Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 708-717  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Optimization of Operating Conditions of Increasing  
HBsAg Protein Expression in FED BATCH  
Fermentation Process by Changing Pichia Pastoris  
Culture Medium Conditions and Examining Growth  
of Yeast Cells by Methanol Testing  
Payam Moradi Zalam Abadi , Alireza Fazlali , Seyed Nezamedin Hosseini , Ehsan Jafarbeigi 1,4,  
1
2
3
Farhad Salimi *  
1
Department of Chemical Engineering, Kermanshah Branch, Islamic Azad University, kermanshah, Iran  
2
Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran  
3
Production & Research Complex, Pasteur Institute of Iran, Tehran, Iran  
4
Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, kermanshah, Iran  
Received: 16/12/2019  
Accepted: 06/04/2020  
Published: 20/05/2020  
Abstract  
Optimization of the culture medium and induction conditions in the fed-batch fermentor is the commonest and easiest method to  
increase the overall productivity of recombinant proteins production. Environmental conditions such as temperature, dissolved oxygen  
(DO), PH, and agitation also have a major impact on the expression of recombinant protein. Since the production of the recombinant  
protein in pichia pastoris is highly affected by induction conditions, providing induction conditions is one of the most important ways to  
increase the productivity rate. AOX1 gene enables recombinant proteins expression at the highest level in methylotrophic yeasts. This gene  
is activated by methanol and induced protein expression. Low and high methanol amounts respectively lead to its reduced induction ability  
and overproduction of formaldehyde and other toxic substances. However, given that carbon is considered as microorganisms feed,  
therefore, the injection of pure methanol in a timely manner in sufficient quantities in specified time intervals, the necessary amounts of  
carbon were supplied for feeding them. Also, vitamins such as vitamin A and B were regularly injected to the extent necessary in the  
fermentation process. Therefore, this study aimed to investigate the methanol feeding process, an increase in specific growth rate (µ), OD  
and dry weight (WW), comparison of the increase in OD and WW. The results showed that the performance of the feeding profile is  
improved as much as possible according to the existing facilities.  
Keywords: Pichia pastoris; Methanol utilization pathway; Fed-batch fermentation; Recombinant protein expression; Genome annotation  
Introduction1  
(
1970) could observe this virus in the blood of those suffering  
1
from this disease. Continuous experiments showed that HBsAg  
can stimulate the body's protective system to secrete antibodies.  
In 1971, Krugman discovered that the injection of blood infected  
with killed HBV can stimulate hepatitis B antibody (5). It was  
also proposed that nucleic acid fragments separated by  
Bloomberg have the ability to stimulate the immune system  
against this virus (6). Blumberg and Millman provided ground  
for the development and advancement in making the vaccine, in  
which HBsAg can initiate the body's protective response to this  
disease. So, they proposed that this vaccine to be prepared from  
the antigen in the blood of infected people. The strategy for  
vaccine design was first to use the blood infected with the  
weakened virus to stimulate the immune system. But, it soon  
became apparent that the use of antigen purified from the  
infected blood is more effective and safer. Although Fox Chase  
Cancer Centre (FCCC) was awarded the patent for this  
discovery in 1969, many scientists have carried out extensive  
Hepatitis B virus (HBV) is the leading cause of cirrhosis and  
liver cancer and HBV infection is now a global problem (1-4).  
In a research on various serum proteins in 1963, Bloomberg  
accidentally discovered an unknown protein in the blood of an  
Australian native. This protein was introduced as Australian  
(AU) antigen and it was found that this protein is related to  
HBV. In 1968, Prince Okohi and Murakami found that AU  
antigen existed in the blood of people infected with hepatitis B  
only in the same year. Bloomberg could isolate some amount of  
hepatitis B surface antigen (HBsAg) in the blood of an infected  
person and continued research revealed that this antigen is the  
main symptom for the incidence of this disease. Dane et al.  
Corresponding Auther: Farhad Salimi, Department of  
Chemical Engineering, Kermanshah Branch, Islamic Azad  
University, kermanshah, Iran. Email: f.salimi@iauksh.ac.ir.  
7
08  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 708-717  
researches on this concept and were able to purify it and enable  
its public use. This vaccine provided the immunity rate of more  
than 90% without causing any side effects (7). Router et al.  
yeasts. Pichia pastoris was first identified as a high-performance  
system in producing this antigen. In the first experiment, the  
production rate reached to 48 mgHBsAg.L-1 culture 1 (12). At  
the industrial scale, a change in the cell structure and use of  
alcohol oxidase (AOX) gene promoter reduced the production  
rate to 1.3mgHBsAg.L-1 culture. Phillips Co. signed a contract  
with Salk Institute Biotechnology / Industrial Associates. Inc.  
(1977) proposed making HBV vaccine through recombinant  
technology. This production process could provide safe  
abundant product. The first system was carried out by bacterial  
cells, but experiments yielded no success (8). Before the  
development of recombinant technology, the hepatitis B vaccine  
was produced by extraction of hepatitis B surface antigen  
(SIBIA) for the development of pichia pastoris as  
a
microorganism for the expression of heterologous proteins in  
1980. Researchers isolated AOX1 promoter in SIBIA and used it  
as the promoter gene in manipulated pichia pastoris. AOX1 can  
increase the total extract soluble protein up to 30% and methanol  
grows merely in pichia pastoris (13-15). AOX1 enzyme is  
responsible for the methanol of the first oxidation reaction in  
pichia pastoris.It is synthesized by AOX1 promoter, which has  
been widely used in the expression of recombinant proteins in  
this microorganism (16-18). This expression system is widely  
used for the expression of heterologous proteins (38). The  
advantages of pichia pastoris compared to the saccharomyces  
cerevisiae yeast include:  
1. Pichia pastoris has a very active promoter for methanol  
utilization and its oxidation to formaldehyde and hydrogen  
peroxide and this activity is carried out by AOX enzyme.  
2. The expression of this gene is highly regulated. In other  
words, when it uses glucose or ethanol as the carbon source,  
AOX is inactive. But when the yeast is cultured in medium  
containing methanol, AOX can increase total cell proteins by  
3% to 5%. There are 2 AOX genes, including AOX1 and AOX  
2. AOX2 plays an inhibitory role for the expression.  
(HBsAg), the main ingredient of hepatitis B vaccine, from the  
plasma of infected patients (34, 37). Afterwards, Hall developed  
this system by yeasts and Valenzuela et al. (1982) (7) managed  
to achieve the first purified HBsAg product by recombinant  
genetic system using yeasts. Finally, after nine years of research,  
the first vaccine was made in 1986 and the US Food and Drug  
Administration (FDA) issued the permission for its general use.  
After a short while, French scientists were able to make the  
same proteins that had the same ability to stimulate the immune  
system. In this system, the recombinant plasmid was transferred  
into ovary cells of a kind of Chinese mountain hamster mice.  
This plasmid was a little different from the yeast plasmid  
because it contained surplus of HBV genome. This means that in  
addition to protein S gene, it also contained Pre-S2 protein gene.  
Although this system was different from the yeast, it contained  
same 22nm protein fragments that stimulated the immune  
system.  
1
.2 Saccharomyces cerevisiae  
The first recombinant HBV vaccines, which can be  
produced commercially, were made through genetic  
manipulation of the yeasts. Normally after being made in  
eukaryotic cells, proteins often enter the Golgi system to  
undergo changes in their structure. For this reason, eukaryotic  
cells such as yeast are used to produce the recombinant HBV  
vaccine. A variety of yeasts that are used in the production of  
recombinant HBV vaccine include: saccharomyces cerevisiae  
and pichia pastoris. There were certain limitations associated  
with the use of saccharomyces cerevisiae to produce HBV  
vaccine, because its total protein efficiency (TPE) is 1% to 5%.  
Also, placing a transgene in the yeast causes tensions in host  
cells, and the produced foreign protein is considered toxic for  
saccharomyces cerevisiae in many cases. Currently, P. pastoris  
has attracted major attention in the healthcare industry for  
efficient largescale production of recombinant products (34-36).  
The first plasmid, in which hepatitis B antigen is produced under  
the control of alcohol dehydrogenase gene promoter (ADH1),  
was transformed in saccharomyces cerevisiae by Valenzuela et  
al. This system has yielded an expression rate of about 10-25  
μgHBsAg.L-1 culture(8). Later, the expression of this gene  
reached to about 50 μgHBsAg.L-1 culture in saccharomyces  
under the control of 3-phosphoglycerate kinase gene promoter  
3. The use of methanol for this yeast leads to creation of a  
special characteristics compared to other yeasts because  
saccharomyces cerevisiae and most of other yeasts lack this  
ability. Also, this yeast's ability to grow in the methanol can be  
used to prevent contamination of the fermentation medium  
during fermentation. Considering reasons mentioned above,  
today, pichia pastoris has become a more suitable candidate for  
use in the genetic engineering. To achieve an optimal strategy to  
achieve the highest amount of recombinant protein production,  
factors such as temperature, PH, specific growth rate of yeast  
physiology, culture conditions and feed composition percentage  
have been investigated.. Factors such as temperature have been  
investigated frequently. Pichia pastoris fermentation process is  
carried out in three ways: 1) Glycerol batch phase  
2)Transformation phase (from development to production) 3)  
Methanol induction phase and the induction phase was  
investigated among the three above-mentioned phases.  
1.3 Glycerol batch phase  
The purpose of this phase is to obtain the maximum amount  
of yeast in the shortest time. The highest µ in glycerol (1/h) has  
been reported to be 0.18(19) that is much higher in comparison  
with that of methanol (1 / h) (0.14) (20). Usually µ is much less  
than this amount in methanol phase that is due to the production  
of protein and negative impact of its metabolic burden on the  
growth. This phase begins with glycerol concentration of 40g / L  
independently of the type of pichia pastoris. Glycerol with  
higher concentration acts as an inhibitor. Brierley et al. proposed  
6% as the maximum amount for glycerol concentration (21).  
Scientists measured the ethanol amount as about 2% in glycerol  
concentration of above 7%. This ethanol concentration is toxic  
to the yeast. The dry biomass obtained from this amount of  
substrate is approximately 0.5. The amount of dry weight cells  
(PGK) (9). Miyanohara et al. achieved expression rate of 2.8  
μgHBsAg.L-1 culture under the control of acid phosphatase  
gene promoter (10). Under the control of glyceraldehyde-3-  
phosphate gene promoter (GPD), S gene expression rate reached  
3
μgHBsAg.L-1 culture and about 20 culture mgHBsAg.L- 1 (6-  
fold increase) in saccharomyces cerevisiae using the batch  
fermentor and the batch-fed fermentor, respectively (11). The  
fact that the cell can secrete the protein out of the cells is very  
important. Chen et al. made a tremendous effort on this issue,  
but it was useless (9). Due to problems associated with the  
saccharomyces cerevisia use, researchers used methylotrophic  
7
09  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 708-717  
obtained at the end of this phase is 100g / L. The end of this  
phase is characterized by a sudden increase in DO, which is due  
to the end of substrate and lack of oxygen consumption.  
by stopping the feeding process. The most important indirect  
control devices include Gas chromatography (GC), High  
Performance Liquid Chromatography (HPLC) and enzymatic  
reactants. In this method, we can measure the concentration of  
other substances and even protein. In case of limited methanol  
concentration, DO response is rapid and methanol feed can be  
increased. This indirect measurement should be continued until  
the DO amount reaches the desired minimum level. Then  
1
.4Transfer phase  
The biomass amount needed to be increased until achieving  
high amount of cell mass. This is one of the objectives of this  
phase to the extent that the presence of glycerol does not prevent  
methanol from entering the induction phase. Some researchers  
have added glycerol with a fixed amount to the culture medium  
and some others have added glycerol exponentially. In this  
method, the dry weight of cells can be increased even to more  
than 120g/L. This phase is usually completed with a gradual  
increase in methanol level. In this method, the cells become  
ready to enter the induction phase. Different methanol feeding  
programs have been reported. (a) Gradual increase in methanol  
in proportion to the DO amount (20). (b) Maintaining the  
methanol concentration of about 4g / L (22). (c) Inducing 1hour  
hunger before entering the induction phase to ensure that all the  
available glycerol is consumed (23). (d) Adopting glycerol  
reduction program along with fixed glycerol feed rates (24).  
methanol feeding rate is maintained at  
a constant rate.  
Sometimes a feedback control loop is used to maintain DO level.  
But it is practically unusable because the sampling and testing  
take a long time. Therefore, direct methods are usually used.  
1.6 Fermentation  
Fermentation is a process that is carried out by using energy  
released from the oxidation of organic materials such as  
carbohydrates. In industry, fermentation refers to so-called  
chemical reactions, the catalyst of which is microorganisms,  
whether aerobic or anaerobic process.  
1.7 Fermentor  
Fermentor is a device, in which fermentation operation is  
carried out. Fermentor used in this research, was Vessel single  
jacket model fermentor with Winpact brand. Fig 1 shows a view  
of the fermentor and other parts of it.  
1
.5 Methanol induction phase  
Pichia pastoris starts producing the recombinant protein  
under the control of AOX promoter in this phase. Specific  
growth rate (µ) has a major impact on the amount of protein  
expression, thus feeding must carried out in such way that we  
achieve the maximum expression rate. It is very important to  
control the concentration level because its high levels and cause  
toxicity and its low levels prevent protein expression. Induction  
with methanol is a very important phase, because AOX activity  
is low at the beginning and the methanol accumulates easily. At  
this stage, the oxygen consumption rate is limited with rapid  
increase in AOX activity. Pichia pastoris strains are sensitive to  
high methanol concentrations remained in the medium and  
sudden methanol accumulation decreases AOX activity and  
leads to cell death. Methanol is controlled using direct or  
indirect measurements. Methanol direct measurement in this  
process is an important tool in optimizing feeding strategies. A  
methanol sensor with silicone tube is commercially available in  
the market for the direct measurement of methanol (25). Gas  
analyzer is a unique method that is based on the measurement of  
oxygen and carbon dioxide leaving the fermentor. In this  
method, other output gases such as ammonium may create a  
nuisance, but it can be solved with a modification(26). This  
device can be used to control methanol concentration feedback  
and in methanol and temperature-limited fermentation processes.  
When the necessary equipment is not available for direct  
control, another strategy is used to adjust the methanol  
concentration that is called DO spike method. In this feeding  
method, methanol concentration is adjusted in such way that the  
methanol steams are prevented from being exited, which is  
detected through a sudden increase in DO (27). This method has  
its own defects, too. If an inhibitor stops the process, DO level  
rises, as a result of which the injected methanol level increases,  
which in turn leads to methanol accumulation and cell death.  
Some direct methods are based on the indirect method. For  
example, in sequential injection analysis, seven samples are  
taken and analyzed per hour. But the disadvantages of this  
method include an increase in the likelihood of contamination  
and yield loss due to continuous sampling (28). Methanol  
accumulation control is also feasible using indirect method, i.e.  
1.8 Conventional methanol feeding methods in batch culture  
1.8.1 Pichia pastoris yeast  
Methylotrophic yeast pichia pastoris is a suitable host for  
production of recombinant proteins. One advantage of this host  
is, in fact, having a very effective regulation promoter called  
AOX. Pichia pastoris uses methanol as a source of carbon and  
energy. Methanol is also considered as an inducer in this system.  
AOX enzyme is a catalase that decomposes hydrogen peroxide  
to water and oxygen. Some of the formaldehyde produced by  
AOX leave the peroxisome and is oxidized mainly to carbon  
dioxide and formate. This reaction occurs with cytoplasmic  
dehydrogenase that provides the energy source for cell growth  
on methanol. High cell density culture with pichia pastoris,  
AOX promoter enables achieving production of large quantities  
of recombinant protein. However, due to the accumulation of  
formaldehyde and hydrogen peroxide in the cell through  
methanol metabolism, methanol concentration in the fermentor  
is effective both on cell growth and level of protein secreted by  
cells. Therefore, proper adjustment of methanol concentration in  
pichia pastoris fermentation is necessary not only to maintain the  
induction of genes under the control of the AOX promoter, but  
also to prevent the accumulation of excessive methanol  
concentration in the medium sites in the centrifuge.  
1.8.2 Methanol consumption cycle  
Methylotrophic yeasts belong to four species: Hansenula,  
Pichia, Candida, tropicalis, all of which have methanol  
consumption cycle. The main reactions in this cycle are shown  
in Fig. 2. To grow in methanol, the yeast is adapted by induction  
of AOX gene promoter, dihydroxyacetone synthase (DAS) and  
many different enzymes that can participate in this metabolism  
(29). In these species, AOX can produce more than 35% of the  
cellular protein, while this gene is inactive in glucose and  
glycerol or ethanol. AOX oxidizes methanol in the first step and  
then converts it to formaldehyde and hydrogen peroxide.  
7
10  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 708-717  
Figure 1: A view of the used fermentor  
This reaction is performed in an organ, called peroxisome to  
prevent the toxicity of hydrogen peroxide in the reaction (30).  
Peroxisomal catalase breaks down hydrogen peroxide to water  
and oxygen. Formaldehyde enters the cytosol from peroxisome,  
where it forms a complex with the regenerated glutathione.  
Then, it is oxidized and carbon dioxide is produced by the  
dehydrogenation reaction in two stages. Formaldehyde-GSH  
complex is converted to formate by formaldehyde  
dehydrogenase enzyme and formate is oxidized and is converted  
to carbon dioxide by formate dehydrogenase enzyme. Oxidation  
in this cycle not only produces energy in the form of NADH, but  
also plays a very important role in eliminating formaldehyde  
toxicity in the methylotrophic yeast (31). Formaldehyde can then  
be re converted to methanol by formaldehyde reductase enzyme.  
Formaldehyde reductase and alcohol oxidase enzymes create a  
cycle that controls the cellular amount of formaldehyde and  
NADH. The residual formaldehyde reacts with xylose -5-  
phosphate (Xu5P) through transketolase reaction and produces  
two products of Dihydroxytryptamine acetone (DHA) and  
glyceraldehyde - 3-phosphate (GAP). This reaction is carried out  
by Dihydroxyacetone synthase enzyme. Dihydroxyacetone  
synthase enters the cytosol and is phosphorylated by  
Dihydroxyacetone kinase enzyme. It is later converted to  
fructose-1, 6-bisphosphate (FBP) after reacting with  
glyceraldehyde-3-phosphate in the aldolase reaction and is  
finally converted to fructose 6-phosphate (F6P) by 8-phosphate  
phosphatase. F6P enters the pentose phosphate pathway and  
reproduces xylose phosphate. During each of three cycles, one  
glyceraldehyde - 3 - phosphate molecule is produced and the  
biomass is formed by the standard gluconeogenesis reaction.  
Fig. 3 shows a simple metabolism shape in methylotrophic  
yeasts (14). Tri-carboxylic acid cycle (TCA) plays an important  
role in energy supply for the growth of methylotrophic yeasts.  
2
Materials and method  
Required materials and equipment have been listed in Tables  
and 2. Fig. 4 shows the algorithm of how to implement the  
1
project.  
7
11  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 708-717  
Figure 2: Pichia pastoris metabolism cycle in methanol. 1, alcohol oxidase; 2, catalase; 3, formaldehyde dehydrogenase; 4, formate dehydrogenase, 5,  
dihydroxyacetone synthase; 6, dihydroxyacetone kinase; 7, fructose 1,6-biphosphate aldolase; 8, fructose 1,6-bisphosphatase  
Figure 3: Pichia pastoris simplified metabolism cycle in methanol (14)  
7
12  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 708-717  
2
.1 Used materials  
In this study deionized water (hardness of less than 1  
9. Beginning the fermentation process and continuing it until  
inhibition of cell growth.  
microsiemens), extract of microbiological yeast, agarose,  
sodium chloride, calcium chloride dehydrate, methanol, crystal  
violet, EDTA, glycerol, di-sodium hydrogen phosphate  
anhydrous, agarose, diethyl barbituric acid, diethylbarbituric  
acid sodium, caprylic acid, sodium acetate dehydrate, copper  
sulfate heptahydrate, ammonium sulfate, manganese sulfate  
heptahydrate, zinc sulfate monohydrate, iron sulfate  
heptahydrate, potassium chloride, potassium hydrogen  
phosphate, potassium iodide, acrylamide, bis acrylamide,  
ammonium sulfate, bromophenol blue, acetic acid monohydrate,  
standard molecular weight marker, and pichia pastoris yeast  
have been used.  
10. Harvest  
11. Biomass centrifugation and collection  
Table 2: Required nutrients and design of medium  
Vitamin A & B  
Di-Potassium hydrogen phosphate  
Biotin  
Myo-inositol  
Calcium Pantothenate  
Pyridoxol Hydrocholoride  
Thiamine Hydrocholoride  
Nicotinic Acid  
Concentration  
4 g/L  
0.8 g/L  
8 g/L  
0.8 g/L  
0.8 g/L  
0.8 g/L  
0.2 g/L  
1L  
W.F.I  
2
.2 Needed equipment  
In this study Eppendorph centrifuge model 5804, peristaltic  
2
.4 Determining cell dry weights  
pump model VERDERLAB (2 pcs), Nikone optical microscope,  
glass beads with a diameter of 0.5 micron, pH meter model  
Mettler Toledo, Eppendorph spectrophotometer, IKA horizontal  
stirrer, IKA horizontal shaker, Eppendorph 37 ° C incubator,  
Eppendorph 30 ° C incubator, Emersan 2 to 8 ° C refrigerator,  
REVCO -20 ° C freezer, IKA Vortex, microbial hood, elisa  
reader, glass utensils, magnet, pence, syringes, dowel, millipore  
filter paper Wharman GB002, WinPact Glass 10 liters  
fermentor, and oxygen capsule have been employed.  
First, four clean 15 ml falcons, two of which are named A  
and B are prepared. The falcons are later weighed using a  
sensitive scale. The yeast mixture is taken to the extent  
necessary and 5 ml of the mixture is added to each of A and B  
falcon. Then they will be placed in two opposite Mixtures are  
later centrifuged at 22 °C for 15 minutes at 3000 rpm. The  
supernatant is poured into another falcon and kept into the  
freezer so that it is used later to measure methanol. After being  
dried, the falcons are weighed again. If we multiply the primary  
and secondary weight difference by 200, the dry weight will be  
obtained.  
Table 1: Required nutrients and design of medium  
Medium  
NH So  
MgSO  
HPO  
CaCl  
PO  
Concentration  
2
.5 Expression under the control AOX1 gene promoter  
Heterologous proteins are often produced in the P. pastoris  
(
4
)
2
4
20.31 g/L  
6.92 g/L  
4
,7HO  
yeast under the control of very effective AOX1 promoter. This  
promoter controls the expression of the AOX1 enzyme. For the  
first time, Ellis et al. (1985) were able to isolate AOX1 gene. P.  
pastoris genome consists of two alcohol oxidase genes (AOX1,  
AOX2). AOX1 has the greatest responsibility in regulating  
alcohol oxidase activity in cells. This gene produces high levels  
of AOX1 enzyme in cells (more than 30%); therefore, this  
promoter can cause expression of recombinant proteins higher  
than 12 g / L (32). Considering the ability their methanol  
consumption rates, yeasts are divided into three sub-groups:  
K
2
4
16.77 g/L  
0.46 g/L  
8.8 g/L  
1 g/L  
2
,2H  
2
O
H
3
4
%85  
Trace element  
Glycerol  
W.F.I  
40 g/L  
2 lit  
2
.3 Working method  
1
. Preparation of 4.5 lit complex medium (including different  
+
Positive methanol consumption (Mut ): Both AOX1 and  
types of proteins, lipids and carbohydrates)  
AOX2 genes are present and have good efficiency and yeast  
grows well in methanol.  
2
3
. Pouring the medium into the fermentor vessel.  
. Blocking all fermentor container openings by cotton, foil and  
s
Slow consumption of methanol (Mut ): AOX1 gene is  
clamp.  
. Autoclaving the fermentor container along with its contents  
for 30min.  
. Connecting feed, air, sensors, and temperature and pH probes  
damaged and AOX2 gene only works, but the resulting slows  
methanol consumption depends on the poor transcriptional  
properties of AOX2.  
4
5
-
Negative methanol consumption (Mut ): Both AOX1 and  
to the fermentor container after autoclaving under complete  
sterile conditions.  
AOX2 genes are inactive, methanol cannot be metabolized, but  
its presence is necessary for induction of recombinant proteins  
expression. The maximum specific growth rates in methanol are  
6
. Setting feed, temperature, rotational speed of the blades and  
pH parameters by fermentor monitor.  
. Inoculating 0.5 lit of inoculated culture medium by siphon  
and peristaltic pump in sterile conditions  
. Injection of Vitamin A, Vitamin B, Trace Element  
-1 -1 -1 + s  
.14h , 0.04h and 0.0 H , respectively for Mut , Mut and  
-
0
7
Mut species of P. pastoris yeasts (33). Figures 5, 6, 7, 8 and 9  
respectively show methanol feeding process, an increase in µ,  
OD, dry weight (ww), comparison of an increase in OD and ww.  
8
7
13  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 708-717  
Revision  
No  
Yes  
Evaluation  
ofselected  
parameter  
Testing in  
lab scale  
Data analysis  
Parameter  
selection  
(theory)  
Effective  
Next analysis  
Ineffective  
No  
No  
Testing in large  
scale  
Yes  
Yes  
Validation tests  
Completion  
No  
Figure 4: Algorithm of how to implement the project  
2
.6 Fed-batch culture (the induction phase)  
Fed-batch culture is a method of choice to achieve high cell  
pastoris yeast, methanol is considered as an inductor for the  
expression of recombinant protein and energy source for cells.  
Accumulation of methanol in the medium is considered as a  
growth and production inhibitor. On the other hand, its  
deficiency reduces the growth rate and increases the process  
time. Each of limited methanol feed rate, fixed-rate and  
exponential feeding, feeding strategy based on the growth rate,  
and etc. attempts to improve the production of proteins. The  
exponentially methanol feeding strategy was used in Pasteur  
Institute in such a way that the specific growth rate was almost  
at about fixed rate of 0.016. The medium conditions of the  
process were almost unchanged and only the amount of input  
methanol was changed. Medium pH was controlled at 4.5 and  
density. Implementing fed batch fermentation process, despite  
its numerous advantages, due to problems such as restriction or  
inhibition of raw materials (especially carbon source) required  
2
for yeast growth, high-speed production of CO , heat, excessive  
need for oxygen and limited capacity to transfer oxygen, a sharp  
increase in viscosity and reduced mixing efficiency, plasmid  
instability and reduced yield in case of prolonged process,  
product degradation by intracellular proteases, accessory  
metabolite accumulation to the inhibition level, has always been  
associated with challenges. Considering its ease of  
implementation and possibility of changing the growth rate of  
the cell, the exponential feeding method is a method that is more  
commonly used for the implementation of high cell density  
culture of various microorganisms. Research has shown that the  
specific productivity in high cell density culture is usually less  
than the "fed-batch culture that is probably due to the fact that  
most fed-batch processes are implemented under low specific  
growth rate and the limited substrate level conditions. At this  
stage of high cell density culture (induction phase) of Pichia  
2
since CO gas is produced in this process, the medium pH  
decreases and ammonia is used to control it. In addition to  
regulating pH, ammonia is also considered as the nitrogen  
source. The needed oxygen was first supplied by the compressed  
air and Due to the impossibility of increasing the pressure in the  
fermentor and atmospheric nature of the process, oxygen  
deficiency was evident. Therefore, pure oxygen capsules were  
used at this stage. Agitation plays a fundamental role in mass  
7
14  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 708-717  
transfer and increasing oxygen time both in terms of creating  
dispersion and breaking apart the oxygen bubbles. At the  
beginning of the process, the agitation was set at 250 rpm and  
finally was set at 600 rpm due to the increased viscosity of the  
solution. Medium temperature was controlled unchanged at 30  
at the end of fermentation for different batches before  
optimization.  
1
600  
200  
800  
°C. Temperature control system was comprised of a heat  
exchanger and a pump that circulates the water in the pipe inside  
the fermentor.  
1
3
Results and discussion  
As can be seen in Fig.5, Since the yeast is inadaptable with  
the change in type of carbon source (carbon source was changed  
to glycerol source) in the early hours of its growth, Methanol is  
injected slowly into the fermentor and the increasing trend of  
methanol consumption rises with a more gentle slope. In this  
phase, the yeast needs time to metabolize the methanol, and then  
methanol consumption begins at higher rate after the yeast is  
adapted to the medium change. DO suddenly undergo a sharp  
drop at this time that indicates a high consumption of methanol  
and increased fermentation speed.  
4
00  
0
0
2000  
4000  
6000  
8000  
Time (min)  
Figure 5: Methanol consumption rate during fermentation  
As shown in Fig.6, the growth rate in the early hours has a  
negative value due to the yeast inadaptability. But the growth  
rate was increased quickly and then maintained at a constant  
level. Higher specific growth rate was observed in the  
fermentation process until 80th hour and its level was later  
decreased because of the increased concentration of the  
fermentation and higher level of toxic substances or oxygen  
deficiency. Fig. 7 shows an increase in dry weight of the cells  
compared with fermentation time. This increase reflects the  
successful growth of the cells. In the final fermentation hours, in  
addition to the lack of ascending growth in the diagram, a  
decrease is observed in the dry weight as the fermentation time  
passes, which indicates the end of the logarithmic growth phase  
and entering the stationary phase and eventually the completion  
of fermentation process. In Fig. 8, according to samples taken  
from the fermentor during the fermentation process, the number  
of cells was measured using turbidimetry. The obtained data  
indicate an increase in the number of cells in the logarithmic  
phase of growth. Considering the direct relationship between the  
bacteria growth and OD, the OD level was increased and with  
beginning of the stationary or death stage, the OD graph  
undergoes reduction and recession in line with the bacteria  
growth. Fig. 9 shows a comparison of the two parameters of OD  
and ww after in terms of fermentation time and we see that these  
parameters have a direct relationship with each other.  
0
0
.025  
.015  
0.005  
-10 10 30 50 70 90 110 130 150  
-
-
-
0.005  
0.015  
0.025  
Fermentation hour (hr)  
Figure 6: Trend of specific growth rate increase (μ)  
00  
6
4
2
00  
00  
0
4
Conclusion  
In this research, considering the transfer of technology from  
the production sector (production and research complex of  
Pasteur Institute of Iran), to achieve the amount of biomass  
produced in elapsed specified time, numerous experiments were  
carried out and their results have been reported in Table 1. As is  
evident, much time has been spent in some of the experiments  
and amount of the produced biomass has been increased. As  
presented in Table 3, the average ratio of methanol to biomass  
amount is 1.14, i.e. 89% and 11% of methanol has been  
converted to biomass and energy, respectively. It should be  
noted that methanol purity grade is 79%. Fig. 10 shows the  
results obtained from the different consumption methanol rates  
0
20  
40  
60  
80  
100  
120  
Time (hr)  
Figure 7: Relationship between the dry weight and fermentation time  
7
15  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 708-717  
Table 3: Methanol consumption rate and biomass specifications for different batches at the end of fermentation  
Methanol  
consumption (L)  
Time (h)  
w.w (g/l)  
Biomass (kg)  
Methanol consumption/biomass (L/Kg)  
1
1
1
1
1
1
1
1
31  
32  
35  
39  
40  
44  
47  
53  
292  
270  
349  
280  
350  
296  
290  
310  
1.54  
1.50  
1.74  
1.57  
1.77  
1.67  
1.66  
1.81  
2.03  
2.15  
2.28  
2.32  
2.40  
2.5  
1.13  
1.04  
1.18  
1.04  
1.24  
1.07  
1.17  
1.96  
2.61  
2.73  
(
avoidance of guest authorship), dual submission, manipulation  
4
3
2
1
00  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
00  
00  
00  
0
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
0
50  
100  
150  
Time (hr)  
3
2
1
0
Figure 8: Relationship between OD and fermentation time  
6
4
2
00  
00  
00  
0
600  
400  
200  
0
1
25  
130  
135  
140  
145  
150  
155  
Time (hr)  
Figure 10: Pre-optimization methanol consumption rate diagram for  
different batches  
OD  
Wet Weight (g/l)  
References  
1
.
Gerlich WH. Medical Virology of Hepatitis B: how it began and  
where we are now. Virology Journal. 2013;10(1):239.  
0
30  
60  
90  
120  
2. Jing M, Wang J, Zhu S, Ao F, Wang L, Han T, et al. Development  
of a more efficient hepatitis B virus vaccine by targeting hepatitis B  
virus preS to dendritic cells. Vaccine. 2016;34(4):516-22.  
Time (hr)  
3
.
Kosinska AD, Zhang E, Johrden L, Liu J, Seiz PL, Zhang X, et al.  
Combination of DNA primeadenovirus boost immunization with  
entecavir elicits sustained control of chronic hepatitis B in the  
woodchuck model. PLoS pathogens. 2013;9(6):e1003391.  
Tsai S, Chen P-J, Lai M, Yang P, Sung J, Huang J-H, et al. Acute  
exacerbations of chronic type B hepatitis are accompanied by  
increased T cell responses to hepatitis B core and e antigens.  
Implications for hepatitis B e antigen seroconversion. The Journal of  
clinical investigation. 1992;89(1):87-96.  
Figure 9: Comparison of dry weight with OD  
Acknowledgement  
This research was supported by Pasteur Institute of Iran  
IPI), Tehran, Iran.  
4
.
(
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
5
.
Blumberg BS. Hepatitis B virus, the vaccine, and the control of  
primary cancer of the liver. Proceedings of the National Academy of  
Sciences. 1997;94(14):7121-5.  
7
16  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 708-717  
6
7
8
9
.
.
.
.
Szmuness W, Stevens CE, Zang EA, Harley EJ, Kellner A. A  
controlled clinical trial of the efficacy of the hepatitis B vaccine  
21. Curvers S, Brixius P, Klauser T, Thömmes J, Weuster‐Botz D,  
Takors R, et al. Human Chymotrypsinogen B Production with  
Pichiapastoris by Integrated Development of Fermentation and  
Downstream Processing. Part 1. Fermentation. Biotechnology  
progress. 2001;17(3):495-502.  
22. Chen Y, Krol J, Cino J, Freedman D, White C, Komives E.  
Continuous production of thrombomodulin from a Pichia pastoris  
fermentation. Journal of Chemical Technology & Biotechnology.  
1996;67(2):143-8.  
23. Cos O, Serrano A, Montesinos JL, Ferrer P, Cregg JM, Valero F.  
Combined effect of the methanol utilization (Mut) phenotype and  
gene dosage on recombinant protein production in Pichia pastoris  
fed-batch cultures. Journal of Biotechnology. 2005;116(4):321-35.  
24. Surribas A, Cos O, Montesinos J, Valero F. On-line monitoring of  
the methanol concentration in Pichia pastoris cultures producing an  
heterologous lipase by sequential injection analysis. Biotechnology  
letters. 2003;25(21):1795-800.  
25. Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Tomomitsu  
K. High level secretion of recombinant human serum albumin by  
fed-batch fermentation of the methylotrophic yeast, Pichia pastoris,  
based on optimal methanol feeding strategy. Journal of Bioscience  
and Bioengineering. 2000;90(3):280-8.  
26. Lim H-K, Choi S-J, Kim K-Y, Jung K-H. Dissolved-oxygen-stat  
controlling two variables for methanol induction of rGuamerin in  
Pichia pastoris and its application to repeated fed-batch. Applied  
microbiology and biotechnology. 2003;62(4):342-8.  
27. Jennings VM. Review of Selected Adjuvants Used in Antibody  
Production. ILAR Journal. 1995;37(3):119-25.  
28. Ramon R, Feliu J, Cos O, Montesinos J, Berthet F, Valero F.  
Improving the monitoring of methanol concentration during high  
cell density fermentation of Pichia pastoris. Biotechnology letters.  
2004;26(18):1447-52.  
(Heptavax B): a final report. Hepatology. 1981;1(5):377-85.  
Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD.  
Synthesis and assembly of hepatitis B virus surface antigen particles  
in yeast. Nature. 1982;298(5872):347-50.  
Hitzeman RA, Chen CY, Hagie FE, Patzer EJ, Liu CC, Estell DA, et  
al. Expression of hepatitis B virus surface antigen in yeast. Nucleic  
acids research. 1983;11(9):2745-63.  
Miyanohara A, Toh-e A, Nozaki C, Hamada F, Ohtomo N,  
Matsubara K. Expression of hepatitis B surface antigen gene in  
yeast. Proceedings of the National Academy of Sciences.  
1
983;80(1):1-5.  
1
1
0. Hsieh JH, Shih KY, Kung HF, Shiang M, Lee LY, Meng MH, et al.  
Controlled fed‐batch fermentation of recombinant Saccharomyces  
cerevisiae to produce hepatitis B surface antigen. Biotechnology and  
bioengineering. 1988;32(3):334-40.  
1. Cregg JM, Tschopp JF, Stillman C, Siegel R, Akong M, Craig WS,  
et al. HighLevel Expression and Efficient Assembly of Hepatitis B  
Surface Antigen in the Methylotrophic Yeast, Pichia Pastoris.  
Bio/Technology. 1987;5(5):479-85.  
1
1
2. Ogata K, Nishikawa H, Ohsugi M. A yeast capable of utilizing  
methanol. Agricultural and biological chemistry. 1969;33(10):1519-  
2
0.  
3. Couderc R, Baratti J. Oxidation of Methanol by the Yeast, Pichia  
pastoris. Purification and Properties of the Alcohol Oxidase.  
Agricultural and Biological Chemistry. 1980;44(10):2279-89.  
4. Hartner FS, Glieder A. Regulation of methanol utilisation pathway  
genes in yeasts. Microbial cell factories. 2006;5(1):39.  
5. Macauley‐Patrick S, Fazenda ML, McNeil B, Harvey LM.  
Heterologous protein production using the Pichia pastoris  
expression system. Yeast. 2005;22(4):249-70.  
1
1
1
6. Cayetano-Cruz M, Pérez de los Santos AI, García-Huante Y,  
Santiago-Hernández A, Pavón-Orozco P, López y López VE, et al.  
High level expression of a recombinant xylanase by Pichia pastoris  
cultured in a bioreactor with methanol as the sole carbon source:  
Purification and biochemical characterization of the enzyme.  
Biochemical Engineering Journal. 2016;112:161-9.  
29. Egli T, Van Dijken J, Veenhuis M, Harder W, Fiechter A. Methanol  
metabolism in yeasts: regulation of the synthesis of catabolic  
enzymes. Archives of microbiology. 1980;124(2-3):115-21.  
30. Lee B, Yurimoto H, Sakai Y, Kato N. Physiological role of the  
glutathione-dependent formaldehyde dehydrogenase in the  
methylotrophic  
yeast  
Candida  
boidiniib.  
Microbiology.  
1
7. Kim S, Warburton S, Boldogh I, Svensson C, Pon L, d’Anjou M, et  
2002;148(9):2697-704.  
al. Regulation of alcohol oxidase  
peroxisome biogenesis in different fermentation processes in Pichia  
pastoris. Journal of Biotechnology. 2013;166(4):174-81.  
1
(AOX1) promoter and  
31. Cregg JM, Madden KR, Barringer KJ, Thill GP, Stillman CA.  
Functional characterization of the two alcohol oxidase genes from  
the yeast Pichia pastoris. Molecular and Cellular Biology.  
1989;9(3):1316-23.  
32. Stratton J, Chiruvolu V, Meagher M. High Cell-Density  
Fermentation. In: Higgins DR, Cregg JM, editors. Pichia Protocols.  
Totowa, NJ: Humana Press; 1998. p. 107-20.  
33. Jahic M, Wallberg F, Bollok M, Garcia P, Enfors S-O. Temperature  
limited fed-batch technique for control of proteolysis in Pichia  
pastoris bioreactor cultures. Microbial Cell Factories. 2003;2(1):6.  
1
1
8. Vogl T, Glieder A. Regulation of Pichia pastoris promoters and its  
consequences for protein production. New Biotechnology.  
2
013;30(4):385-404.  
9. Brierley R, Bussineau C, Kosson R, Melton A, Siegel R.  
Fermentation development of recombinant Pichia pastoris  
expressing the heterologous gene: bovine lysozyme. Annals of the  
New York Academy of Sciences. 1990;589(1):350-62.  
2
0. Brierley RA, Davis GR, Holtz GC. Production of insulin-like  
growth factor-1 in methylotrophic yeast cells. Google Patents; 1994.  
7
17