Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 687-693  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Isolation and Characterization of Microorganisms  
for Protease Production from Soil Samples from  
Kosovo and Testing the Enzymes in Food Industry  
Application  
1
1,2  
1
1
1
1
Bahtir Hyseni , Flora Ferati , Fatos Rexhepi , Rifat Morina , Ylberinë Baliu , Shkëlqim Hyseni ,  
1
1
2*  
Aida Rushiti , Sabri Hajdini , Emrah Nikerel  
1
Department of Engineering and Food Technology, University of Mitrovica “Isa Boletini”, Mitrovica, Kosovo  
2
Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey  
+
Current address: Faculty of Education, University of Prizren, “Ukshin Hoti”, Prizren, Kosovo  
Received: 10/02/2020  
Accepted: 03/04/2020  
Published: 20/05/2020  
Abstract  
Soil samples from different locations in Kosovo were screened for bacteria suitable for high-level production of various proteases. 5  
isolates were found and selected to be promising candidates and further characterized by biochemical and morphological assays as well as  
1
6S RNA sequencing and identified as Bacillus spp. The isolates were used for protease production via submerged fermentation. The  
produced enzymes were tested for different food industry applications, like meat, beer, milk, and feather degradation. The highest protease  
o
activity achieved was 0.63U mL-1 at 37 C pH 4.7 from strain S10-1 which showed high potential for meat industry application.  
Keywords: Bacillus spp.; Enzymes; Fermentation; Industrial biotechnology  
meat. Alternative to these, enzymatic treatments provide  
1
Introduction1  
affordable, less energy intensive and faster solution for the meat  
processing applications by hydrolyzing myofibrils due to  
proteolysis (2, 10).  
Enzymes are functional proteins, responsible for governing  
biochemical reactions in living cells by e.g. lowering the  
activation energy in biochemical reactions (1). These can  
selectively and effectively convert several substrates molecules to  
products even within complex matrix. Typically produced by  
fermentation and extracted from living cells, enzymes are  
biodegradable compounds making them also environmentally  
benign (2). Enzymes are used in many industries like  
pharmaceutical (3), detergent (4), leather (5), and food industry  
For the beverage industry, proteases are used typically for  
clarification of wine, beer or juices, often in combination with  
other enzymes (11, 12). In particular for beer, haze in beer usually  
and mainly results from a reaction between beer proteins from  
grains (barley or wheat) and polyphenols, responsible for 40-75%  
of the beer haziness (13). The concentration of only 2mg L-1 of  
protein in beer causes haze formation. Enzymatic protein  
hydrolysis is one of the possibilities to enrich the beer with  
nutrients and prevent haze formation thereby improving  
organoleptic properties. In dairy industry proteases are mainly  
used in milk coagulation process by cleavage the peptide bond of  
κ-casein Phe105-Met106. Coagulated milk is destined for  
different type of cheese making. Lately, the effect of proteases in  
cheese ripening process and indication in texture and flavor of the  
cheese was reported (14, 15).  
(
6). Chief among the commercial enzymes are proteases, which  
hydrolyze peptide bonds within proteins. These are widely used,  
with over 60% of the enzyme market (7) and growing at a  
compound annual growth rate of 5.3% of global demand during  
2
014-2019 (6) and is expected to grow further (8).  
Proteases are heavily used in food industry e.g. meat  
processing applications, where the focus is on providing tools to  
prepare ready-to-use, high-quality, tender meat and meat  
products. Meat tenderness is a function of the fibrous nature of  
the muscle among them myofibrils are responsible for meat  
toughness (9). Conventionally, aging the carcasses, mechanical  
Proteases find application in treatment of byproduct from  
food industry. Poultry is one of these industries, where wastes are  
increasing every day with increment in the demand for poultry  
products. Feathers contain 91% keratin, which is an insoluble  
structural protein and is found in β-sheets form. Their  
tenderization,  
elevated-temperature  
storage,  
electrical  
stimulation, calcium chloride injection, are some of the  
techniques used by slaughterhouses to increases tenderness of  
Corresponding author: Emrah Nikerel, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey. E-mail:  
emrah.nikerel@yeditepe.edu.tr.  
6
87  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 687-693  
biodegradation is challenging due to extensive disulfide bonds  
and cross-links, hydrogen bonds and hydrophobic interactions  
(
16). Conventional methods include incineration, (excessive) use  
of alkaline solutions or burying. Proteolytic activity of enzymes  
provide environmentally benign solution to feather processing.  
Ubiquitous in nature, proteases are industrially produced  
especially by animals, plants, and microorganisms. In particular,  
microorganisms are used due to available cultivation practice in  
large quantities in a short time as well as high and stable activity  
of the enzyme produced (17,18,19). Among those, bacteria are  
preferred organisms, since these typically grow and produce at  
higher rates, and have large substrate portfolio (20). Additionally,  
bacterial enzymes especially from Bacillus spp. show higher  
thermal stability than fungal counterparts (21). Furthermore,  
genome of bacteria is typically 2-5Mb, significantly smaller than  
the genome of fungi around 8-17Mb (22, 23, 24), rendering  
molecular characterization or manipulation easier to carry.  
Enzyme production using genetically modified organisms  
(GMOs) are also common practice due to available molecular  
biology toolbox, possibility of tailor-made products as well as  
well-established fermentation practice for known industrial  
workhorses, reaching high product titers (25,26). However, the  
risk for unpredicted outcome of transformation exists, additional  
DNA fragments inserted with the gene of interest or gene  
sequences rearrangement and deletion (27, 28). Owing to the  
highly regulated market rules for foods with GMO ingredients,  
the food industry endeavors to avoid using GMO technology if  
wild type strains are available (29). Following that, several studies  
have been performed for the isolation of protease production  
microorganisms from natural sources in an attempt to get  
production strains as well as to exploit natural diversity for  
enzymes of various functional, desired properties. Typically,  
extreme environments are explored to isolate microorganisms,  
including hot spring waters, high altitude areas, arable land,  
industrially polluted areas, etc.  
Kosovo is located in southeastern Europe, with  
predominantly continental climate influenced also by  
Mediterranean and Alpine climate. The country possesses diverse  
territory surrounded by mountains, arable fields, rich areas with  
thermal hot water springs, and mines with high deposit of lead,  
zinc, silver, nickel, and cobalt. On top of it, it is the third largest  
lignite reserve in Europe. To our knowledge this region is not that  
much explored for its microbial ecology, hence the aim of this  
research is to screen soil samples from different environments in  
Kosovo for bacteria with ability to produce protease  
extracellularly, and examine their application in different food  
industries.  
Figure.1: Map of soil sample points in Kosovo  
Single colonies with surrounding clear zone around them  
were selected and streaked into fresh agar for further investigation  
(30, 31). All chemicals used are purchased from Sigma Aldrich  
or Merck. Bacillus subtilis 168 ATCC 23857 is used as reference  
microorganism.  
2.2 Characterization of Bacillus spp. colonies Isolation and  
selection  
Morphological and cultural characteristics were used to  
identify colonies. Each colony was examined using microscopy  
and rod shape cells identified as potential Bacillus spp. The Gram  
staining (Beveridge, 2001) (32) and catalase test (Taylor and  
Achanzar, 1972 (33) were used to further characterize the  
colonies. Semi-quantitative protease activity of each colony was  
measured in duplicate data, where colonies were inoculated with  
sterile needles on 5% skimmed milk agar. The radius of bacterial  
colony and radius of halo formed after 24h were measured using  
image processing software GIMP 2.10.12. The area of the halo  
around the culture was used to calculate protease index (Eq. 1).  
퐴푇퐻  
푃퐼 = 퐶  
(1)  
where PI is the protease index, ATH is the area of total halo, AC  
the area of the bacterial colony. Colonies with large ATH and  
small AC are considered to be candidate host for further  
characterization using liquid culture.  
2
Materials and methods  
2
.1 Isolation and selection  
Soil samples from different locations corresponding to  
different environments (high altitude, heavy metal contaminated  
area, hot spring water, food industry zones) in Kosovo (Fig. 1)  
were collected and stored at +4 C until further screening was  
performed. During the sampling, all used equipment were  
sterilized beforehand.  
To isolate the microorganisms, one gram of soil sample was  
mixed with 9mL sterile 0.9% saline solution and incubated at  
2
.3 Cultivation process and determination of protease activity  
o
A single colony from an agar plate is grown for 18hr in 10mL  
nutrient broth in a 50mL falcon tube to be used as inoculum. The  
-1  
final fermentation is carried in YPD medium with salt g L :  
2 4 2 4  
peptone, 10; glucose, 5; yeast extract, 5.5; KH PO , 1; K HPO  
O, 3.7; MgSO .7H O, 0.1; (34, 35). To assess the effect of  
3
H
2
4
2
1
50rpm for 15min at room temperature. Out of this mixture,  
o
temperature, two different incubation temperatures (30 and 37 C)  
are used while the pH was kept at 7; and to assess the effect of  
1
00μL is further diluted and spread on the skim milk agar plates.  
o
The plates were incubated at 37 C for 24h.  
6
88  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 687-693  
pH, the fermentations are carried at three different pH (5, 7 and  
difference is noted as hydrolysed protein (13). The same  
experiment is repeated with reference enzyme (Protease from  
Aspergillus oryzae Sigma cat Nr: P6110), where 5mL of enzyme  
is used instead of crude enzyme, keeping all other conditions  
same.  
o
9
) while the temperature was kept at 37 C. The cultures are  
sampled 24h for growth (measured by optical density at 600nm  
OD600) and protease activity. Protease activity was measured by  
casein method (36), with 0.65% casein (w/v) in potassium  
phosphate buffer at pH 7 or sodium acetate buffer at pH 5. The  
o
assay conditions were set to 10 min at 37 C and terminated using  
2.5.3 Milk-clotting activity  
1
0% trichloroacetic acid. The tyrosine released is determined  
The milk-clotting activity was determined according to the  
method of Iwasaki (42): 0.1mL of the crude enzyme was mixed  
using Folin’s phenol reagent (36). One unit of protease activity  
was defined as the amount of enzyme liberating 1μmol of tyrosine  
per minute under defined assay conditions.  
well with 1mL of skim milk solution (10g skim milk powder in  
o
100mL of 0.01M CaCl  
2
solution) and incubated at 37 C for 1h  
and 30min. Each 10 min tubes were checked for clotting  
formation. Obtained coagulation time is used for calculating milk  
clotting units, where one unit of milk clotting activity was defined  
as the amount of enzyme capable of coagulating 1mL of milk for  
40 min, Eq. (2).  
2
.4 16S rRNA sequencing and analysing  
Sequencing ribosomal RNA (rRNA) 16S is well-accepted  
method to identify bacteria, yielding species-specific signature  
37, 38). Bacterial DNA from the liquid culture was extracted  
(
using commercial kit (high pure PCR template preparation kit,  
Roche) and was used as a template for PCR amplification of 16S  
rRNA sequence. PCR reaction consist of: 10X Taq buffer  
푀퐶푈  
푚퐿  
2400푠  
=
(2)  
(푇ꢀ푚푒(푠)∗푣표푙푢푚푒표푓푡ℎ푒 푒푛푧푦푚푒 ꢀ푛 푚퐿)  
-
1
Thermo-scientific (100mM Tris-HCl, 500mM KCl, 0.8% (v v )  
Nonidet P40), 25mM MgCl , dNTP 0.4mM, universal primers  
7F (5’-AGAGTTTGATCATGGCTCAG-3’) and 1492R (5’-  
GGATACCTTGTTACGACTT-3’) each 0.4µM, Taq polymerase  
2
2
.5.4 Enzymatic treatment of feathers  
The effect of the culture on feather degradation from isolated  
2
-1  
.05U μL and the DNA template 100ng. The regime of the  
o
colonies was examined. The method was based on the work of  
Kaya and Nikerel (43) with small changes. In a 50mL of 48h  
grown culture, 1.2g of washed and autoclaved feather was added  
and the mixture is incubated at 150rpm, 37 C for 12h. After 12h  
content was filtrated using filter paper, dried and the difference in  
the dry feather considered as degraded by the enzyme.  
0
temperature used was, first denaturing at 95 C for 3min, followed  
o
by 31 cycles of denaturation at 95 C for 0.30min, annealing at  
o
o o  
5 C for 1min, extension at 72 C for 1min, and a final extension  
o o  
5
step at 72 C for 10 min, then storage temperature at 4 C (39). The  
amplified 16S sequence was purified using the Macherey-Nagel  
PCR purification kit and sequenced. The forward and reverse  
sequences were assembled using BioEdit version 7.0.5.3. The  
resulting sequences were BLAST’ed against GeneBank Database  
for 16S ribosomal RNA sequences (Bacteria and Archaea).  
3 Result and discussion  
To isolate and identify Bacillus spp. capable of producing  
extracellularly protease, 102 soil samples from 34 different areas  
in Kosovo (Fig. 1) were screened. Out of initial sample pool, 66  
single colonies were selected based on formation of clear halo in  
skim milk agar. The colonies were further identified as potential  
Bacillus spp. based on the form and color of colonies in nutrient  
agar, as well as based on Gram staining and catalase test as  
morphological tests. All identifications were compared with the  
reference strain B. subtilis 168. From the 66 colonies only 29  
selected colonies resulted Gram-positive rod shape  
microorganisms and out of which, 28 colonies were catalase-  
positive (44). Remaining colonies were subjected to semi-  
quantitative protease activity measurement in skim milk agar, to  
select best extracellular protease producers.  
2
.5 Application of produced enzymes in the food industry  
The enzymes are tested in various food industry applications,  
ranging from meat to beer processing to feather meal preparation.  
The details are explained in this section.  
2
.5.1 Breakdown of meat myofibrils  
Myofibril extraction was performed with fresh cow muscle  
tissue by using extracting buffer (100 mM KCl, 20 mM potassium  
phosphate (pH 7.0), 1 mM EDTA, and 1 mM sodium azide) at  
o
2
1
C based on the method described by of OLSON & al. (40).  
.95mL of extracted myofibril at pH 5.5 (approximately the pH  
of the red meat) was aliquoted in a 15mL falcon tube and assayed  
Based on semi quantitative protease index results, five  
colonies were selected (Fig. 2). Protease index takes into account  
both the biomass formed and the proteolytic activity. S7-1 has  
small colonies, yet large halo resulting highest protease index, and  
despite S21-1 has about the same halo size, it also has largest  
biomass colony, therefore lowest protease index. Interestingly,  
protease index for S7-1 was 22 fold higher than the index of B.  
subtilis 168. These 5 colonies were further used for enzyme  
production by submerged fermentation, during which total DNA  
is isolated for final identification by sequencing genomic region  
encoding 16S rRNA.  
with 50µL crude enzyme extracts. The hydrolysis takes place in  
o
an orbital shaker 150rpm at 37 C for 1h and terminated with 2mL  
of 15% trichloroacetic acid. The mixture was cooled at room  
temperature for 15minute and centrifuged at 1000 xG for 15min.  
Finally the optical density of the supernatant was determined at  
2
80nm (41). The same experiment is repeated with reference  
enzyme (Protease from Aspergillus oryzae Sigma cat Nr: P6110),  
where 50µL of enzyme is used instead of crude enzyme, keeping  
all other conditions same.  
2
.5.2 Beer haze treatment  
5mL of hazy beer was treated with 5mL of crude enzyme (or  
4
3.1 Identification by 16S sequencing  
o
distilled water for blank), incubated at 25 C for 18h. Pre-weighted  
DNA samples were isolated and genomic regions encoding  
16S rRNA were sequenced. Results sequences were BLAST’ed  
against 16S ribosomal RNA sequences (Bacteria and Archaea)  
filter paper 0.45µm were used to filtrate the treated beer. After  
two hours of drying at 65 C filter paper was re-weighed and the  
o
6
89  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 687-693  
database in NCBI (Table 1), with all 0.0 e-value and percent  
identity ranging between 88-99%.  
at an altitude of around 1800m. Soil from this region exceed the  
limits for heavy metal like Pb, Cd, and Zn as reported by  
Kelmendi (48). Under mesophilic conditions (pH 7, 37 C) the  
o
highest activities were observed with strains S37-2, and S6-4 with  
0
.54 and 0.3U mL-1, respectively (Fig. 3d). Neutral proteases  
produced by Bacillus spp. are important due to generation of less  
bitterness hydrolysates from proteins. This is significant a major  
factor for food industry applications in particular for beverage  
industry where enzyme application significantly effects  
organoleptic characteristics.  
Table 1: BLAST results of the assembled sequences with NCBI  
1
6S ribosomal RNA sequences (Bacteria and Archaea) database  
S. name Closest match e-value (%) Identity  
S6-4  
S7-1  
S10-1  
S21-1  
S37-2  
B. pumilus ATCC 7061  
B. albus MCCC 1A02146  
B. cereus ATCC 14579  
Bacillus albus strain BPB24 16S 0.0  
B. mobilis MCCC 1A05942 0.0  
0.0  
0.0  
0.0  
97.92  
89.29  
88.23  
97.9  
99.02  
a)  
The organism S37-2 is isolated from walnut plantation soil in  
Rahove in north part of Kosovo and S6-4 is isolated from highly  
mineralized hot spring water at Kllokoti with 3.6g L-1 minerals  
reported by Kosovo Environmental Protection Agency  
(2010)(49). Lastly, contrary to our expectations and several  
reports in literature on alkaline protease production by Bacillus  
spp., isolated strains failed to grow and produce well at pH 9 and  
o
3
7 C (Fig. 3. f).  
3
.3 Myofibril hydrolysis  
To mimic meat processing application, the crude extract from  
culture supernatants at two different time points were used for  
myofibril hydrolysis and compared with the reference protease.  
Among the tested cultures, sample at the 48th hour from S10-1  
culture exhibited the highest myofibril hydrolysis, nearly 10% of  
the commercial enzyme, which is considered to be promising as  
crude extract ought to be further purified before final use (Fig.  
4a). The sample at 24th hour from S7-1 exhibited lowest  
myofibril hydrolysis, possibly due to low biomass level.  
b)  
Figure 2: a) Selected colonies in 5% skim milk agar for extracellular  
protease expression, b) Protease index of each colony calculated by using  
the area of colony and the total halo formed. The protease index for S7-1  
is much higher than the rest and is shown with a different axis  
3
.4 Hazy beer treatment results  
Here, the supernatant from five different cultivations, at two  
3
.2 Enzyme production and activity  
Selected species are cultivated at different pH and  
different times (24 and 48h) were used as crude extracts for  
treatment of beer haziness (Fig. 4b). The total amount of  
proteinaceous material in untreated beer used for experiment was  
estimated to be between 346 to 525 mg L-1, in agreement with  
literature (13). Sample from cultivation of strain S37-2 at 48h  
showed the highest beer clarification action, with 212 mg/L haze  
protein degradation (nearly 61% decrease in residue) compared  
with the result of commercial enzyme with 335mg L-1 haze  
protein degradation.  
Temperatures. Overall, the highest growth and activity was  
obtained from S10-1 grown at pH4.7 at 37 C with the highest  
o
protease activity 0.63U mL-1 Fig. 3b). Protease activity at low pH  
is interesting for food industry applications, where acid proteases  
are always in high demand (45). Albeit being uncommon,  
production of acid proteases by Bacillus spp. is reported (46),  
even though Bacillus spp. are commonly known for neutral and  
alkaline protease production (47). S10-1 was isolated from  
agriculture soil used as source of forage grass from Bajgora region  
6
90  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 687-693  
o
o
o
Figure 3: a) growth and b) activity at pH 4.7 and 37 C; c) growth and d) activity at pH 7 and 37 C; e) growth and f) activity at pH 9 and 37 C; g) growth and  
o
h) activity at pH 7 and 30 C  
3
.5 Milk clotting results  
Milk clotting assay was performed with supernatant from  
processing, while protease from S37-2 performed better in haze  
treatment in beer. Strains S7-1 and S21-1 showed moderate milk  
clotting activity, while S6-4 showed promising results in feather  
treatment. In conclusion these five strains have a potential for  
industrial application.  
isolated strains, crude enzyme form cultures S7-1 and S21-1  
coagulated the milk. However, the time of coagulation was 1h  
3
0min calculated in milk clotting unit 4.44MCU mL-1. While, for  
supernatant from B. subtilis culture took only 45minutes to  
coagulate the milk or 8.89MCU mL-1 calculated in milk clotting  
unit.  
Aknowledgments  
This research was funded by Ministry of Education, Science  
and Technology of Kosovo based on the project “Isolation of  
Bacillus bacteria from soil sample for production of protease from  
Food Industry residues” with project number 2-3970-3 and was  
realized as cooperation between University of Mitrovica “Isa  
Boletini” and Yeditepe University. We thank Petrit Idrizi, Bardha  
Hyseni, Valdrin Ramadani and Diellza Zejnullahu at University  
of Mitrovica “Isa Boletini” for their help in the practical work and  
to Filiz Erçelik from Yeditepe University for helping in molecular  
characterization.  
3
.6 Enzymatically feather degradation  
In our research we assessed the ability of 48h grown cultures  
form five isolated strains for degradation of feathers. Results  
showed that S6-4 biodegraded the highest amount of feather  
above 41% (Fig. 4c). This shows a good possibility for this culture  
to find application in feather biodegradation from poultry  
industry.  
4
Conclusion  
Five different strains were isolated from different region soils  
Ethical issue  
in Kosovo and identified as a good production host of protease  
enzyme. All isolated strains were characterized as Bacillus sp.  
strain by using both morphological and molecular techniques.  
Interestingly, there is no single strain that produces best protease  
for all applications, rather all five strains are promising for  
different applications. S10-1 has shown good activity for meat  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
6
91  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 687-693  
submitted work is original and has not been published elsewhere  
in any language.  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing  
References  
1
Agarwal, P.K. Enzymesꢀ: An Integrated View of Structure, Dynamics  
and Function. Microbial Cell Factories. 2006; 12: 1-12.  
2
Gupta, R., Beg, K.Q., and Lorenz P. Bacterial Alkaline Proteasesꢀ:  
Molecular Approaches and Industrial Applications. Applied  
Microbiology and Biotechnology. 2002; 59: 15-32.  
3
4
5
6
Vellard, M. The Enzyme as Drug: Application of Enzymes as  
Pharmaceuticals. Current Opinion in Biotechnology. 2003; 14(4):  
4
44-450.  
Hasan, F., Shah, A.A., Javed, S., and Hameed, A. Enzymes Used in  
Detergents: Lipase. African Journal of Biotechnology. 2010; 9(31):  
4
836-4844.  
Choudhary, R.B., Jana, A.K., Jha, M.K. Enzyme Technology  
Applications in Leather Processing. Indian Journal of Chemical  
Technology Ind. Jour. of Chem. Technol. , 11(5), 659, 671 (2004).  
Raveendran, S., Parameswaran, B., Ummalyma, S.B., Abraham, A.,  
Mathew, A.K., and Madhavan, A. Applications of Microbial  
Enzymes in Food Industry. Food Technolgy and Biotechnology.  
a)  
2
018; 56(1):16-30.  
7
Hosseini, S.V., Saffari, Z., Farhanghi, A., Atyabi, S.M., and Norouzian,  
D. Kinetics of Alkaline Protease Production by Streptomyces  
Griseoflavus PTCC1130. Iran Journal of Microbiology. 2016; 8(1):  
8
-13.  
8
9
1
Karigar, C.S., and Rao, S.S. Role of Microbial Enzymes in the  
Bioremediation of Pollutants: A Review. Enzyme Research, 1, 1, 11  
(2011).  
Dinh, N.T.T. Meat Quality: Understanding of Meat Tenderness and  
Influence of Fat Content on Meat Flavor. Tạp chi Phát triển Khoa  
học và Công nghệ. 2008; 9(12): 65-70.  
0 Pinelo M., Zeuner B., and Meyer A.S. Food and Bioproducts  
Processing Juice Clarification by Protease and Pectinase Treatments  
Indicates New Roles of Pectin and Protein in Cherry Juice Turbidity.  
Food Bioproducts Processing. 2009; 88(23): 259265.  
b)  
1
1 Yadav. D.N., Vishwakarma, R.K., Borad, S., Bansal, S., Jaiswal, A.K.,  
and Sharma, M. Development of Protein Fortified Mango Based  
Ready-to-Serve Beverage. Journal of Food Science and Technology.  
2
016; 53(10): 38443852.  
1
1
1
2 Lopez. M., Edens, L. Effective Prevention of Chill-Haze in Beer Using  
an Acid Proline-Specific Endoprotease from Aspergillus Niger.  
Journal of agricultural and Food chemistry. 2005; 53: 79447949.  
3 Steinier, E., Becker, T., and Gasti, M.E. Turbidity and Haze Formation  
in Beer Insights and Overview. Journal of the Institute of Brewing.  
2
010; 116(4): 360-368.  
4 Mohanty, A.K., Mukhopadhyay, U.K., Grover, S., and Batish, V.K.  
Bovine Chymosinꢀ: Production by rDNA Technology and  
Application in Cheese Manufacture. Biotechnology advances. 1999;  
1
7: 205217.  
1
1
5 Sousa, M.J., Ardö, Y., and McSweeney, P.L.H. Advances in the Study  
of Proteolysis During Cheese Ripening. International Dairy Journal.  
2
001; 1(4-7): 327-345.  
c)  
6 Abdel-Fattah AM, El-Gamal MS, Ismail SA, Emran M.A., Hashem,  
A.M. Biodegradation of Feather Waste by Keratinase Produced from  
Newly Isolated Bacillus Licheniformis ALW1. Journal of Genetic  
Engineering and Biotechnology. 2018; 16(2): 311318.  
7 Anbu, P., Gopinath, S.C.B., Chaulagain, B.P., and Lakshmipriya, T.  
LAKSHMIPRIYA, Microbial Enzymes and Their Applications in  
Industries and Medicine 2016. Biomed Res. Int., 2017, (2017).  
Figure 4: a) Breakdown of myofibril by the protease enzymes produced  
by each organism. In the right-most column, CE: commercial enzyme. b)  
Haze beer treatment by protease. c) Grams of feathers degraded by 48h  
culture from different cells  
1
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
18 Kasana, R.C., Salwan, R., and Yadav, S.K. Microbial Proteases:  
Detection, Production, and Genetic Improvement. Critical Review in  
Microbiology. 2011;37(3):262276.  
1
9
, J., Wu, X., Jiang, Y., Cai, X., Huang, L., and Yang, Y. et al. An  
Extremophile Microbacterium Strain and Its Protease Production  
6
92  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 687-693  
Under Alkaline Conditions. Journal of Basic Microbiology.  
and Pitfalls. Journal of Clinical Microbiology. 2007; 45(9): 2761–  
2764.  
2
014;54(5):378385  
2
2
2
0 Gopinath SC, Anbu P, Arshad MK, Lakshmipriya T, Voon CH, and  
Hashim U., et al. Biotechnological Processes in Microbial Amylase  
Production. Biomed Research International. 2017; 2017.  
1 da Silva, R.R., Bacterial and Fungal Proteolytic Enzymes: Production,  
Catalysis and Potential Applications. Applied Biochemistry and  
Biotechnology. 2017; 183(1): 1-19.  
2 Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., and  
Azevedo, V. et al. The Complete Genome Sequence of the Gram-  
Positive Bacterium Bacillus Subtilis. Nature. 1997; 390(6657): 249–  
39 Hong, S.W., Kwon, S.W., Kimn, S.J., Kim, S.Y., Kim, J.J., and Lee,  
J.S., et al. Bacillus Oryzaecorticis sp. nov., a Moderately Halophilic  
Bacterium Isolated from Rice Husks. International Journal of  
Systematic and Evolutionary Microbiology. 2014; 64(8): 2786279.1  
40 Olson, D.G., Parrish, F.C.J.R., and Stromer, M.H. STROMER,  
Myofibril Fragmentation and Shear Resistance of Three Bovine  
Muscles during Postmortem Storage. Journal of Food Science. 1976;  
41(5):10361041.  
41 Aishe, I.N.A., and Sorensen, T.L., Effects of Papain and a Microbial  
Enzyme on Meat Proteins and Beef Tenderness. Journal of Food  
Science. 2002; 67(6): 21382142.  
42 Arima, K., Iwasaki, S., and Tamura, G. Milk Clotting Enzyme from  
Microorganisms. Agriculture and Biological Chemistry. 1967; 31(5):  
540-545..  
2
56.  
2
3 Ma, J., Wang, C., Wang, H., Liu, K., Zhang, T., and Yao, L., et al.  
Analysis of the Complete Genome Sequence of Bacillus Atrophaeus  
GQJK17 Reveals Its Biocontrol Characteristics as a Plant Growth-  
Promoting Rhizobacterium. Biomed Research International. 2018;  
2
018.  
43 Kaya, K., and Nikerel, E. Characterization of Highly Active Keratinase  
Procuder Bacillus Cereus KK69 for Biological Degradation of  
Feather Waste. Journal of Environmental Treatment Techniques.  
2019; 4(3): 357363.  
44 Hosoi, T., Ametani, A., Kiuchi, K., Kaminogawa, S. Improved Growth  
and Viability of Lactobacilli in the Presence of Bacillus Subtilis (  
natto ), Catalase , or Subtilisin. Canadian Journal of Microbiology.  
2000; 46(10): 892897.  
2
2
4
5
Mohanta, T. K., and Bae, H. The Diversity of Fungal Genome.  
Biological Procedures Online. 2015; 17(8): 19  
Boldrini-França, Santos, R.R., Santos-Silva, L.K., de Souza, D.L.  
Gomes, M.S., and Cologna, C.T., et al. Expression of a New Serine  
Protease from Crotalus Durissus Collilineatus Venom in Pichia  
Pastoris and Functional Comparison With the Native Enzyme.  
Applied Microbiology and Biotechnology. 2015; 99(23): 99719986  
2
6 Tobe, S., Shimogaki, H., Ohdera, M., Asai, Y., Oba, K., Iwama, M.,  
and Irie, M. Expression of Bacillus Protease ( Protease BYA ) from  
Bacillus sp . Y in Bacillus Subtilis and Enhancement of Its Specific  
Activity by Site-Directed Mutagenesis - Improvement in Productivity  
of Detergent Enzyme. Biological and pharmaceutical bulletin. 2006;  
45 Mamo, J., Assefa, F. The Role of Microbial Aspartic Protease Enzyme  
in Food and Beverage Industries. Journal of Food Quality. 2018;  
(2018).  
46 Gomri, M.A., Rico-Díaz, A., Escuder-Rodríguez, J.J., El Moulouk,  
Khaldi, T., González-Siso, M.I., and Kharroub, K. Production and  
Characterization of an Extracellular Acid Protease from  
Thermophilic Brevibacillus sp. OA30 Isolated from an Algerian Hot  
Spring. Microorganisms, 2018; 6(2): 31.  
47 Cho, S.J., OH, S.H., Pridmore, R.D., Juillerat, M.A., and Lee, Ch.  
Purification and Characterization of Proteases from Bacillus  
Amyloliquefaciens Isolated from Traditional Soybean Fermentation  
Starter. Journal of Agriculture and Food Chemistry.  
2003;51(26):76647670.  
48 Kelmendi, M., Sadiku, M., Kadriu, S., Dobroshi, F., Igrishta, L.,  
Baruti, B. Research of Heavy Metals on the Agricultural Land in  
Bajgora Region, Kosovo. Acta Chemica Iasi. 2018; 26(1): 105122.  
49 Veselaj, T., Berisha, A., Mehmeti, M., Shala, A., Kastrati, B., Sahiti,  
F., and Buza, F. Kosovo Environmental Protection Agency. Report  
for water status in Kosovo. Kosovo. Accessed October 16 2019.  
https://www.ammkrks.net/repository/docs/raporti_ujrave%202010_s  
hq.pdf, (2010).  
2
9(1): 2633  
2
2
2
3
3
7
Prakash, D., Verma, S., Bhatia, R., and Tiwary, B.N. Risks and  
Precautions of Genetically Modified Organisms. ISRN Ecology.  
2
011; 2011: 113.  
8 Ruppen M.E., Van Alstine, G.L., and Band, L. Control of Intracellular  
Serine Protease Expression in Bacillus subtilis. Journal of  
bacteriology. 1988; 170(1): 235244.  
9 Popping, B. Identifying genetically modified organisms (GMOs). In  
Food Authenticity and Traceability. L Michele, eds., Woodhead  
Publishing. Cambridge. 2003. 406-416.  
0
Asha, B., and Palaniswamy, M. Optimization of Alkaline Protease  
Production by Bacillus Cereus FT 1 Isolated from Soil. Journal of  
applied Pharmaceutical Science. 2018; 8(02): 119127  
1 Pant, G., Prakash, A., Pavani, J.V.P., Bera, S., Deviram, G.V.N.S.,  
and Kumar, A. et al. Production, Optimization and Partial  
Purification of Protease from Bacillus Subtilis. Journal of Taibah  
University for Science. 2015;9(2015):5055.  
3
3
2 Beveridge TJ. Use of the Gram Stain in Microbiology. Biotechnology  
and histochemistry. 2001; 76(6): 111-118.  
3
Taylor, W.I., and Achanzar, D. Catalase Test as an Aid to the  
Identification of Enterobacteriaceae. Applied microbiology.  
1
972;24(1):5861.  
3
3
4 Hamza, T.A. Isolation and Screening of Protease Producing Bacteria  
from Local Environment for Detergent Additive. American Journal  
of Life Sciences. 2017; 5(5): 116124.  
5
Josephine, F.S., Ramya, V.S., Neelam, D., Ganapa, S.B.,  
Siddalingeshwara, K.G., and Venugipal, N. et al. Isolation,  
Production and Characterization of Protease from Bacillus Sp  
Isolated from Soil Sample. Journal of Microbiology and  
Biotechnology Research. 2012; 2(1): 163-168.  
3
3
6
7
Robinson, P.K. Enzymesꢀ: Principles and Biotechnological  
Applications. Essays in biochemistry. 2015; 59: 141.  
Hayat, R., Sheirdil, R.A., Iftikhar-ul-hassan, M., and Ahmed, I.  
Characterization and Identification of Compost Bacteria Based on  
1
9
6S rRNA Gene Sequencing. Annals of Microbiology. 2013; 63(3):  
05912.  
3
8
Janda, J.M., and Abbott, S.L. 16S rRNA Gene Sequencing for  
Bacterial Identification in the Diagnostic Laboratory: Pluses, Perils,  
6
93