Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 762-765  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Investigate of Mercury Contents in Different Spent  
Fluorescent Lamps in Iran  
1
2
3
4
Hosein Alidadi , Rahim Aali , Fatemeh Kariminejad , Mohammad Aali Dehchenari , Hadi  
5
6
7
8
Farsiani , Reza Abdollahzadeh , Monavvar Afzal-Aghaee , Aliakbar Dehghan , Samaneh  
Gohari9  
1
Professor, Department of Environmental Health Engineering, Social Determinants of Health Research Center, Mashhad University of Medical  
Sciences, Mashhad, Iran  
2
Assistant Professor, Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran  
MSc of Environmental Health Engineering, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran  
3
4
BSc of Mechanic Engineering, Young Researchers and Elite Club, Majlesi Branch, Islamic Azad University, Isfahan, Iran  
5
8
Assistant Professor, Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran  
6
Research expert, Waste Management Organization of Mashhad Municipality, Mashhad, Iran  
7
Associate Professor, Department of Statistics and Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran  
Professor, Department of Environmental Health Engineering, Social Determinants of Health Research Center, Mashhad University of Medical  
Sciences, Mashhad, Iran  
9
MSc Student of Environmental Health Engineering, student of Research Committee, School of Health, Mashhad University of Medical Sciences,  
Mashhad, Iran  
Abstract  
The usage of fluorescent lamps is increasingly common in the world. The advantages of these lamps have led to consuming these  
kinds of lamps compared to incandescent lamps. But disposal of the fluorescent lamps because of containing heavy metals such as  
mercury is considered. The objective of this study is to confirm the comparison of mercury concentration in different linear and compact  
fluorescent lamps made in Iran. This study was conducted on two kinds of spent fluorescent lamps in Mashhad city in Iran. Lamp crusher  
(LAMPA) was introduced as an eco-friendly method for obtaining the phosphor powder. Extracting mercury was done by acid leaching  
method. Mercury concentration was determined by cold vapor atomic absorption spectrometry. Mercury concentration in five kinds of  
spent fluorescent lamps T8, T10, CFL23W, CFL15W, and CFL11W was 372.52, 510.53, 55.65, 175.53 and 260.82 ppb, respectively.  
There are differences between Hg concentration and phosphor powder that might be due to some factors like the year of manufacture  
and the hours of operation. According to the Hg concentration from the powder and generation rate of the spent fluorescent lamps in the  
world and Iran, waste management of spent fluorescent lamps is necessary.  
Keywords: Mercury, Phosphor Powder, Spent Fluorescent Lamps, Waste Management, Lamp Crusher Machine  
problems. About 620 million fluorescent lamps are discarded  
1
Introduction1  
in the United States annually; many of them are broken during  
disposal. This amount distributes approximately 2-4 tons of Hg  
per year in the United States (11). The number of CFLs  
discarded in Iran in 2010, 2011, and 2012 was 159.802,  
In recent years, spent fluorescent lamps (SFLs) have been  
widely used in Iran as a means of optimizing energy  
consumption (1). SFLs are a type of lamps with a glass tube  
coated with fluorescent materials (mainly as calcium hydrogen  
phosphate) that are filled with an inert gas (usually argon) and  
Hg (2, 3). It is estimated that, in the best condition, a normal  
fluorescent lamp contains about 30-40 mg of Hg that most of  
which is absorbed in the phosphor powders, aluminum, end  
caps and glass (4, 5).  
1
83.822, and 153.756 million per year, respectively. It is  
estimated that generation rates in 2013-2020 would probably  
vary from 163.621 million to 174.431 million annually.  
According to the population of Iran (75 million people), the  
waste generation rate of CFLs in this country was determined  
to be 2.05 per person in 2012 (12). In Mashhad city, the  
generation rate of spent compact and linear fluorescent lamps  
The end-of-life fluorescent lamps typically last for over  
6
,000 hours, during which they have no threat to human health  
(
CFLs and LFLs) was 6656 and 2180 thousand per year,  
respectively.  
Currently, most researchers have focused on increasing  
and the environment, while people may be exposed to toxic  
levels of the Hg vapor released from the broken lamps(6).  
Animals and humans exposed to broken compact fluorescent  
lamps as they absorb 80-97% of the inhaled Hg through lungs,  
leading to a potential risk of cross blood-brain-barrier between  
the placenta and the fetus (7, 8). The dangers of SFLs are quite  
serious due to their Hg content (9, 10). The amount of SFLs  
produced in Iran is a national problem and, if not managed in  
the future, may cause serious environmental and human  
recovery and recycling levels of these lamps for direct reuse  
and reducing the impact from Hg at end-of-life SFLs (7, 13-  
5). Among different methods proposed for their recovery and  
recycling, electrochemistry, chemical precipitation and  
extraction (16-19), microbial bioremediation (20, 21), and  
thermal desorption (17, 22) have been widely used as wet  
Corresponding author: Samaneh Gohari, MSc Student of Environmental Health Engineering, student of Research Committee, School  
of Health, Mashhad University of Medical Sciences, Mashhad, Iran. TEL:+989159109148, FAX: 38522775, E-mail:  
7
62  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 762-765  
chemical analysis methods (17). Due to the massive cost of  
chemicals and the production of chemical waste substances, a  
limited number of studies have been conducted on introducing  
a high-performance, easy, inexpensive, and eco-friendly  
method for recycling and recovery of Hg from SFLs.  
Accordingly, the main objectives in the present study, a dry  
chemical analysis method is introduced to utilize minimize Hg  
emissions to the atmosphere, determining the concentration of  
Hg in phosphor powder different spent fluorescent lamps and  
waste management of spent fluorescent lamps in the world,  
Iran, and Mashhad city as the second metropolis of Iran.  
Whatman 42. Spent compact and linear fluorescent lamps were  
provided from Afratab and Pars Shahab brands. The  
specifications of these lamps are displayed in Table 1.  
2.2 Instrumentation  
2.2.1 Lamp crusher machine (LAMPA)  
This lamp crusher shown in Fig. 1. Removes Hg vapors,  
eliminates the dangers of this metal, and turns the lamp into  
small pieces. Cyclone filter, bag filter, carbon canister  
assembly (Includes activated carbon granules with 15% yellow  
sulfur and activated carbon filter), and HEPA filter are  
employed in a crusher to prevent the release of dust and vapors  
of Hg. More than 50% of phosphor powder inside the lamps is  
separated by cyclone filter. Fig. 2 illustrates the components  
separated from SFLs by the lamp crusher. The advantages of  
this apparatus include promoting the environment, ease of  
removal and installation in different places, facile operation,  
and no contamination in outlet air.  
2
Materials and methods  
2
.1 Materials  
All chemicals used in this study were of analytical grade.  
Hydrochloric acid, nitric acid, Tin (II) chloride, and Pure Plus  
standard solution containing 1000 mg/l of Hg were obtained  
from Merck. All samples were filtered by the paper filter from  
Table 1: Specifications of the lamps used for this work  
Luminous  
flux  
Lm)  
2375  
Lamp  
life  
(h)  
10000  
10000  
8000  
8000  
8000  
Type of  
tube  
Length Diameter Power  
Voltage  
(V)  
Kind of  
lighting  
Base  
type  
Brand  
(mm)  
(mm)  
(W)  
(
T8  
T10  
CFL 23W  
CFL 15W  
CFL 11W  
Pars Shahab  
Pars Shahab  
Afratab  
Afratab  
Afratab  
1200  
1200  
100  
70  
26  
32  
170  
130  
140  
36  
230  
230  
230  
230  
230  
Day Light  
G 13  
G 13  
E 27  
E 27  
E 27  
40  
23  
15  
11  
2470  
1400  
750  
Day Light  
Day Light  
Day Light  
Day Light  
70  
600  
Figure 1: Schematic of the machine used for crushing the lamps: 1) Input linear lamp, 2) Input compact lamp, 3) Electromotor, 4) Input gas and  
phosphor powder, 5) Control part, and 6) Vapor Hg outlet  
Figure 2: Output products of the lamp crusher: Separated aluminum (a), phosphor powder (b) and glass (c)  
7
63  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 762-765  
Table 2: Specification and main components of spent fluorescent lamps  
specification  
component  
Phosphor powder  
Separated glass  
Separated phosphor powder  
Base-cap  
T8  
Mass (g)  
2.56  
193.4  
1.26  
T10  
Mass (g)  
3.1  
210.9  
1.55  
6
CFL 23W  
Mass (g)  
2.12  
CFL 15W  
Mass (g)  
0.96  
19.04  
0.47  
CFL 11W  
Mass (g)  
0.98  
19.02  
0.48  
41.8  
1.03  
-
4
-
-
Total (Tube)  
200  
220  
44  
20  
20  
2
.3 Sample preparation  
This study was performed to determine the Hg combined in  
from this machine is <0.01 ppm, which is following  
environmental standards.  
phosphor powder. In order to analyze the concentration of Hg  
by Atomic Absorption Spectrometry (AAS) with the manual  
cold vapor (Varian-AA240FS) and Vapor Generation  
Accessory (VGA), it is needed to use the Hg extraction method  
that permits it to be dissolved in a liquid solution. In this study,  
acid leaching was employed as an extraction method.  
3.2 Hg concentration inside phosphor powder in different  
SFLs  
The total amount of separated phosphor powder by  
crushing machine was used for each lamp. It shows the amount  
3
of Hg in each lamp in the ratio of 4HCl:1HNO . Mercury  
concentration in phosphor powder in each lamp are displayed  
in Table 3. Our analysis demonstrated that these data were  
significant at the 0.05 level.  
2
.3.1 Extraction and measurement of Hg in the phosphor  
powder  
Hg extraction was done for five kinds of SFLs. The ratio of  
mixed acid 4HCl:1HNO (0.48 HCl mol/L: 0.15 HNO mol/L)  
3
3
Table 3: Mercury concentration in phosphor powder of CFLs  
and LFLs  
was used for Hg extraction. The phosphor powder from each  
lamp was weighed and poured into the volumetric flask; 4 ml  
from hydrochloric acid (37% v/v HCL) and 1 ml nitric acid  
Types of lamps  
Hg concentration (ppb)  
T8  
375.52±6.7  
(68% v/v HNO  
3
) were added. The solution was diluted using  
510.53±0.5  
T10  
distilled water up to 100 ml in each volumetric flask. The  
samples were located on a shaker at the room temperature for  
2
55.65±6.7  
175.53±6.6  
260.82±0.02  
CFL 23W  
CFL 15W  
CFL 11W  
4 h and 3 RPM. Afterward, the solutions were filtered by the  
paper filter and then the samples were preserved in a  
refrigerator at -4until analyzed by CVAAS. For the analysis  
of Hg by VGA method, the standard solutions were prepared in  
The literature review showed about 80% of Hg exists in  
phosphor powder (8, 17, 23, 24). For this reason, Hg in  
phosphor powder is an important source of public health  
concern when these lamps are broken (17). Also, the results of  
the Korea Extraction Method (KET) and Toxicity  
Characteristic Leaching Procedure (TCLP) tests showed that  
phosphor powder should be managed as a hazardous waste but  
base-cap and glass are not classified as hazardous waste (24).  
Our results demonstrated, the separated phosphor powder in  
LFLs T10, and T8 was 1.55 g and 1.26 g, respectively. The  
mercury concentration in T10 was 510.53 ppb while in T8 it  
was 375.52 ppb. So, it can be stated that the more available the  
phosphor powder, the higher the amount of mercury would be.  
In other words, there is more mercury in fluorescent lamps in  
the phosphor powder because the mercury is involved in the  
process of lighting (24). Comparison of mercury distribution in  
LFLs between our results and study by S.-W. Rhee et al. 2014  
are displayed in Table 4. On the contrary, in the CFL 11W, the  
amount of phosphor powder was lower, but the mercury  
concentration was high compared to the other CFLs. Such a  
difference can be explained by the previous studies that during  
the use of lamps elemental mercury from the vapor phase  
diffuses onto aluminum end caps or glass matrices but  
phosphor powder prevents the mercury from being absorbed  
into the glass (8, 17). The results of this study about the Hg  
concentration in phosphor powder in CFLs similar to the study  
by Rey-Raap and Gallardo 2012. The point is that we do not  
have information about the life of the lamps used, so  
differences between the lamps might be due to factors like the  
year of manufacture, the hours of operation, type of the lamps  
and the processes of the separation by the recyclers (11, 17, 23-  
1
5, 30, 45, 60, and 80 µg/L. For the reducing agent, Tin (II)  
2
chloride (20% w/v SnCl ) and for the oxidizing agent,  
deionized water was used.  
2
.4 Statistical analysis  
The One-Way ANOVA test was conducted at 0.05  
significance level to compare Hg concentration in different  
types of lamps by SPSS 16, the type of lamp had been assumed  
as a nominal measure and their concentration been as scale  
measure.  
3
Result and Discussion  
3
.1 Specification and component of SFLs  
Output products including the glass, the aluminum, and the  
phosphor powder are separated by the lamp crusher. The  
aluminum and the glass were recycled and the phosphor  
powder was converted to phosphoric acid and Hg sulfide was  
reused in industries. Specification and main components of  
SFLs are displayed in Table 2. CFLs have no aluminum, so in  
these lamps, the circuit is separated from the lamps at first and  
then sent to the machine. This lamp crusher is designed to  
reduce the volume of the lamps, which means that the lamps  
are crushed before being introduced into the factory by the  
primary recycling machine to prevent the environmental  
hazards of these wastes. By reducing the volume, service costs  
such as transportation decline to about 80%. The products  
obtained from this machine included vapor mercury, phosphor  
powder, and glass. Vapor mercury is captured by an activated  
carbon filter and HEPA filter. Finally, the air output of this  
machine is free of any contamination. Therefore, the HEPA  
filter provides clean air standard. The vapor mercury outlet  
6).  
7
64  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 762-765  
Table 4: Comparison between the amounts of mercury in phosphor powder in LFLs  
Specification component  
Spent T8 (this work)  
Spent T10 (this work)  
LFL-A(24)  
LFL-B(24)  
LFL-C(24)  
Separated Phosphor powder  
375.52 (ppb)  
510.53 (ppb)  
1348.223 (ppm)  
1746.353 (ppm)  
1525.742 (ppm)  
8
.
.
Raposo C, Windmöller CC, Junior WAD. Mercury speciation in  
fluorescent lamps by thermal release analysis. Waste Management.  
4
Conclusions  
The present study was conducted to introduce a lamp  
2
003;23.86-87ꢁ:)1ꢀ(  
crusher machine (LAMPA) as one of the methods for reducing  
the volume of the lamps for primary recycling. The machine  
separated phosphor powder from these lamps, which contained  
Dos Santos ÉJ, Herrmann AB, Vieira F, Sato CS, Corrêa QB,  
Maranhão TA, et al. Determination of Hg and Pb in compact  
fluorescent lamp by slurry sampling inductively coupled plasma  
optical emission spectrometry. Microchemical Journal.  
2010;9.31-27:)1(6  
8
0% Hg. Acid leaching was applied for extracting Hg from the  
powder. Five kinds of SFLs were used for extracting Hg by the  
ratio of 4HCl:1HNO . According to the Hg concentration from  
1
. Chang T-C, Wang S-F, You S-J, Cheng A. Characterization of  
halophosphate phosphor powders recovered from the spent  
fluorescent lamps. Journal of Environmental Engineering and  
Management. 2007;17(6):435.  
3
the powder and generation rate of the SFLs in the world and  
Iran, waste management of this kind of lamps is necessary.  
1
1
1. Aucott M, McLinden M, Winka M. Release of mercury from  
broken fluorescent bulbs. Journal of the Air & Waste Management  
Association. 2003;53(2):143-51.  
2. Taghipour H, Amjad Z, Jafarabadi MA, Gholampour A, Nowrouz  
P. Determining heavy metals in spent compact fluorescent lamps  
Acknowledgments  
This work was supported by the research committee of  
Mashhad University of Medical Sciences (Project No 951339),  
Mehrpardazan Mohitzist Samin Company (MMSCO) and  
(
CFLs) and their waste management challenges: some strategies  
for improving current conditions. Waste management.  
014;34(7):1251-6.  
Waste  
Management  
Organization  
of  
Mashhad  
Municipality. Acknowledgements are due to the laboratory  
staff of the Department of Environmental Health Engineering  
for their collaboration.  
2
1
3. Hu Y, Cheng H. Mercury risk from fluorescent lamps in China:  
current status and future perspective. Environment International.  
2.5ꢀ-44:141;ꢀ12  
1
1
4. Logan TJ. Critical reviews in environmental science and  
technology. 1997 0849311586.  
5. Tan Q, Li J, Zeng X. Rare earth elements recovery from waste  
fluorescent lamps: a review. Critical Reviews in Environmental  
Science and Technology..76-74ꢁ:)7(45;2ꢀ15  
6. Hu Z, Kurien U, Murwira K, Ghoshdastidar A, Nepotchatykh O,  
Ariya PA. Development of a green technology for mercury  
recycling from spent compact fluorescent lamps using iron oxides  
nanoparticles and electrochemistry. ACS Sustainable Chemistry &  
Engineering. 2016;4(4):2150-7.  
Financial support and sponsorship  
Mashhad University of Medical Sciences, Mashhad, Iran.  
Competing interests  
1
The authors declare that they have no competing interests.  
Authors’ contributions  
All authors participated in the data collection, analysis and  
interpretation. All authors critically reviewed, refined and  
approved the manuscript.  
1
1
7. Jang M, Hong SM, Park JK. Characterization and recovery of  
mercury from spent fluorescent lamps. Waste management.  
2
005;25(1):5-14.  
8. Tunsu C, Ekberg C, Foreman M, Retegan T. Targeting fluorescent  
lamp waste for the recovery of cerium, lanthanum, europium,  
gadolinium, terbium and yttrium. Mineral Processing and  
Extractive Metallurgy. 2016;125(4):199-203.  
. Wu Y, Yin X, Zhang Q, Wang W, Mu X. The recycling of rare  
earths from waste tricolor phosphors in fluorescent lamps: A  
review of processes and technologies. Resources, Conservation  
and Recycling. 2014;88:21-31.  
. Chaturabul S, Srirachat W, Wannachod T, Ramakul P, Pancharoen  
U, Kheawhom S. Separation of mercury (II) from petroleum  
produced water via hollow fiber supported liquid membrane and  
mass transfer modeling. Chemical Engineering Journal.  
Ethical issue  
The authors have comprehensively observed ethical issues  
including plagiarism, misbehavior, data fabrication and no data  
from the study has been or will be published separately.  
1
2
References  
1.  
2.  
3.  
Azizi M, Aliabadi M, Golmohammadi R. The intensity of  
electromagnetic fields emitted by common compact fluorescent  
lamps. Iranian Journal of Ergonomics. 2015;3(2):76-84.  
Azizi M, Golmohammadi R, Aliabadi M, Baroony Zadeh Z. Study  
of ultraviolet radiation emissions from commercial compact  
fluorescent lamps. Iran Occupational Health. 2015;12(2):24-34.  
Lee C-H, Popuri SR, Peng Y-H, Fang S-S, Lin K-L, Fan K-S, et  
al. Overview on industrial recycling technologies and management  
strategies of end-of-life fluorescent lamps in Taiwan and other  
developed countries. Journal of Material Cycles and Waste  
Management. 2015;17(2):312-23.  
2
015;265:34-46.  
2
2
1. Wagner-Döbler I. Bioremediation of mercury: current research  
and industrial applications: Horizon Scientific Press; 2013.  
2. Chang T, Chen C, Lee Y, You S. Mercury recovery from cold  
cathode fluorescent lamps using thermal desorption technology.  
Waste Management & Research. 2010;28(5):455-60.  
3. Rey-Raap N, Gallardo A. Determination of mercury distribution  
inside spent compact fluorescent lamps by atomic absorption  
spectrometry. Waste Management. 2012;32(5):944-8.  
4. Rhee S-W, Choi H-H, Park H-S. Characteristics of mercury  
emission from linear type of spent fluorescent lamp. Waste  
management. 2014;34(6):1066-71.  
5. Ozgur C, Coskun S, Guncan A, Civelekoglu G. Investigation of  
the recovery potential of mercury from spent tubular fluorescent  
lamps by electrowinning process. Fresenius environmental  
bulletin. 2014;23(12 A):3199-201.  
2
2
2
4
.
.
Al-Ghouti MA, Abuqaoud RH, Abu-Dieyeh MH. Detoxification  
of mercury pollutant leached from spent fluorescent lamps using  
bacterial strains. Waste Management. 2016;49:238-44.  
Tunsu C, Ekberg C, Foreman M, Retegan T. Investigations  
regarding the wet decontamination of fluorescent lamp waste using  
iodine in potassium iodide solutions. Waste management.  
5
2
015;36:289-96.  
6
.
.
Chang T-C, You S, Yu B, Kong H. The fate and management of  
high mercury-containing lamps from high technology industry.  
Journal of hazardous materials. 2007;141(3):784-92.  
Hobohm J, Krüger O, Basu S, Kuchta K, van Wasen S, Adam C.  
Recycling oriented comparison of mercury distribution in new and  
spent fluorescent lamps and their potential risk. Chemosphere.  
2
6. Lecler M-T, Zimmermann F, Silvente E, Masson A, Morèle Y,  
Remy A, et al. Improving the work environment in the fluorescent  
lamp recycling sector by optimizing mercury elimination. Waste  
Management. 2018;76:250-60.  
7
2
017;169:618-26.  
7
65