shows the overall analysis of firm and macroeconomic level  
determinants; it has correctly classified with 85.1% accuracy.  
Distress  
37  
145  
60.1  
83.3  
Overall Percentage  
The model effectively grouped 83.3% of determinants of  
financial distress across firms, which is higher than half, while the  
examination was directed without the independent factors that are  
utilized in the model. Table 3 exhibits log likelihood ratio, Cox &  
Snell R Square and Nagelkerke R Square.  
5
Conclusion  
Financial distress prediction is the inevitable phenomenon  
that has been a hot topic of corporate finance literature. The  
consequences of financial distress affect negatively the social and  
economic states of any country in general. Therefore, appropriate  
prediction tools are needed to be proposed. Furthermore, to keep  
track of firm business activities, minimize the risk of failure, and  
make an effective decision, the prediction models can help  
managers analyse important trends of the market. In addition,  
financial distress models assist the creditors to assess the risk of  
the firm in order to issue a new loan, and they may warn the  
auditor of the firm to monitor the performance of the financial  
activities. Accordingly, the results of this study showed that a DT  
model outperforms the other models in terms of predicting  
financial distress.  
Table 3: Classification of overall independent variables  
Nagelkerke R  
-
2Log likelihood  
Cox & Snell R Square  
Square  
1
196.345a  
0.317  
0.445  
Table 4: Estimation results of logit analysis of independent  
variables  
Wald  
Df  
Ind. Variable  
β
S.E.  
Sig  
PROF  
LEV  
LIQ  
-2.118 0.709 10.516 0.031  
21.051 3.257 15.314 0.040  
9.324 3.751 11.623 0.045  
25.310 0.415 5.312 0.130  
14.346 1.254 5.271 0.203  
0.684 0.852 2.321 0.052  
2.361 3.523 14.501 0.058  
6.052 8.321 21.301 0.054  
References  
1
.
Poston KM, Harmon K, Gramlich JD. A test of financial  
ratios as predictors of turnaround versus failure among  
financially distressed firms. Journal of Applied Business  
Research (JABR). 1994;10(1):41-56.  
FCF  
ACR  
GDP  
INF  
2. Balcaen S, Manigart S, Buyze J, Ooghe H. Firm exit after  
distress: differentiating between bankruptcy, voluntary  
liquidation and M&A. Small Business Economics.  
2
012;39(4):949-75.  
INT  
3. Beaver WH, Correia M, McNichols MF. Do differences in  
financial reporting attributes impair the predictive ability of  
financial ratios for bankruptcy? Review of Accounting  
Studies. 2012;17(4):969-1010.  
Table 4 exhibits the overall analysis based on firm and  
macroeconomic level determinants. The independent variables  
are profitability (PROF), leverage ratio (LEV), liquidity (LIQ),  
free cash flow (FCF), accrual (ACR), inflation (INF), interest rate  
4
.
Mora A. Joshua Ronen, Varda Yaari. Earnings management:  
emerging insights in theory, practice, and research. Journal of  
Management & Governance. 2010;14(1):87.  
(
INT), and gross domestic product (GDP). Based on Table 4, the  
5
.
Ronen J, Yaari V. Earnings management: Springer; 2008.  
6
49  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 646-651  
6
7
.
.
Altman EI. Financial ratios, discriminant analysis and the  
prediction of corporate bankruptcy. The journal of finance.  
24. Lin F, Liang D, Chen E. Financial ratio selection for business  
crisis prediction. Expert Systems with Applications.  
2011;38(12):15094-102.  
25. Tabrizi ES. Examine the Relationship Between Capital  
Structure, Free Cash and Operational Risks. International  
Academic Journal of Accounting and Financial Management.  
2016;3(3):24-31.  
1
968;23(4):589-609.  
Charalambous C, Charitou A, Kaourou F. Comparative  
analysis of artificial neural network models: Application in  
bankruptcy prediction. Annals of operations research.  
2
000;99(1-4):403-25.  
8
9
.
.
Gepp A, Kumar K, Bhattacharya S. Business failure  
prediction using decision trees. Journal of forecasting.  
26. Lazzem S, Jilani F. The impact of leverage on accrual-based  
earnings management: The case of listed French firms.  
Research in International Business and Finance.  
2018;44:350-8.  
27. Nodeh FM, Anuar MA, Ramakrishnan S, Rafatnia AA,  
Nodeh AM. Mediating Risk Taking on Relationship between  
Board Structure Determinants and Banks Financial  
Performance. Asian Social Science. 2015;11(23):96.  
2
010;29(6):536-55.  
Shin K-S, Lee TS, Kim H-j. An application of support vector  
machines in bankruptcy prediction model. Expert systems  
with applications. 2005;28(1):127-35.  
1
1
0. Beaver WH. Financial ratios as predictors of failure. Journal  
of accounting research. 1966:71-111.  
1. Kumar PR, Ravi V. Bankruptcy prediction in banks and firms  
via statistical and intelligent techniquesA review. European  
journal of operational research. 2007;180(1):1-28.  
28. Ball R, Foster G. Corporate financial reporting: A  
methodological review of empirical research. Journal of  
accounting Research. 1982:161-234.  
1
2. Fumani M, Moghadam A. The Effect of Capital Structure on  
Firm Value, The Rate of Return on Equity and Earnings Per  
Share of Listed Companies in Tehran Stock Exchange.  
Journal of Finance and Accounting. 2015;6(15).  
3. Duan J-C, Sun J, Wang T. Multiperiod corporate default  
predictionA forward intensity approach. Journal of  
Econometrics. 2012;170(1):191-209.  
4. Aghaie A, Saeedi A, editors. Using bayesian networks for  
bankruptcy prediction: Empirical evidence from iranian  
companies. 2009 International Conference on Information  
Management and Engineering; 2009: IEEE.  
29. Hoque M, Bhandari SB, Iyer R. Predicting business failure  
using cash flow statement based measures. Managerial  
Finance. 2013.  
30. Macve RH. Fair value vs conservatism? Aspects of the  
history of accounting, auditing, business and finance from  
ancient Mesopotamia to modern China. The British  
Accounting Review. 2015;47(2):124-41.  
1
1
31. Cohen A, Sayag G. The effectiveness of internal auditing: an  
empirical examination of its determinants in Israeli  
organisations.  
Australian  
Accounting  
Review.  
2010;20(3):296-307.  
1
1
5. Etemadi H, Rostamy AAA, Dehkordi HF. A genetic  
programming model for bankruptcy prediction: Empirical  
evidence from Iran. Expert Systems with Applications.  
32. Burgstahler D, Dichev I. Earnings management to avoid  
earnings decreases and losses. Journal of accounting and  
economics. 1997;24(1):99-126.  
33. Lin JW, Li JF, Yang JS. The effect of audit committee  
performance on earnings quality. Managerial Auditing  
Journal. 2006.  
2
009;36(2):3199-207.  
6. Bharath ST, Shumway T. Forecasting default with the Merton  
distance to default model. The Review of Financial Studies.  
2
008;21(3):1339-69.  
34. Doukakis LC. The effect of mandatory IFRS adoption on real  
and accrual-based earnings management activities. Journal of  
Accounting and Public Policy. 2014;33(6):551-72.  
35. Enomoto M, Kimura F, Yamaguchi T. Accrual-based and real  
earnings management: An international comparison for  
investor protection. Journal of Contemporary Accounting &  
Economics. 2015;11(3):183-98.  
1
1
7. Brealey RA, Myers SC. Financing and risk management:  
McGraw Hill Professional; 2003.  
8. Nodeh FM, Anuar MA, Ramakrishnan S, Raftnia AA. The  
effect of board structure on banks financial performance by  
moderating firm size. Mediterranean Journal of Social  
Sciences. 2016;7(1):258-.  
1
9. Hsu L-T, Jang S. The determinant of the hospitality industry's  
unsystematic risk: A comparison between hotel and restaurant  
firms. International Journal of Hospitality & Tourism  
Administration. 2008;9(2):105-27.  
36. Feng M, Li C, McVay SE, Skaife H. Does ineffective internal  
control over financial reporting affect a firm's operations?  
Evidence from firms' inventory management. The  
Accounting Review. 2015;90(2):529-57.  
2
2
0. Opler T, Titman S. The determinants of leveraged buyout  
activity: Free cash flow vs. financial distress costs. The  
Journal of Finance. 1993;48(5):1985-99.  
1. Abdullah NAH, Zainudin N, Ahmad AH, Rus RM. Predictors  
of financially distressed small and medium-sized enterprises:  
a case of Malaysia. International Proceedings of Economics  
Development and Research. 2014;76:108.  
2. DeAngelo H, DeAngelo L, Wruck KH. Asset liquidity, debt  
covenants, and managerial discretion in financial distress::  
the collapse of LA Gear. Journal of financial economics.  
37. Zang AY. Evidence on the trade-off between real activities  
manipulation and accrual-based earnings management. The  
accounting review. 2012;87(2):675-703.  
38. Bhagat S, Bolton B. Corporate governance and firm  
performance. Journal of corporate finance. 2008;14(3):257-  
73.  
39. Nekhili M, Amar IFB, Chtioui T, Lakhal F. Free cash flow  
and earnings management: The moderating role of  
governance and ownership. Journal of Applied Business  
Research (JABR). 2016;32(1):255-68.  
40. Inekwe JN, Jin Y, Valenzuela MR. The effects of financial  
distress: Evidence from US GDP growth. Economic  
Modelling. 2018;72:8-21.  
2
2
2
002;64(1):3-34.  
3. Samiloglu F, Akgün Aİ. The relationship between working  
capital management and profitability: Evidence from Turkey.  
Business and Economics Research Journal. 2016;7(2):1.  
6
50  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 646-651  
4
4
4
4
4
1. Bachmann R, Elstner S, Sims ER. Uncertainty and economic  
activity: Evidence from business survey data. American  
Economic Journal: Macroeconomics. 2013;5(2):217-49.  
2. Bhattacharjee A, Han J. Financial distress of Chinese firms:  
Microeconomic, macroeconomic and institutional influences.  
China Economic Review. 2014;30:244-62.  
3. French J. Macroeconomic forces and arbitrage pricing theory.  
Journal of Comparative Asian Development. 2017;16(1):1-  
2
0.  
4. Brown SJ, Otsuki T. Macroeconomic factors and the Japanese  
equity markets: The CAPMD project: Salomon Bros. Center  
for the Study of Financial Institutions, Graduate …; 1989.  
5. Tinoco MH, Wilson N. Financial distress and bankruptcy  
prediction among listed companies using accounting, market  
and macroeconomic variables. International Review of  
Financial Analysis. 2013;30:394-419.  
4
4
6. Farajnezhad M, Ziaei SM, Choo LG, Karimiyan A. Credit  
Channel of Monetary Policy Transmission Mechanism in  
BRICS. Journal of Economics and Sustainabe Development.  
2
016;7(4).  
7. M Farajnezhad SALR, Mani Shehni Karam Zadeh. Analyses  
the Effect of Monetary Policy Transmission on the Inequality  
in OECD Countries. Journal of Environmental Treatment  
Techniques;special issue of “environment management and  
economics. 2020;8(2):589-96.  
4
8. Farajnezhad M, Ramakrishnan SAL. Effectiveness of Credit  
Channel of Monetary Policy Transmission Mechanism on  
Commercial Banks in Malaysia. International Jouranal of  
Recent Technology and Engineering (IJRTE). 2019;8(1C2).  
9. Rose AK. An alternative approach to the American demand  
for money. Journal of Money, Credit and Banking.  
4
5
1
985;17(4):439-55.  
0. Mensah YM. An examination of the stationarity of  
multivariate bankruptcy prediction models:  
methodological study. Journal of accounting research.  
984:380-95.  
A
1
5
5
1. Chiaramonte L, Casu B. Capital and liquidity ratios and  
financial distress. Evidence from. 2016.  
2. Becchetti L, Sierra J. Bankruptcy risk and productive  
efficiency in manufacturing firms. Journal of banking &  
finance. 2003;27(11):2099-120.  
5
5
3. Rafiei FM, Manzari S, Bostanian S. Financial health  
prediction models using artificial neural networks, genetic  
algorithm and multivariate discriminant analysis: Iranian  
evidence.  
Expert  
Systems  
with  
Applications.  
2
011;38(8):10210-7.  
4. Tinoco MH, Holmes P, Wilson N. Polytomous response  
financial distress models: The role of accounting, market and  
macroeconomic variables. International Review of Financial  
Analysis. 2018;59:276-89.  
5
5
5. Demyanyk Y, Hasan I. Financial crises and bank failures: A  
review of prediction methods. Omega. 2010;38(5):315-24.  
6. Amani FA, Fadlalla AM. Data mining applications in  
accounting: A review of the literature and organizing  
framework. International Journal of Accounting Information  
Systems. 2017;24:32-58.  
5
7. Dimitras A, Slowinski R, Susmaga R, Zopounidis C.  
Business failure prediction using rough sets. European  
Journal of Operational Research. 1999;114(2):263-80.  
6
51