Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 597-630  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Influence of Adsorption Process Parameters on the  
Removal of Hexavalent Chromium (Cr(VI)) from  
Wastewater: A Review  
Sunil Rajoriya*, Ahlaam Haquiqi, Bhawna Chauhan, Girish Tyagi*, Avdesh Singh Pundir*, Ajay  
Kumar Jain  
Chemical Engineering Department, Meerut Institute of Engineering and Technology, Meerut-250005, India  
Received: 23/12/2019  
Accepted: 16/02/2020  
Published: 20/05/2020  
Abstract  
In recent years, the release of heavy metals into the aquatic environment has become a major issue. Numerous socio-economic problems  
are caused due to the presence of several heavy metals in wastewater. Hexavalent chromium (Cr (VI)) is one of the major heavy metal present  
in the wastewater which comes from various industries such as fertilizers, pesticides, metal cleaning, dyes and pigment, especially in tannery  
industry. Numerous methods have been employed for the removal of Cr (VI) from wastewater. Adsorption has been reported as a suitable  
method due to its high efficiency, low cost, generation of minimum chemical sludge and reusability of the prepared adsorbents. In this review,  
various adsorption process parameters such as solution pH, adsorbent dosage, temperature and initial Cr (VI) concentration have been  
reviewed on the removal efficiency of Cr (VI) from wastewater. The percentage removal of Cr (VI) strongly depends upon pH of the solution  
and the optimum pH range was found to be 1.0-4.0. The reusability of the used adsorbents has also been discussed. It is comparatively good  
for practical applications. It can be concluded that the most of the adsorbents have good regeneration capability. This review paper suggested  
that the adsorption process parameters had an important role on the removal efficiency of Cr (VI) from wastewater.  
Keywords: Adsorption, Wastewater treatment, Hexavalent chromium, Reusability  
Introduction1  
in wastewater so that Cr(VI) could be come in the acceptable  
1
levels before discharge in to aquatic environment (6-10). There  
are following four stages of the conventional chromium treatment  
processes as (8): (a) Cr(VI)Cr(III) reduction, (b) at higher pH,  
precipitation of Cr(III) as Cr(OH) , (c) settle down of the  
3
insoluble metal hydroxide, and (d) disposal of the dewatered  
sludge.  
Numerous methods such as ion exchange, electrochemical  
reduction, precipitation, adsorption and reverse osmosis have  
been reported in literature for the treatment of chromium-laden  
wastewater. Between all the above methods, adsorption has been  
considered to be an appropriate method for the removal of Cr(VI)  
from wastewater (11-15). The some advantages of the adsorption  
process are its ease of operation, effectiveness and economic  
viability.  
In the last two decades, various new materials as adsorbents  
such as tea waste (1), modified groundnut hull (4), treated waste  
newspaper (6), activated neem leaves (13) and banana peel (15)  
efficient adsorbents have developed for the removal of Cr (VI).  
Mostly adsorbents have shown their higher adsorption efficiency  
towards the treatment of wastewater due to their lesser time. But,  
The discharge of heavy metals into the water bodies has  
become a major environmental concern over the world (1-2).  
Amongst all the heavy metals, hexavalent chromium (Cr(VI)) has  
been considered one of the major pollutant which is soluble in  
water and has deleterious effects on environment as well as  
human health (3-4). The major sources of Cr(VI) in  
wastewater/waterbodies are electroplating, textile dyeing and  
especially tanning processing industries (5). Hexavalent  
chromium is highly toxic substance and mutagenic to the most  
organisms and is recognized to cause cancer; it also causes lung  
carcinoma in human lives [2]. The Cr(VI) is present in the excess  
quantity in water/wastewater beyond a permissible limit which  
results in skin irritation, ulcer formation, liver damage and  
pulmonary congestion [1]. World Health Organization (WHO)  
recommended the maximum permissible limit of hexavalent  
chromium concentration is 0.05 mg/L in wastewater [1].  
According to United States Environmental Protection Agency  
(US EPA), the acceptable level of Cr(VI) is 0.05 mg/L for potable  
water and is 0.1 mg/L for inland surface waters. Considering this  
limit, it is necessary for industries to control their chromium level  
Corresponding authors: (a) Sunil Rajoriya, Chemical Engineering Department, Meerut Institute of Engineering and Technology, Meerut-  
50005, India. E-mail: sunilrajoriya@gmail.com. (b) Girish Tyagi, Chemical Engineering Department, Meerut Institute of Engineering and  
2
Technology, Meerut-250005, India. E-mail: girish.tyagi@miet.ac.in. (c) Avdesh Singh Pundir, Chemical Engineering Department, Meerut  
India.  
5
97  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 597-630  
some adsorbents have limited applications because of their low  
adsorption capacity and high contact time. The purpose of this  
review article is to investigate the influences of various adsorption  
process parameters i.e. solution pH, adsorbent dosage,  
temperature and initial Cr(VI) concentration on the removal  
efficiency of Cr(VI) from wastewater. A summary on the  
reusability of the used materials as efficient adsorbents has also  
been presented in this review article.  
dosage of 10 g/L was enough to acquire maximum removal of  
chromium (92.5%) where initial Cr(VI) concentration was 50  
mg/L with temperature of 20°C and agitation speed of 150 rpm  
(22). It had been reported that the Cr(VI) removal percentage was  
enhanced from 74 to 99% for an increase in dosage from 0.5-  
1.5g/L due to the number of available sites of adsorption and  
surface area increased (20). Usually, it was understood that  
chromium removal efficiency was enhanced with increase in the  
adsorbent dosage up to an optimum as the number of vacant sites  
available for uptake of heavy metals. Nevertheless, adsorbent  
dosage cannot keep increasing to attain higher adsorption because  
of cost becomes a limiting factor and therefore adsorbent dosage  
is required to optimize for adsorption process.  
2
Influence of various adsorption parameters on  
the removal efficiency of Cr (VI)  
2
.1 Influence of solution pH  
Literature has reported that solution pH is a major factor  
affecting the adsorption efficiency of Cr(VI). The solution pH  
dependency of metal adsorption is generally linked to the  
functional groups of the adsorbents surface and ionic forms of  
metal ions in the solution (6, 16). It had been reported that  
maximum Cr(VI) removal efficiency was found under acidic  
conditions (1, 6, 9, 10, 17, 18-20). The summary of work done in  
the area of adsorption process for the removal of Cr(VI) from  
wastewater in recent years has been presented in Table 1. The  
reduction of Cr(VI) to Cr(III) may comprise generally two main  
mechanisms as: (1) the reduction of Cr(VI) to Cr(III) by electron-  
donor groups of the adsorbent surface and the reduced Cr(III)  
forms complexes with materials (2) the adsorption-coupled  
reduction of Cr(VI) to Cr(III) takes place on the sites of  
adsorbents (1, 17, 18). In literature, Cr(VI) is easily reduced to the  
Cr(III) due to its high redox potential value (1.3 V at standard  
state) under acidic conditions (1). In this regards, Nigam et al. (1)  
have studied the effect of pH over a pH range of 210 on the  
removal of Cr(VI) at an adsorbent dosage of 6 g/L and  
temperature of 30°C. Almost 97% removal was obtained at an  
optimum solution pH of 3.9 in 240 min of processing time.  
Owalude et al. (4) have investigated the removal of hexavalent  
chromium from aqueous solutions using modified groundnut hull  
as an efficient adsorbent at various pH. It was observed that acidic  
conditions are more relevant for the removal of Cr(VI) due to the  
presence of HCrO as a dominant species on to easy contact to  
the binding sites on the adsorbents so that electric attraction with  
H+ ions on the surface of adsorbent can adsorbed higher metal  
ions. Therefore, maximum Cr(VI) removal of 96% was found at  
a low pH of 2.0. Chen et al. (20) have studied the effect of solution  
pH on the Cr(VI) removal from wastewater using modified corn  
stalks. They have reported that maximum adsorption of  
hexavalent chromium (99.5%) was obtained at pH value of 2.3.  
Hence, it is very important to optimize the solution pH for  
each and every prepared new material as an adsorbent in order to  
achieve the maximum Cr(VI) removal efficiency from the  
wastewater.  
2
.3 Influence of temperature  
Temperature plays an important role in deciding the removal  
efficiency of Cr(VI) in the adsorption process (4, 5, 12, 14). It is  
necessary to identify the suitable temperature to get good  
adsorbent efficiency. The nature of the adsorption can be assumed  
depending on the process responds with variation in employed  
temperature. The adsorption of heavy metals increases with an  
increase in the temperature therefore a process/reaction is  
endothermic in nature (5, 12, 17) whereas adsorption of metals  
decreases for an increase in the temperature therefore a  
process/reaction is exothermic in nature (8). In addition to this, to  
determine the process whether it is endothermic or exothermic;  
the thermodynamic parameters such as ΔG°, ΔH° and ΔS° need  
to be calculated. It has been reported that the values of change in  
entropy (ΔS°) and change in enthalpy (ΔH°) can be calculated  
from the intercept and slop of plot lnKeq v/s 1/T (1, 5). The  
positive values of ΔH° show that the adsorption process is  
endothermic in nature and vice-versa (1). Various researchers  
have reported the temperature effect over a range of 10 - 60°C for  
the various adsorbents towards the Cr(VI) removal from  
wastewater (1-5,12, 14-15, 17). Nigam et al. (1) have studied the  
effect of temperature over a range of 20 to 40°C on the removal  
of Cr(VI) using tea waste as an adsorbent and observed that the  
maximum of 97% removal of chromium was obtained at a  
temperature of 30°C. The percentage removal of Cr(VI) was  
enhanced for an increase in the temperature from 20 to 40°C,  
which may be due to the increase in diffusion rate of the metal  
ion. Similar results were also reported by other study that the  
percentage removal of chromium was increased with an increase  
in the temperature suggesting that the adsorption process is an  
endothermic process (3, 5, 12, 14, 17). Apart from these studies,  
some studies have reported that the adsorption capacity decreased  
for an increase in the temperature advising that the adsorption  
process was exothermic process (4, 8). Hence, it is very important  
to find the temperature conditions so that process could be  
identified that it is either endothermic or exothermic in nature.  
4
-
2
.2 Influence of adsorbent dosage  
Adsorbent dose is another major important factor in the  
2
.4 Influence of initial Cr (VI) concentration  
The initial Cr(VI) concentration in wastewater samples is  
adsorption process which regulates the amount of metal ion  
removal and the economics of process. In the adsorption,  
adsorbent dosage to be used can be considered broadly by  
carrying out experiments where the amount of adsorbent is varied  
when other conditions are kept constants (20-22). It had been  
reported that there are various ranges of the different adsorbents  
dosage (shown in Table 1). In a literature study of Cr(VI) removal  
using biomass of Agaricus bisporus, it was seen that an adsorbent  
another important factor which influences the adsorption capacity  
of the metal ions. Previous studies have reported that the  
percentage removal efficiency of Cr(VI) is decreased at higher  
initial concentration of the Cr(VI) (3, 5, 13, 16, 20).  
5
98  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 597-630  
Table 1: Summary of work done on Hexavalent Chromium Cr(VI) removal from wastewater using different adsorbents  
Ranges of Process parameters studied  
Treated  
Cr(VI)  
S. No.  
Adsorbent  
Volume,  
mL  
Optimum conditions  
removal References  
(%)  
Adsorbent  
dosage  
Temperature  
(°C)  
Initial Cr(VI)  
Concentration  
pH  
pH = 3.9, adsorbent dosage =  
g/L, T = 30°C, initial Cr(VI)  
concentration = 141 mg/L,  
time = 240 min  
6
1
.
Tea waste  
200  
2-11  
2-10 g/L  
20-40  
141-455 mg/L  
96.7  
Nigam et al. (1)  
Synthesized  
chitosan from  
crab shell  
pH = 3, adsorbent dosage =  
5g/100mL, T = 60°C, time =  
60 min  
1
345±1 mg/L  
2
3
4
.
.
.
100  
100  
100  
3-8  
1-6  
1-8  
1-5 g/L  
1-5 g/L  
10-50 mg  
30-60  
10-50  
10-40  
99.9  
96  
Hossain et al. (2)  
Acharya et al. (3)  
Owalude et al. (4)  
(real effluent)  
pH = 1, adsorbent dosage =  
Activated carbon  
from Tamarind  
wood  
2
g/L, T = 30°C, time = 40  
10-50 mg/L  
min, , initial Cr(VI)  
concentration = 30 mg/L  
pH = 2, initial Cr(VI)  
concentration = 13 mg/L,  
time = 60 min, T = 28°C  
Modified  
groundnut hull  
+
12.5-18 mg/L  
96  
pH = 4; adsorbent dosage =  
3
4
.5g/L, time = 180 min, T =  
5°C, initial Cr(VI)  
5
6
7
.
.
.
Paper mill sludge  
100  
100  
50  
2-6  
2-7  
1-6  
1.5-7 g/L  
0.4-4g/100mL  
_
20-45  
10-100 mg/L  
5-70 mg/L  
98.4  
64  
Gorzin et al. (5)  
concentration = 10mg/L  
Treated waste  
newspaper  
pH = 3, adsorbent dosage =  
3g/L, time = 60 min  
_
_
Dehghani et al. (6)  
pH=1.5, adsorbent dosage =  
Ocimum  
americanum L  
seed pods  
8
g/L, time = 120min, initial  
Cr (VI) concentration =  
0mg/L  
Levankumar et al.  
(7)  
100-200mg/L  
100  
5
pH = 2, adsorbent dosage = 4  
g/L, T= 30°C, time = 70 min,  
initial Cr (VI) concentration =  
Fertilizer industry  
waste material  
8
9
1
.
.
10  
40  
25  
1-3  
1-10g/L  
0.05- 0.6g  
4-16g/L  
30-50  
10-100 mg/L  
2 mM  
65  
75  
99  
Gupta et al. (8)  
Pehlivan et al. (11)  
Babu et al. (13)  
1
00 mg/L  
pH = 2, adsorbent dosage =  
0.2g, time = 120 min, T =  
25±1°C, initial Cr(VI)  
concentration = 2 mM  
pH =1-3, adsorbent dosage =  
Oak wood  
charcoal  
1-7  
_
-
1
0 g/L, T = 30°C, initial  
0. Neem leaves  
1-11  
20-700 mg/L  
Cr(VI) concentration = 50  
mg/L  
5
99  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 597-630  
Ranges of Process parameters studied  
Treated  
Volume,  
mL  
Cr(VI)  
removal References  
(%)  
S. No.  
Adsorbent  
Optimum conditions  
Adsorbent  
Temperature  
Initial Cr(VI)  
Concentration  
pH  
dosage  
(°C)  
pH= 2, adsorbent dosage = 2  
g/L, T = 30°C, initial Cr(VI)  
concentration = 150 mg/L;  
pH = 2, adsorbent dosage =  
1g/50mL, T = 26±1°C, initial  
Cr(VI) concentration =  
Premkumar et al.  
14)  
1
1
1. Ragi husk  
50  
2-4  
2-5g/L  
25-30  
-
50-150 mg/L  
10-70 mg/L  
68.6  
54.8  
(
Pre-boiled  
2.  
50  
20  
30  
50  
50  
2-7  
0.2 -1g  
Jain et al. (16)  
Altun et al. (17)  
Gode et al. (18)  
Dahbi et al. (19)  
Chen et al. (20)  
sunflower stem  
5
0mg/L, time = 180min  
pH = 2, time = 120min,  
adsorbent dosage = 0.1 g, T =  
25±1°C; initial Cr(VI)  
concentration = 1 mM  
pH = 3, T =25±2°C, adsorbent  
dosage = 0.1g, initial Cr(VI)  
concentration = 1 mM, time  
= 120min  
Modified walnut  
shell  
1
1
1
1
3.  
4.  
2-9  
0.02-0.20 g  
0.1g  
25-65  
0.1-1.0 mM  
0.1-1.0 mM  
5-25 mg/L  
75  
Modified red pine  
saw dust (tartaric  
acid modified saw  
dust)  
3-10  
1-11  
1.8-5.2  
-
87.7  
90  
pH =1, adsorbent dosage =  
2
gm, initial Cr(VI)  
5. Bone charcoal  
0.5-2 g  
_
concentration = 10 mg/L,  
time = 30min  
pH = 2.3, adsorbent dosage =  
1.5g/L, initial Cr(VI)  
Modified corn  
stalks  
6.  
0.5-4 g/L  
25-50  
100-400 mg/L  
99.5  
concentration = 100mg/L, T  
=
25±1°C, time = 60 min  
pH = 1, adsorbent dosage =  
10g/L, initial Cr(VI)  
concentration = 50mg/L, T =  
Biomass of  
7.  
1
1
100  
100  
1-7  
1-7  
3-15 g/L  
1-40 g/L  
20-40  
_
25-125 mg/L  
10-100 mg/L  
92.4  
99.9  
Ertugay et al. (21)  
Ahalya et al. (22)  
Agaricus bisporus  
2
0°C  
pH = 2, adsorbent dosage =  
1g/100mL, initial Cr(VI)  
concentration = 10mg/L,  
time = 180min  
Husk of Bengal  
8.  
gram  
6
00  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 597-630  
Table 2: Overview on the reusability of the prepared adsorbents by various researchers for the removal efficiency of Cr(VI)  
Frequency of  
reusability  
Cr(VI) Removal  
efficiency (%)  
S. No.  
Adsorbent  
Optimum conditions  
References  
pH = 3.9, adsorbent dosage = 6  
g/L, T = 30°C, initial Cr(VI)  
concentration = 141 mg/L, time  
1
.
Tea waste  
5
90.5  
Nigam et al. (1)  
=
240 min  
pH=3, adsorbent  
Treated waste  
newspaper  
dosage=0.4g/250mL, initial  
Cr(VI) concentration =20mg/L,  
time= 60min  
2
3
.
.
5
3
78  
Dehghani et al. (6)  
Gorzin et al. (5)  
pH = 4; adsorbent dosage =  
3
.5g/L, time = 180 min, T =  
Paper mill sludge  
68.34  
4
5°C, initial Cr(VI)  
concentration = 50mg/L  
pH = 3, adsorbent dosage =  
5g/100mL, T = 60°C, time =  
Synthesized chitosan  
from crab shell  
4
5
6
.
.
.
5
78  
92  
91  
Hossain et al. (2)  
Memon et al. (15)  
Huang et al. (23)  
6
0 min  
pH =2, time = 30min, initial  
Cr(VI) concentration = 1.92 x  
Banana peel  
10  
5
-
5
1
0
M
pH =2.0, adsorbent dosage =  
0.5 g/500 mL, T = 30°C, time  
Chitosan/MWCNTs-  
COOH composite  
=
30min  
Chitosan functional  
gel including with  
multiwall carbon  
nanotube and  
pH =2.0, adsorbent dosage =  
0.5 g/100 mL, initial Cr(VI)  
concentration = 6 mg/L  
7
.
3
85  
Kim et al. (24)  
substituted  
polyaniline  
pH =4.0, adsorbent dosage =  
0.13 g/100 mL, initial Cr(VI)  
concentration = 48 mg/L  
pH =2.0, adsorbent dosage = 2  
g/L, initial Cr(VI)  
concentration = 50 mg/L  
pH =2.0, adsorbent dosage =  
4
3
0% Aliquat  
36/60% PVC PIM  
Gherasim et al.  
(25)  
8
9
.
.
5
30.83  
82  
Chitosan grafted GO  
nano-composite  
10  
Samuel et al. (26)  
Sharma et al. (27)  
6
0 mg/L, initial Cr(VI)  
AC of Cornulaca  
monacantha stem  
1
0.  
5
concentration = 20 mg/L,  
contact time = 120 min, T =  
89  
6
5°C  
In this context, Acharya et al. (3) have studied the effect of  
initial feed concentration of Cr(VI) using adsorption at constant  
temperature of 30ºC and pH of 6.5 and found that % removal of  
chromium decreased from 88 to 63% (at 3 g/L adsorbent dosage)  
with an increase in initial concentration of Cr(VI) from 10 to 50  
mg/L. A similar observation was also made by Babu et al. (13),  
the initial Cr(VI) concentration was varied from 40 to 700 mg/L  
at the adsorbent dosage of 10 g/L. They have found that the  
percentage Cr(VI) removal decreased from 99.95% to 89.94%  
when Cr(VI) concentration increased from 40 to 700 mg/L.  
However, literature have reported that at higher concentration of  
the chromium, the adsorption capacity increases (12, 13, 20).  
Therefore, it is need to be reported in terms of adsorption  
capacity. In this regard, Hasan et al. (12) found that adsorption  
capacity increased for an increase in the initial concentration of  
Cr(VI). A similar trend was also found by Babu et al. (13). They  
have reported that adsorption capacity increases from when initial  
Cr(VI) concentration increases. From the above studies, it is clear  
that % removal of Cr(VI) gets reduced for an increase in the initial  
concentration whereas adsorption capacity was found to be higher  
at higher concentration. Therefore, it is required to report the data  
in terms of percentage removal as well as adsorption capacity.  
3
Overview on the reusability of used adsorbent  
In the area of wastewater treatment, reusability of the  
prepared adsorbent is the most significant step because of  
untreated amount in excess may led to the disposal problems (1,  
5
, 6). The adsorbent can be recycled. The economy of the  
adsorption process depends upon how many times the prepared  
adsorbents can be reused without sacrificing its percentage  
removal efficiency. Many authors have reported on the reusability  
study of the adsorbents for the hexavalent chromium removal in  
recent years (1, 23-27). Nigam et al. (1) have studied about the  
reusability of the tea waste as an adsorbent and found that the %  
6
01  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 597-630  
removal of Cr(VI) was removed from 96.7% to 90.5% after five  
repeated cycles. Samuel et al. (26) have investigated the  
reusability test of the chitosan grafted graphene oxide (CS-GO)  
nano-composite and reported that the % removal of Cr(VI) was  
decreased from 96% to 82% after ten cycles. Sharma et al. (27)  
reported that the adsorption efficiency for Cr(VI) removal was  
dropped to 89.19% after five consecutive cycles. Kim et al. (24)  
have observed that the CS-MWNT-PAA-PADPA/FG showed  
nearby 85% removal efficiency of Cr(VI) even after three  
consecutive adsorption-desorption cycles. An overview on the  
reusability of used adsorbents reported in the literature is  
summarized in Table 2. Overall, it can be concluded that the  
percentage Cr(VI) removal decreases with an increase in the  
regeneration cycles of the used adsorbents.  
5. Gorzin F, Abadi MMBR. Adsorption of Cr(VI) from aqueous  
solution by adsorbent prepared from paper mill sludge: Kinetics and  
thermodynamics studies, Adsorption Science & Technology. 2017;  
3
6(1-2): 149-169.  
6
.
Dehghani MH, Sanaei D, Ali I, Bhatnagar A. Removal of  
chromium(VI) from aqueous solution using treated waste newspaper  
as a low-cost adsorbent: Kinetic modeling and isotherm studies,  
Journal of Molecular Liquids. 2016; 215: 671-679.  
7. Levankumar L, Muthukumaran V, Gobinath MB. Batch adsorption  
and kinetics of chromium (VI) removal from aqueous solutions by  
Ocimum americanum L. seed pods, Journal of Hazardous Materials.  
2
009; 161: 709-713.  
8
.
Gupta VK, Rastogi A, Nayak A. Adsorption studies on the removal  
of hexavalent chromium from aqueous solution using a low cost  
fertilizer industry waste material, Journal of Colloid and Interface  
Science. 2010; 342: 135-141.  
9
1
.
Tahir SS, Naseem R. Removal of Cr(III) from tannery wastewater by  
adsorption onto bentonite clay, Separation and Purification  
Technology. 2007; 53: 312-321.  
4
Conclusions  
The influences of various adsorption process parameters on  
0. Sarin V, Pant KK. Removal of chromium from industrial waste by  
using eucalyptus bark, Bioresource Technology. 2006; 97: 15-20.  
the removal efficiency of Cr(VI) from wastewater using various  
adsorbents have been reviewed. There are some conclusions from  
this review as following:  
11. Pehlivan E, Kahraman H, Pehlivan E. Sorption equilibrium of Cr(VI)  
ions on oak wood charcoal (Carbo Ligni) and charcoal ash as low-  
cost adsorbents, Fuel Processing Technology. 2011; 92: 65-70.  
The percentage removal of Cr(VI) depends upon the solution  
pH and maximum removal efficiency of Cr(VI) from  
wastewater is found under acidic conditions. The optimum  
pH range for all adsorbents used in the current work is 1.0-  
1
2. Hasan SH, Singh KK, Prakash O, Talat M, Ho YS. Removal of  
Cr(VI) from aqueous solutions using agricultural waste ‘maize bran’,  
Journal of Hazardous Materials. 2008; 152: 356-365.  
3. Babu BV, Gupta S. Adsorption of Cr(VI) using activated neem  
leaves: kinetic studies, Adsorption. 2008; 14: 85-92.  
4. Premkumar M, Abinandan S, Sowmya V, Shanthakumar S. Efficacy  
of Eleusine coracana (L.) Gaertn (Ragi) Husk for Adsorption of  
Chromium(VI): A Study Using Response Surface Methodology,  
Environmental Progress & Sustainable Energy. 2015; 34: 139-145.  
5. Memon JR, Memon SQ, Bhanger MI, El-Turki A, Hallamc KR, Allen  
GC. Banana peel: A green and economical sorbent for the selective  
removal of Cr(VI) from industrial wastewater, Colloids and Surfaces  
B: Biointerfaces. 2009; 70: 232-237.  
1
1
4
.0.  
Adsorbent dosage should be optimized for newly developed  
materials to achieve the maximum removal efficiency of  
Cr(VI) from wastewater because every prepared adsorbent  
have different adsorption capacity.  
It is needed to study the influence of temperature in the  
adsorption process for identifying the nature of  
adsorption/reaction (either endothermic or exothermic).  
From literature, lower concentration is more favorable for  
achieving the higher removal efficiency of Cr(VI) whereas  
adsorption capacity is found to be higher at higher initial  
Cr(VI) concentration.  
1
1
6. Jaina M, Garg VK, Kadirvelu K. Chromium(VI) removal from  
aqueous system using Helianthus annuus (sunflower) stem waste,  
Journal of Hazardous Materials. 2009; 162: 365-372.  
17. Altun T, Pehlivan E. Removal of Cr(VI) from aqueous solutions by  
modified walnut shells, Food Chemistry. 2012; 132: 693-700.  
1
It is seen that reusability of the prepared adsorbent helps in  
the disposal problems and economy of the adsorption process.  
8. Gode F, Atalay ED, Pehlivan E. Removal of Cr(VI) from aqueous  
solutions using modified red pine sawdust, Journal of Hazardous  
Materials. 2008; 152: 1201-1207.  
Competing interests  
19. Dahbi S, Azzi M, de la Guardia M. Removal of hexavalent chromium  
from wastewaters by bone charcoal, Fresenius Jounal of Analytical  
Chemistry. 1999; 363: 404-407.  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
2
0. Chen S, Yue Q, Gao B, Li Q, Xu X. Removal of Cr(VI) from aqueous  
solution using modified corn stalks: Characteristic, equilibrium,  
kinetic and thermodynamic study, Chemical Engineering Journal.  
References  
2
011; 168: 909-917.  
1
2
3
4
.
.
.
.
Nigam M, Rajoriya S, Singh SR, Kumar P. Adsorption of Cr (VI) ion  
from tannery wastewater on tea waste: Kinetics, equilibrium and  
thermodynamics studies, Journal of Environmental Chemical  
Engineering. 2019; 7: 103188.  
Hossain KFB, Sikder MdT, Rahman MdM, Uddin MdK, Kurasaki M.  
Investigation of Chromium Removal Efficacy from Tannery Effluent  
by Synthesized Chitosan from Crab Shell, Arabian Journal for  
Science and Engineering. 2017; 42: 1569-1577.  
Acharyaa J, Sahub JN, Sahoo BK, Mohanty CR, Meikap BC.  
Removal of chromium(VI) from wastewater by activated carbon  
developed from Tamarind wood activated with zinc chloride,  
Chemical Engineering Journal. 2009; 150: 25-39.  
Owalude SO, Tella AC. Removal of hexavalent chromium from  
aqueous solutions by adsorption on modified groundnut hull, beni-  
suef university Journal of basic and applied Science. 2016; 5: 377-  
2
2
1. Ertugay N, Bayhan YK. Biosorption of Cr (VI) from aqueous  
solutions by biomass of Agaricus bisporus, Journal of Hazardous  
Materials. 2008; 154: 432-439.  
2. Ahalya N, Kanamadi RD, Ramachandra TV. Biosorption of  
chromium (VI) from aqueous solutions by the husk of Bengal gram  
(Cicer arientinum), Electronic Journal of Biotechnology. 2005; 8:  
2
58-264.  
2
2
3. Huanga Y, Lee X, Macazoc FC, Grattieric M, Caic R, Minteer SD.  
Fast and efficient removal of chromium (VI) anionic species by a  
reusable chitosan-modified multi-walled carbon nanotube composite,  
Chemical Engineering Journal. 2018; 339: 259-267.  
4. Kim M K, Komathi SS, Gopalan AI, Lee KP. A novel chitosan  
functional gel included with multiwall carbon nanotube and  
substituted polyaniline as adsorbent for efficient removal of  
chromium ion, Chemical Engineering Journal. 2015; 267: 51-64.  
3
88.  
6
02  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 597-630  
2
2
5. Gherasim CV, Bourceanu G. Removal of chromium(VI) from  
aqueous solutions using a polyvinyl-chloride inclusion membrane:  
Experimental study and modelling, Chemical Engineering Journal.  
2
013; 220:24-34.  
6. Samuel MS, Bhattacharya J, Raj S, Santhanam N, Singh H, Singh  
NDP. Efficient removal of chromium(VI) from aqueous solution  
using chitosan grafted graphene oxide (CS-GO) nanocomposite,  
International Journal of Biological Macromolecules. 2019; 121: 285–  
2
92.  
2
7. Sharma A, Thakur KK, Mehta P, Pathania D. Efficient adsorption of  
chlorpheniramine and hexavalent chromium (Cr(VI)) from water  
system using agronomic waste material, Sustainable Chemistry and  
Pharmacy. 2018; 9: 111.  
6
03