Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 809-817  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Phycoremediation of Paper and Pulp Mill Effluent  
using Planktochlorella nurekis and Chlamydomonas  
reinhardtii A Comparative Study  
1
1
1
Praveen Kumar Chakkalathundiyil Sasi , AmbilyViswanathan , Jerry Mechery , Daniya  
1
2
1*  
Mundakkal Thomas , Jomon Puthenpurakkal Jacob and Sylas Variyattel Paulose  
1
School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala- 686560, India  
2
Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala- 682 022 India  
Received: 16/12/2019  
Accepted: 13/04/2020  
Published: 20/05/2020  
Abstract  
In the present study, the wastewater collected from a paper and pulp mill industry was treated using two microalgae, Planktochlorella  
nurekis and Chlamydomonas reinhardtii. The microalgae was grown in paper and pulp mill effluent (PPME) under natural environmental  
th  
conditions and harvested on the 12 day. Results of the study showed that both P.nurekis and C. reinhardtii could reduce nitrate (96 %  
and 86%), phosphate (100% and 88%), COD (92% and 93%) and other physico-chemical parameters after the experiment. The  
percentage reduction of heavy metals such as Cr, Co, Ni, Cu, Zn, As, Sr and Cd were 100%, 97%, 77%,71%, 72%, 98%, 88% and 88%  
respectively by P.nurekis. Similarly the percentage reduction of the foresaid heavy metals were 100%, 46%, 44%, 49%, 68%, 57%, 86%  
and 86% respectively by C. reinhardtii. The lipid content of P.nurekis was 24% and 20.5% for C.reinhardtii was after the experiment.  
Comparatively, P.nurekis exhibited significantly higher phycoremediation capacity as well as lipid production potential than C.  
reinhardtii. It is evident that both microalgae have the potential for the treatment of paper and pulp mill effluent and both the species  
can be used as good candidates for lipid production.  
Keywords: Phycoremediation, paper and pulp mill effluent, Heavy metals, Lipids, P.nurekis, C. reinhardtii  
Introduction1  
[
14, 15, 16]. As an alternative, phycoremediation employing  
1
microalgae for the removal of the nutrients from wastewater is  
gaining much attention [17, 18-23]. Phycoremediation is used  
to describe treatment of pollutants in a contaminated area using  
micro and macroalgae [24-28].  
Microalgae can be easily cultured in fresh water, marine  
water, brackish water or on non-arable land. They do not  
compete with agriculture for existing resources. Microalgae  
utilize atmospheric carbon dioxide during their photosynthetic  
process and also have proven their potential to abate  
greenhouse gases. They reproduce rapidly, achieving faster  
growth than any energy crop and can be harvested frequently  
Globally, the paper and pulp mill industry is listed as the  
sixth largest polluter among the various industries which  
discharge a huge quantity of liquid, solid and gaseous wastes  
into the environment [1]. Enormous volume of wastewater  
3
(
~300 m ) is generated for the production of each metric ton of  
paper depending on the nature of raw material, end product and  
the extent of water reuse [2, 3, 4]. These untreated wastewater  
(effluent) causes significant damage to the receiving water  
bodies since they have high COD, BOD, chlorinated  
compounds, suspended solids, fatty acids, tannins, resins,  
acids, lignin and its derivatives, sulphur compounds etc. [1, 5,  
[29]. Microalgae have many applications in the field of  
6
, 7, 4]. Several treatment processes including removal of  
pollution abatement, biofuel production and carbon  
sequestration [30]. Phycoremediation is an eco-friendly low  
cost technology which serves as an attractive option for  
pollution control in the developing countries. The spent  
biomass after phycoremediation can be used for making high  
worth products such as biodiesel, biogas and other algal  
metabolites [31, 21, 32].  
Studies have reported the ability of microalgae in the  
treatment process for the removal of nutrients from varied types  
of wastewater [34-37]. However, not many studies have been  
conducted on treatment of PPME using microalgae. The use of  
pulp and paper mill effluent for the cultivation of microalgae is  
least explored. The conventional treatment system is widely  
adopted for the treatment of pulp and paper mill effluent. On  
this background, an attempt has been performed to check the  
suspended solids, colloidal particles, floating matters, colors  
and toxic compounds by conventional and non-conventional  
methods like sedimentation, flotation, screening, adsorption,  
coagulation, oxidation, ozonation, electrolysis, reverse  
osmosis, ultra-filtration and nano-filtration technologies etc.  
are practiced [8, 9, 10, 11, 12]. The main disadvantages of these  
conventional processes are high operational cost and increased  
sludge production. Hence, phytotechnological approach is a  
viable option for its remediation. Effective in situ  
phytoremediation (use of plants) techniques have been applied  
for reducing the heavy metal load from paper mill effluents [4,  
1
1, 13]. Eventhough it seems to be promising, there are some  
limitations associated with this technique. Phytoremediation  
requires long term maintenance and it may be effective only  
seasonally. Moreover, the remediation efficiency was very low  
Corresponding author: Sylas Variyattel Paulose, School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala-  
86560, India. Email: sylas@mgu.ac.in.  
6
8
09  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 809-817  
feasibility for cultivation of microalgae such as P.nurekis and  
C.reinhardtii in PPME for nutrient removal. Hence, the present  
study aims to evaluate the potential of Planktochlorella sp. and  
C. reinhardtii for the treatment of PPME and subsequent  
production of biomass and lipid with a bio-energy perspective.  
determine the optimum concentration of wastewater was  
carried out (70% wastewater: 30% water). Initially, the  
microalgae were subjected to the growth phase and in the  
second stage, their ability to substantially reduce nitrate,  
phosphate, COD and heavy metals was conducted. The  
experiment was scaled up in 20L glass containers (2 nos.) with  
actual working volume of 10L. Concentrated uniform  
suspension (10ml) of Planktochlorella sp. and C. reinhardtii  
was separately added to the concerned glass containers.  
Similarly, equal volume of wastewater was taken in another set  
of glass tanks without microalgae maintained as control. The  
glass containers were exposed to natural sunlight and mixing  
was performed manually to avoid settling of cells. The study  
was conducted for 12 days in three experimental sets of  
reactors. Aliquots were withdrawn from the three glass  
containers for the analysis of physico-chemical parameters  
before the inoculation of microalgae and subsequently at  
periodic intervals of 2 days throughout the experimental period.  
The supernatant obtained after centrifugation at 5000 rpm for  
2
Material and methods  
2
.1 Isolation and culturing of freshwater microalgae  
Mixed microalgae were collected from Kuttanad wetland  
ecosystem, Kerala, India and were then cultured in diluted  
paper and pulp mill effluent (20 times dilution). After 7 days,  
the dominant species was isolated and sub-cultured for  
obtaining pure strain. The isolation and purification was done  
by repeated streaking on nutrient agar plate and later cultured  
in Bold and Basal medium (BBM). Composition of the medium  
2
PO  
2.5g, K  
4
1.75g, CaCl  
HPO 0.75g, NaCl0.25g, NA  
.7H +H SO4 0.498g +0.1ml,  
ml trace metals mixed solution  
.4H O1.810g, ZnSO .7H O0.222g,  
2
)6H 0.0494g, CuSO .5H 0  
2
.2H  
2
O 0.25g, MgSO  
4
.7H  
EDTA+ KOH  
2
was KH O 0.75g,  
NaNO  
+0.625g, FeSO  
BO 0.25g and  
BO 2.860g, MnCl  
NaMOO 0.079g, CO(NO  
.079g. The microalga Chlamydomonas reinhardtii was  
3
2
4
2
1
H
g
3
4
2
O
2
3
1
1
0 min was used for the analysis of pH and COD as per the  
(
H
3
3
2
2
4
2
standard methods of APHA (1998). Analysis of nitrate,  
phosphate and sulphate were done by ion chromatography  
4
3
2
O
4
0
(DIONEX ICS-1100). Heavy metal analysis was done by ICP-  
obtained from Chlamydomonas resource centre, University of  
Minnesota (USA). It was cultured in Tris  Acetate Phosphate  
MS (Thermo iCAPRQ). The nutrient removal efficiency of  
both microalgae was calculated according to following  
equation.  
(
TAP medium). The composition of TAP medium was 40 X  
TAP 25 ml (NH Cl.15g, MgSO . 7H O 0.4 g, CaCl .2H O 2 g),  
Phosphate solution 0.375 ml (K HPO 28.8 g, KH PO 14.4 g),  
Hutner’s trace element 1 ml (Na EDTA. 2H O 5 g, ZnSO  
. 4H O 0.5 g, FeSO .7H  
0.16 g, CuSO .5H 0.16 g,  
O 0.11 g), Acetic acid 1 ml, Tris buffer 2.42  
4
4
2
2
2
2
4
2
4
(
P − P )  
0 t  
× 1ꢀꢀ  
2
2
4
.
O
Removal efficiency (%) =  
7
0
H
2
O 2.2 g, H  
.5 g, CoCl  
Mo  
3
BO  
2
3
1.14 g, MnCl  
2
2
4
2
P0  
.6H  
2
O
4
2
O
(NH  
4
)
6
7
O
24.4H  
2
0 t  
where P was the initial concentration of wastewater and P was  
g.  
the concentration of wastewater after phycoremediation  
process.  
The isolated pure culture of microalga was subjected to  
DNA isolation and PCR amplification for identification using  
eukaryotic  
’GGTTGATCCTGCCAGTAGTCATATGCTTG3’)  
reverse primer  
forward  
primer  
(ss5-  
and  
(ss3-  
2.4 Microalgal Cell Counting and Biomass estimation (Dry  
biomass)  
Cell count method was employed for the determination of  
microalgal cell growth in the culture reactors maintained under  
the experimental conditions [38]. 1ml of culture medium was  
taken regularly at an interval of two days and the cells were  
5
5
’GATCCTTCCGCAGGTTCACCTACGGAAACC3’). The  
PCR products were sequenced and the obtained partial  
sequence was matched with previously published sequences in  
the National Centre for Biotechnology Information (NCBI)  
enumerated with the help of  
a Sedgwick rafter cell.  
database  
using  
ADVANCED  
BLAST  
Measurements were done in triplicate and the mean values were  
represented in the results. Gravimetric method was employed  
for the quantitative estimation of biomass [38]. 2ml of culture  
medium was taken at an interval of two days and filtered  
through a pre-weighed Whatman No:1 filter paper. It was then  
(www.ncbi.nlm.nih.gov/BLAST) and the percentage similarity  
with already identified 18S rRNA gene sequences in the  
GenBank database were determined. Later the 18S rRNA gene  
sequence of isolated microalga was submitted in NCBI  
GenBank for the allocation of accession number.  
0
oven-dried at 60 C for 1 hour and reweighed. The difference  
between each observation was calculated as per the following  
formula;  
2
.2 Growth of microalgal strains and culture conditions  
The isolated microalgal species was identified as  
Planktochlorella sp. based on standard literature. Both  
Planktochlorella sp. and C. reinhardtii were cultured in 250 ml  
flasks separately in B B M and T A P medium respectively. The  
Biomass (Dry weight in g) = W  
2 1  
-W  
where, W is weight of dried filter paper after filtration and W  
2
1
°
culture was incubated at 28±1.0 C and maintained at a light  
is weight of filter paper.  
-
2
-1  
intensity of 25 µmol photons m  
s using fluorescent tube  
lights. Carbon dioxide gas was supplied at 10psi/kg for 5min  
per day. Aeration was provided for preventing the settling  
down of the cells at the bottom. Growth rate of  
Planktochlorella sp. and C. reinhardtii were measured by using  
Sedgwick rafter cell counting method [38].  
2.5 Lipid extraction  
Cells were harvested by centrifugation at 4500 rpm for 5  
min and washed once with distilled water and oven dried. An  
aliquot (20g) of the biomass was mixed with 100ml of double  
distilled water and the cells were disrupted using a sonicator  
(CPX130) at a resonance of 20 kHz for 5 min. This sonicated  
mixture was blended with 2:1 methanol chloroform solution as  
per the modified Bligh and Dryer method [39]. The mixture  
was transformed into a separating funnel and shaken for 5 min.  
The lipid fraction was then separated from the funnel and  
evaporated using solvent in the rotary evaporator. Finally the  
weight of the crude lipid obtained from each sample was  
2
.3 Collection, characteristics and experimental setup  
Paper and pulp mill effluent (PPME) was collected from  
Hindustan Newsprint Ltd. factory in Kottayam district, Kerala,  
India in 20L plastic containers and stored at 4 C. The collected  
effluent was filtered separately and preliminary examination to  
0
8
10  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 809-817  
measured using an electronic weighing balance (Shimadzu,  
Japan).  
and thus began to decrease in the medium. This insufficient  
supply of nutrients caused the decline of biomass and cell count  
after the 10 day. Microalgae growth was directly affected by  
th  
2
.6 Statistical analysis  
Analysis of variance (ANOVA) was performed to find out  
the availability of light, nutrients, temperature, the initial  
inoculation density and the growth environment [40].  
any significant difference in water quality parameters among  
the culture reactors of Planktochlorella sp. and C. reinhardtii  
with the control reactor. The mean and standard deviation  
within samples were calculated for all cases. The statistical  
analysis was done by using SPSS 21 version.  
3.3 Physico-chemical properties of paper and pulp mill  
effluent  
The PPME had dark brown coloration, which might be due  
to the presence of chlorinated organic compounds produced  
from lignin degradation during conventional bleaching, wood  
cooking and alkali extraction of the pulp [41]. The dissolved  
chemicals especially mercaptans and hydrogen sulphide used  
during the manufacture of paper resulted in the characteristic  
pungent odour [42]. The physico-chemical parameters such as  
pH, nitrate, phosphate, COD, sulphate and heavy metals (Cr,  
Co, Ni, Cu, Zn, As, Sr and Cd) contents were assessed. The  
paper and pulp mill effluent was slightly acidic in nature with  
pH 6.02 which changed to alkaline with a pH of 8.3 after 12  
days of treatment with P.nurekis and C. reinhardtii (Table 1).  
The results showed that the pH of the water plays an important  
role especially with respect to metabolism, survival and  
microalgal growth. The pH of paper mill effluent changed from  
neutral to alkaline after 12 days of growth of P. nurekis and C.  
reinhardtii. The pH between 8.2 and 8.7 was favourable for the  
growth of the microalgae compared to the neutral and acidic  
redox-conditions. In the present study, P. nurekis showed  
higher biomass in pH 8.3 (Figure.4) and C. reinhardtii showed  
higher biomass in pH 7.9 (Figure.5). An increase of pH by  
3
Results and discussion  
3
.1 Molecular identification of microalga  
The results of BLAST on the NCBI revealed that isolated  
microalga exhibited 99% similarity with Planktochlorella  
nurekis. The 18S rRNA gene sequence was submitted to  
GenBank and designated as Planktochlorella nurekis CS18  
with GenBank accession number: MG811583. Phylogenetic  
tree of microalga P.nurekis shown in figure 1.  
3
.2 Growth and biomass of the microalgae  
Initially, the collected effluent was dark brown in colour  
but changed to lighter shade after 12 days of microalgal  
treatment. The results showed considerable increase in both  
cell count and biomass of microalgal cells after the experiment.  
The initial cell density of both species was 550cells/ml. After  
1
2 days, P.nurekis showed higher cell density of 4320 cells/ml  
and C. reinhardtii had 3650 cells/ml (Figure.2). At the early  
stage of the experiment, the cell biomass of P.nurekis was  
3
5.79% in industrial effluent treated with Chlorella vulgaris  
0
.042g/L and it was 0.037g/L for C. reinhardtii (Figure.3).  
was reported by Dominic et al. [43]. Vijayakumar et al. [44]  
also reported pH increase (alkaline) in the dye effluent treated  
with Oscillatoria sp. Studies of Wurts et al. [45] showed the  
increase of carbonate and bicarbonates in water due to the  
growth of algal species.  
P.nurekis and C. reinhardtii showed highest biomass on the  
1
th  
0 day of the study period and after which the biomass of both  
the species got reduced (Figure.3). The initial biomass increase  
was proportional to the availability of all the required nutrients  
th  
upto the 10 day. As the cells grew, the nutrients were taken up  
Figure 1: Neighbour-joining phylogenetic tree of P.nurekis isolated from the Kuttanad wetland ecosystem  
8
11  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 809-817  
Urea and di-ammonium phosphate used in the manufacturing  
processes were the source of nitrate-nitrogen and phosphate in  
PPME. Wang et al. [46] obtained 62.5% removal of nitrate-N  
by Chlorella sp. grown in effluent from aeration tank of  
municipal wastewater treatment plant. Sivasubramanian et al.  
[47] reported that 90% of nitrate was removed from soft drink  
industrial effluents treated with microalgae in outdoor  
cultivation.  
Figure 2: Variation of cell number of P.nurekis and C. reinhardtii in  
PPME  
Figure 5: Variation of pH and biomass of C. reinhardtii cultivated in  
pulp and paper mill effluent  
Phosphorous is present almost solely as phosphates in  
natural water and wastewater. At the initial stage of the  
experiment, the phosphate content in PPME was 12mg/L. By  
the end of the experiment, complete removal (100%) of  
phosphate from PPME was achieved by P.nurekis and 88%  
reduction was obtained with C. reinhardtii (Table 1).  
Microalgae was able to assimilate phosphorus in excess, which  
was stored in the cells in the form of polyphosphate granules,  
potassium and magnesium were co-transported along with  
phosphate [48]. Mirquez et al. [21] reported 70 to 83% and  
Figure 3: Variation of biomass of P.nurekis and C. reinhardtii in  
PPME  
1
00% reduction of both phosphate and nitrate from municipal  
wastewater by mixed microalgae and bacterial culture.  
Similarly, the complete removal (100%) of phosphate from  
PPME was observed after 12 days of incubation with P.nurekis  
whereas, C. reinhardtii. showed 88% removal of phosphate.  
The optimal inorganic N/P ratio for algal growth was suggested  
to be in the range of 6.8-10 and it was found that the N/P ratio  
was much more than the optimal ratio, indicating nitrogen  
richness. Nevertheless, despite of richness of N/P ratio in the  
effluent, microalgal growth was found significant till 10 days  
of cultivation after which the growth decline. Previous studies  
have reported the decrease of phosphate level in the wastewater  
due to the growth of algal species [49, 50].  
After the treatment process, both P.nurekis and C.  
reinhardtii could reduce the sulphate in the PPME from  
2
30mg/l to 46mg/L and 92mg/L respectively (Table 1). 80%  
sulphate was removed from PPME using P.nurekis and C.  
reinhardtii showed 60% removal. High amount of sulphate  
were present in paper and pulp mill effluent due to sulphate  
kraft process used in the formation of wood pulp and use of  
sodium sulphate in the bleaching process [42]. These results are  
in agreement with the studies of Azarpira et al. [51] where  
more than 90% removal of sulphate in municipal wastewater  
using blue green algae was observed. Similarly, Ahmad et al.  
Figure 4: Variation of pH and biomass of P. nurekis cultivated in pulp  
and paper mill effluent  
Total oxidized nitrogen is the sum of the nitrite and nitrate  
nitrogen. The amount of nitrate was found to be very high in  
PPME (28mg/L) before experiment. After the experimental  
period, about 96% of nitrate-N was reduced by P.nurekis and  
-
2
[52] also demonstrated significant reduction of SO4 using  
Chlorella and mixed algal culture. In the present study, the  
2
8
6% was reduced by C. reinhardtii. Nitrogen is present in the  
form of nitrate, nitrite, ammonia and organic nitrogen in the  
order of decreasing oxidation state in water and wastewater.  
initial COD of PPME was very high value with 9200 mgO /l.  
After 12 days of treatment, significant reduction of COD was  
8
12  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 809-817  
noted for both microalgae (Table 1). P.nurekis could remove  
toxicity and also could eliminate metals through the process of  
adsorption and absorption. The percentage reduction of Cr, Co,  
Ni, Cu, Zn, As, Sr and Cd were 100%, 97%, 77%,71%, 72%,  
98%, 88% and 88% respectively by the P.nurekis (Figure. 6).  
Similarly, the percentage reduction of the foresaid heavy  
metals were 100%, 46%, 44%, 49%, 68%, 57%, 86% and 86%  
respectively by the C. reinhardtii (Figure. 6). No variation was  
observed in the control reactors.  
The metal sorption capacity depended on the type of  
biosorbent, the availability of concentration of heavy metals  
[57]. Heavy metal concentration was lower in pulp and paper  
mill effluent. Heavy metal with lower concentration could  
easily enter the cells of microalgae through micronutrient  
transporters and get attached to peptides or proteins and finally  
moved to specific cellular compartments for detoxification  
[62]. In this study, it was noted that P.nurekis and C. reinhardtii  
was more resistant to the toxicity of concentration of heavy  
metals from PPME. Both microalgal species exhibited  
reasonably high potential for phycoremediation for the afore  
mentioned heavy metals from PPME. This may be due to the  
lower concentration of heavy metals from PPME. The  
statistical analysis results showed high significant variation  
(p<0.01).  
9
3% COD and C. reinhardtii could remove 92% COD from  
PPME. The reduction in COD is caused by the rapid  
biodegradation and bioconversion of organic matter due to the  
growth of microalgae [53]. A total of 98% reduction of COD  
from sewage water was reported by Ahmad et al. [52] in a  
comparative study of removal of organic and inorganic matter  
from sewage water using different species of algae like  
Spirogyra, Chlorella etc. Elumalai et al. [54] also observed  
substantial decrease in COD in textile wastewater after treating  
with Chlorella and Scenedesmus sp. revealed that algal  
consortium was more efficient. Microalgae released oxygen to  
the surrounding water during photosynthesis, which is used for  
the oxidation of organic matter simultaneously reducing the  
demand of oxygen in the growing medium [55]. Compared to  
other studies, the present study proved that the proposed  
microalgae have the potential to remediate the effluent from  
pulp and paper mill industry (Table 2). The statistical analysis  
results of COD showed high significant variation (p<0.01).  
While parameters like nitrate, phosphate and sulphate had  
shown significance at 0.05 level (p<0.05). The Bonferroni post  
hoc test showed that the significant variation in nitrate,  
phosphate, sulphate and COD among P.nurekis and control  
samples at 0.05 level of significance (p<0.05).  
3
.4 Removal of heavy metals from PPME by P.nurekis and  
C. reinhardtii  
Green microalgal cells cultured in wastewater with high  
heavy metals are known to accumulate higher concentrations  
of metal [56]. In the present study, heavy metals like Cr, Co,  
Ni, Cu, Zn, As, Sr and Cd were analysed by ICP-MS. The initial  
th  
concentration of Cr in the PPME was 0.129 ppb. After 12 day  
of the experiment, both P. nurekis and C. reinhardtii (Figure.6)  
showed complete removal of Cr. The amount of Co in PPME  
was 0.208 ppb. Nearly 97% Co was removed by P. nurekis  
whereas C. reinhardtii could remove about 46%. Chlorella  
could efficiently reduce 76%-96% of Cd and 78%-94% of Ni  
from the medium within 7-28 days when cultured under  
laboratory condition [57]. The initial value of Ni in PPME was  
0
.95ppb and was reduced to 0.22 ppb and 0.52 ppb by P.  
nurekis and C. reinhardtii, respectively. The initial  
concentration of Cu was 14.6ppb. Both P.nurekis and C.  
reinhardtii showed comparatively less reduction of Cu i.e. 71%  
and 49%, respectively. About 72% of Zn was removed by  
P.nurekis and C. reinhardtii could remove 68%. Scenedesmus  
bijuga and Oscillatoria quadripunctulata showed heavy metal  
removal capacity with 37-50% for Cu, 20-33% for Co, 35-  
Figure 6: Heavy metals (ppb) removal of P.nurekis and C. reinhardtii  
in PPME before and after treatment  
3.5 Lipid content A bioenergy perspective  
Lipids are the substances that are insoluble in water, related  
biosynthetically or functionally to fatty acids and their  
derivatives. The biodiesel production from the lipid content of  
microalgae is a promising technology [72] and is considered as  
carbon neutral [30]. Lipid content obtained from P.nurekis was  
24% and that from C. reinhardtii was 20.5% lipid (Table 3).  
Comparatively, P.nurekis showed higher yield of lipid than C.  
reinhardtii (Figure.7). Malla et al. [73] reported 20.69% and  
28.32% total lipid content when C.minutissima was grown on  
IARI and CETP wastewater. Dried biomass is typically a pre-  
requisite for biodiesel production from microalgae as moisture  
interferes with the base homogenous catalyst used in the trans-  
esterification reaction [74]. In order to prevent the denaturation  
of the intracellular lipid, a low temperature (typically less than  
1
00% for Pb and 32-100% for Zn from the sewage and  
petrochemical industry effluent [58].  
Maximum reduction of As concentration in PPME was  
done by P.nurekis (98%) while it was 57% for C. reinhardtii.  
The initial Sr concentration was 390.2 ppb and P.nurekis  
(Figure. 6) showed 88% reduction of Sr content in PPME while  
it was 86% reduction by C. reinhardti (Figure.6). After 12 days  
of the experiment, Cd concentration was reduced from 1.05ppb  
to 0.13ppb by P.nurekis and to 0.12ppb by C. reinhardtii. The  
removal efficiency of the heavy metal from wastewater by  
microalgae depended on their large surface area and high  
binding affinity [59]. It was noted that the reactor of P.nurekis  
performed higher ability to consume heavy metals from PPME.  
Wang et al. [60] revealed that heavy metals like Al, Ca, Fe, Mg  
and Mn could be removed efficiently by Chlorella sp. from  
municipal wastewater. Saunders et al. [61] observed that  
phycoremediation potential of three species of microalgae  
cultivated in wastewater polluted with heavy metals from coal-  
fired power plant. All species accumulated high concentrations  
of heavy metals. Microalgae are very responsive to heavy metal  
0
100 C) is used to dry the biomass [75]. In the study, the algal  
0
biomass was subjected to oven dry at 80 C until the water  
content got evaporated and the lipid was weighed. Hempel et  
al. [76] reported that Chlorella sp.589 achieved 30.2% lipid,  
Chlorella sp.800 achieved 24.4% lipid and Chlorella  
saccharophila 477 achieved 27.6% lipid. A comparative  
analysis of the lipid content obtained from the present study to  
the other reported studies is given in Table 3.  
8
13  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 809-817  
Table 1: Physico-chemical characters of PPME during the study period  
Parameters  
unit)  
pH  
Initial  
values  
Period of experiment (days)  
th th  
Experiment reactor  
2nd day  
6.5 ± 0.15  
6.5± 0.32  
6.2±0.1  
4th day  
7.1± 0.2  
6.9± 0.41  
6.4±0.2  
6
day  
8 day  
10th day  
8.2 ± 0.1  
7.9± 0.51  
6.9±0.2  
12th day  
8.3± 0.2  
8.3± 0.72  
6.8±0.3  
(
P.nurekis  
C. reinhardtii  
Control  
7.4 ± 0.1  
7.2± 0.45  
6.7±0.1  
7.9± 0.20  
7.5±0.53  
6.8±0.3  
6
.02  
P.nurekis  
C. reinhardtii  
Control  
P.nurekis  
C. reinhardtii  
Control  
P.nurekis  
C. reinhardtii  
Control  
P.nurekis  
C. reinhardtii  
Control  
18.4 ± 0.23  
19.8± 0.15  
21.4±0.73  
6.0± 0.15  
6.4± 1.57  
7.7±0.12  
190±1.52  
202± 1.36  
224±1.5  
12± 0.54  
15± 0.23  
20.7±0.8  
4.1± 0.20  
5.2±1.24  
7.4±0.13  
153 ± 1.39  
184± 1.52  
216±1.6  
9.6 ± 0.23  
10± 0.32  
20.0±0.62  
2 ± 0.25  
4.1± 1.36  
6.9±0.39  
118±1.23  
175± 1.45  
210±2.1  
4.8 ± 0.45  
7±0.36  
1.1 ± 0.52  
5± 0.02  
0.98 ± 0.95  
3.2± 0.02  
18.8±0.42  
0.0  
Nitrate(ppm)  
28  
19.8±0.53  
1.0 ± 0.13  
3.7± 1.24  
6.5±0.43  
88 ± 1.51  
152± 1.67  
205±2.2  
1125 ± 6.84  
4320± 2.63  
10990±3.1  
19.2±0.71  
0.4 ± 0.01  
2.9± 1.12  
6.1±0.53  
63 ±1.64  
120± 1.62  
198±0.92  
804± 2.46  
2100± 3.64  
10980±2.1  
Phosphate(pp m)  
Sulphate(ppm)  
12  
1± 0.90  
6.0±0.91  
46 ±1.12  
92± 1.23  
195±0.96  
800± 2.38  
900± 1.22  
10985±2.2  
230  
9200  
8125 ± 7.63  
9045± 6.36  
11155±3.1  
6200 ± 5.24  
8630± 5.12  
11100±3.5  
4350 ± 4.23  
6240± 5.73  
11000±3.4  
COD (mgO  
2
/L)  
Table 2: Wastewater removal efficiency of different treatment methods used in pulp and paper mill industries  
COD  
Methods  
Technology/ organism used  
Days  
EC (%)  
TDS (%)  
Nitrate (%)  
Phosphate (%) Sulphate (%)  
Reference  
(
%)  
Anaerobic process  
Aerobic process  
Hybrid system  
Anaerobic reactor  
7
nr  
nr  
nr  
nr  
nr  
nr  
57.1  
65  
90.06  
nr  
nr  
nr  
nr  
nr  
50.5  
81.8  
57.5  
78  
91.94  
nr  
nr  
nr  
nr  
nr  
nr  
93.8  
nr  
nr  
91.36  
nr  
nr  
nr  
nr  
nr  
nr  
90.4  
nr  
nr  
91.68  
nr  
nr  
nr  
nr  
nr  
nr  
nr  
nr  
nr  
49.89  
nr  
nr  
nr  
80  
60  
88  
80  
80  
83  
40.5  
82  
74.66  
60  
92.96  
57.2  
nr  
[63]  
[64]  
[65]  
[66]  
[13]  
[4]  
[67]  
[68]  
[42]  
[69]  
[70]  
[71]  
Present study  
Present study  
Membrane bioreactor  
USAB electrochemical  
Heterogeneous catalyst  
Lemna minor  
Trapa natans L.  
Vallisnaria spiralis  
Eichhornia crassipes  
Eichhornia crassipes  
Pleurotus spp.  
Chlamydomonas reinhardtii  
Mixed culture of Scenedesmus sp.  
Planktochlorella nurekis  
Chlamydomonas reinhardtii  
nda  
25  
2 hr  
28  
60  
45  
45  
20  
7
15  
28  
12  
12  
Wet air oxidation  
Phytoremediation  
Phytoremediation  
Phytoremediation  
Phytoremediation  
Phytoremediation  
Phytoremediation  
Phycoremediation  
Phycoremediation  
Phycoremediation  
Phycoremediation  
nr  
nr  
90.1  
91.7  
nr  
nr  
87.8  
47.69  
93.18  
65  
95.6  
85.6  
90.71  
71.2  
100  
87.5  
75  
92.8  
91.9  
Nr not reported, nda- no data available  
8
14  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 809-817  
Table 3: Comparison of Lipid produced with previous studies  
Sl. No.  
Species  
Chlorella vulgaris  
Chlorella sp.  
Lipid Content (%)  
14- 50  
13.6  
14-22  
2.0  
19.022.0  
9.68  
19.29  
30.0  
31.0  
25.25  
18.10  
References  
[77]  
[46]  
[78]  
[79]  
[80]  
[81]  
[82]  
[83]  
[84]  
[85]  
[86]  
[87]  
Present study  
Present study  
1
2
3
4
5
6
7
8
9
1
1
1
1
1
.
.
.
.
.
.
.
.
C.vulgaris  
C. pyrenoidosa  
C. sorokiniana  
C. fusca  
N. vigensis  
Ankistrodesmus sp.  
Scenedesmus sp.  
Chlamydomonas reinhardii  
C. saccharophila  
Scenedesmus obliquus  
P.nurekis  
.
0.  
1.  
2.  
3.  
4.  
12-14  
22.0  
20.0  
C. reinhardtii  
research fellowship as UGC  RGNF. Thanks are also to Dr.  
A.P. Thomas, Director, Advanced Centre for Environmental  
Sciences and Sustainable Development and Director, IUIC  
(DST-SAIF) Mahatma Gandhi University, Kerala India for  
providing research help. The authors are also thankful to  
KSCSTE SARD and DST-FIST for the support to the present  
work.  
Ethical issue  
The authors are aware of and comply with the best practices  
in publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. The authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
Figure 7: Lipid content of P.nurekis and C. reinhardtii  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
after experiment  
4
Conclusions  
Paper and pulp mill effluent contains large amount of  
Authors’ contribution  
organic and inorganic nutrients. The study indicated that the  
treatment of PPME by microalgae is very efficient. Based on  
the results of the physico-chemical analysis, P.nurekis could  
significantly reduce nitrate, phosphate, sulphate, COD etc.  
from PPME. The percentage reduction of Cr, Co, Ni, Cu, Zn,  
As, Sr and Cd were 100%, 97%, 77%,71%, 74%, 98%, 88%  
and 88% respectively by the P.nurekis. Similarly the  
percentage reduction of the foresaid heavy metals were 100%,  
All authors of this study have a complete contribution for  
data collection, data analyses, and manuscript writing  
References  
[
1] Ali M, Sreekrishnan TR. Aquatic toxicity from pulp and paper mill  
effluents: A review. Adv. Environ. Res. 2001; 5:175-196.  
2] Thompson G, Swain J, Kay M, Forster CF. The treatment of pulp  
and paper mill effluent: a review. Bioresour Technol 2001; 77:  
275-286.  
[
4
6%, 44%, 49%, 68%, 57%,86% and 86% respectively by the  
C. reinhardtii. At the end of the experiment, 24% of lipid was  
obtained from P.nurekis and 20.5% lipid was obtained from C.  
reinhardtii. Comparatively, P.nurekis showed higher yield of  
lipid than C. reinhardtii. It could be concluded that the  
indigenous microalgae, P.nurekis and C. reinhardtii have  
immense phycoremediation capacity for the treatment of paper  
and pulp mill effluent. Comparatively P.nurekis exhibited  
significant phycoremediation capacity as well as lipid  
production potential than C. reinhardtii. The subsequent  
biomass and lipid can be used for the production of valuable  
products such as biodiesel. Considering the short period of time  
and low external inputs, phycoremediation is a viable option  
for the treatment of paper and pulp mill effluent.  
[3] Garg A, Narayana VVVS S, Chaudhary, P, Chand S. Treatment  
of pulp and paper mill effluent J Sci Industr Res. 2004; 63: 667-  
6
71.  
4] Kumar V, Chopra AK. Reduction of pollution load of paper mill  
effluent by phytoremediation technique using water caltrop  
Trapa natansL.). Cog Environ Sci. 2016; 2: 1-12.  
5] Bishnoi NR, Khumukcham RK, Kumar R. Biodegradation of  
pulp and paper mill effluent using anaerobic followed by aerobic  
digestion. J Environ Bio 2006; 27(2): 405- 408.  
[
[
(
[6] Sureshvarr K, Bharathiraja B, Jayakumar M, Jayamuthunagai J,  
Balaji L. Removal of azo dye compounds from paper industries  
wastes using phytoremediation methodology. Int  
010. 8 (1): 687-700.  
J Chem Sci.  
2
[
[
7] Razali MAA, Ahmad Z, Ariffin A. Treatment of Pulp and Paper  
Mill Wastewater with Various Molecular Weight of  
PolyDADMAC Induced Flocculation with Polyacrylamide in the  
Hybrid System. Adv in Chem Eng and Sci. 2012; 2: 490-503.  
8] Azimvand J, Mirshokraie SA. Assessment of physico-chemical  
characteristics and treatment method of Paper Industry Effluents :  
a review. Intl Res J Appl Basic Sci 2016; 10 (1): 32-43.  
Acknowledgement  
The authors are thankful to University Grants Commission  
(UGC), New Delhi, India [F.41/2012 (SR)] for the financial  
support. Author (PKCS) is thankful to UGC for providing  
8
15  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 809-817  
[
9] Ashrafi O. Yerushalmi L. Haghighat F. Wastewater treatment in the  
pulp and paper industry: A review of treatment process and the  
associated greenhouse gas emission. J of Env Manag. 2015; 158:  
[31] Ji M, Abou-Shanab RAI, Kim S, Salama E, Lee S, Kabrad  
AN, Lee Y, Hong S, Jeona B. Cultivation of microalgae species  
in tertiary municipal wastewater supplemented with CO2 for  
nutrient removal and biomass production. Ecol Eng. 2013; 58: 142  
148.  
[32]Chandra R, Amit, Ghosh UK. Effects of various abiotic factors on  
biomass growth and lipid yield of Chlorella minutissima for  
sustainable biodiesel production. Environ Sci Pollut Res. 2018; 1-  
14.  
[33]Apandi N, Mohamed RMSR,, Al-Gheethi A, Latiffi A, Arifin  
SNH, Gani P. Phycoremediation of Heavy Metals in Wet Market  
Wastewater. : Ear. and Environ.Sci. 2017;140: 1-6.  
[34] Gani P, Sunar NM, Matias-Peralta H, Latiff AAA, Parjo UK,.  
Razak ARA. Phycoremediation of Wastewaters and Potential  
Hydrocarbon from Microalgae: A Review Adv. in Env. Bio.  
2015; 9:20, 1-8.  
[35] Segura MB, Rodríguez LH, Ospina DP, Bolaños AV, Pérez K.  
Using Scenedesmus sp. for the Phycoremediation of Tannery  
Wastewater. Tecciencia. 2016; 69-75.  
[36] Singh AK, Sharma N, Farooqi H, Abdin MZ, Mock T Kumar S.  
Phycoremediation of municipal wastewater by microalgae to  
produce biofuel, Inter J of Phyto. 2017; 19(9): 805-812.  
[37] Nayak JK and Ghosh UK. Post treatment of microalgae treated  
pharmaceutical wastewater in photosynthetic microbial fuel cell  
(PMFC) and biodiesel production. Bioma and Bioene. 2019; 131:  
1-10.  
[38] Bellinger EG, Sigee DC. Freshwater Algae Identification and Use  
as Bioindicator John Wiley and Sons London: 2010; 2-40.  
[39] Bligh EG, Dyer WJ. ARapid Method for Total Lipid Extraction  
of microalgae in dairy farm wastewater without sterilization. Int J  
Phytoremediation. 17 (1-6) : 222-7.  
[41] Ali Z, Rahman M. Physico-chemical characteristics of pulp and  
paper mill effluent. Res. and Environ. Life Sci. 2008;1:59 60.  
[42] Mishra, S., Mohanty, M., Pradhan, C., Patra , H.K., Das, R.,  
Sahoo, S. Physico-chemical assessment of paper mill effluent  
and its heavy metal remediation using aquatic macrophytesa  
case study at JK Paper mill, Rayagada, India.Environ.Monit.  
Assess. 2013; 185: 43474359.  
1
46-157.  
[
[
10] Saravanan V.Sreekrishnan TR. Bio-physico-chemical treatment  
for removal of colour from pulp and paper mill effluents. J Scient.  
And Industr. Resear. 2005; 64:61-64.  
11]  
Kumar  
BA,  
Jothiramalingam  
S,  
ThiyagarajanSK,  
Hidhayathullakhan T., Nalini R. Phytoremediation of heavy metals  
from paper mill effluent soil using Croton sparsiflorus. Inte Lett of  
Chem Phy and Astro. 2014; 36: 1-9.  
[
[
[
[
[
[
12] Hossain K. Ismail N. Bioremediation and Detoxification of Pulp  
and Paper Mill Effluent: A Review. Res J Environ Toxicol. 2015;  
9
(3): 113-134.  
13] Ali Z, Siddiqui A. Analysis of Paper Mill Effluent (Wastewater)  
and its Phytoremediation of Free Floating Macrophytes (Lemna  
minor). Res J Chem Environ Sci. 2016; 4: 08-12.  
14]  
Doran PM. Application of Plant Tissue Cultures in  
Phytoremediation Research: Incentives and Limitations.  
Biotechnol Bioeng. 2009;103: 6076.  
15] Oh K, Cao T, Li T, Cheng H. Study on Application of  
Phytoremediation Technology in Management and Remediation of  
Contaminated Soils. J of Cle Ener Techno. 2014; 2: 216-220.  
16] Pradhan S, Al-Ghamdi SG, Mackey HR. Greywater treatment by  
ornamental plants and media for an integrated green wall system.  
Inter.Biodet. & Biodeg. 2019; 145: 1-9.  
17] Rasoul-Amini S, Montazeri-Najafabady N, Shaker S, Safari A,  
Kazemi A, Mousavi P, Mobasher MA, Ghasemi Y. Removal of  
nitrogen and phosphorus from wastewater using microalgae free  
cells in bath culture system. Biocat and Agri Biotech. 2014; 3:  
1
[
Phycoremediation of Tannery Wastewater Using Microalgae  
Scenedesmus Species Int J Phytoremediation. 2015;17(10):907-  
1
6.  
[
19] Whitton R, Mevel AL, Pidou, M, Ometto, F, Villa R, Jefferson B.  
Influence of microalgal N and P composition on wastewater  
M, Rajasekaran C. Characterization of sorption sites and  
differential stress response of microalgae isolates against tannery  
effluents from ranipet industrial area-An application towards  
phycoremediation. Int J Phytoremediation. 2016; 18(8):747-53.  
21] Mirquez LD, Filipa L, Behnam T, Dominique P, Nitrogen and  
phosphate removal from wastewater with a mixed microalgae and  
bacteria culture. Biotech Reports. 2016; 11: 18  26.  
22] Junping LV, Feng J, Liu Q, Xie S. Microalgal Cultivation in  
Secondary Effluent:Recent Developments and Future Work. Int J  
23] Ajayan KV, Harilal CC, Selvaraju M. Phycoremediation resultant  
lipid production and antioxidant changes in green microalgae  
Chlorella Sp. Int J Phytoremediation. 2018; 20(11):1144-1151.  
24] Pathak VV, Singh DP, Kothari R Chopra AK. Phycoremediation  
of textile wastewater by unicellular microalga Chlorella  
pyrenoidosa .Cell Mol Biol. 2014; 60(5): 35-40.  
25] Amit, Ghosh UK. An approach for phycoremediation of different  
wastewaters and biodiesel production using microalgae. Environ  
Sci Pollut Res. 2018.  
26] Bansal A, Shinde O, Sarkar S. Industrial Wastewater Treatment  
Using Phycoremediation Technologies and Co-Production of  
Value-Added Products. J Bioremediat Biodegrad. 2018; 9:1.  
27] Kumar PK, Krishna SV, Verma K, Pooja K, Bhagawan D,  
Himabindu V. Phycoremediation of sewage wastewater and  
industrial flue gases for biomass generation from microalgae. Sou.  
Afri. J. of Chem. Eng. 2018; 25 : 133-146.  
[43] Dominic VJ, Murali M, Nisha MC.  
Phycoremediation  
Efficiency Of three micro algae Chlorella vulgaris, Synechocystis  
salina and Gloeocapsa gelatinosa. Acade Rev. 2009;138-146.  
[44] Vijayakumar S, Thajuddin N, Manoharan C. Role of  
cyanobacteria in the treatment of dye industry effluent. Pollu  
Res. 2005; 24 (1): 69 -74.  
[45] Wurts WA, Durborow RM. 1992. Interactions of pH, Carbon  
Dioxide, Alkalinity and Hardness in Fish Ponds. SRAC  
Publication No. 464.  
[46] Wang LM, Min L., Yecong C, Paul C, Yifeng. Cultivation of  
green algae Chlorella sp. in different wastewaters from municipal  
wastewater treatment plant. Appl Biochem Biotechnol. 2010; 162  
(4): 1174-86.  
[47] Sivasubramanian V, Subramanian VV, Muthukumaran M.  
Phycoremediation of effluent from a soft drink manufacturing  
industry with a special emphasis on nutrient removala laboratory  
study. J Algal Biomass Utln. 2012; 3(3) :2129.  
[48] Bitton G (1990) Wastewater Microbiology. 3rd edn Wiley-Liss,  
New York.  
[49] Znad H, D Al Ketife AM, Judd S, AlMomani F, Vuthaluru HB.  
Bioremediation and nutrient removal from wastewater by  
Chlorella vulgaris. Ecolog Eng. 2018; 110: 1-7.  
[50] Linares LCF, Barajas CG, Páramo ED. Assessment of Chlorella  
vulgaris and indigenous microalgae biomass with treated  
wastewater as growth culture medium. Bioresour Techno. 2017;  
244: 400-406.  
[51] Azarpira H, Behdarvand P, Dhumal K, Pondhe G. Comparative  
studies on phycoremediation of sewage water by using blue green  
algae. Inter J Bio 2014; 58-64.  
[
[
[
[
[
[
[
[
28] Sunday ER, Uyi OJ, Caleb OO. Phycoremediation: An Eco-  
Solution to Environmental Protection and Sustainable  
Remediation. Journal of Chemical, Environmental and Biological  
Engineering; 2(1): 5-10.  
[
[
29] Chisti Y. Biodiesel from microalgae beats bioethanol. Trends  
Biotecnol. 2008; 26: 126-131.  
30] Thomas DM, Mechery J, Paulose SV. Carbon dioxide capture  
strategies from flue gas using microalgae: a review. Environ Sci  
Pollut Res. 2016; 23: 1692616940.  
[52] Ahmad F, Khan Khan,  
AUYasar,  
A. Comparative  
phycoremediation of sewage water by various species of algae. Pro  
Paki Aca of Sci. 2013; 50: 131-139.  
[53] Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM.. Microalgae  
and wastewater treatment. Saudi J Bio Sci. 2012;19: 257-275.  
8
16  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 809-817  
[
[
54] Elumalai S, Saravanan GK, Ramganesh S, Sakhtival R,  
Prakasam V. Phycoremediation of textile dye industrial effluent  
from tirupur district, Tamil Nadu, India Int J Sci Innova Dis.  
[75] Zhang X, Rong J, Chen H, He C, Wang Q. Current status and  
outlook in the application of microalgae in biodiesel production  
and environmental protection. Front Ener Res. 2014; 2: 32.  
[76] Hempel N, Petrick I, Behrendt F. Biomass productivity and  
productivity of fatty acids and amino acids of microalgae strains  
as key characteristics of suitability for biodiesel production. J  
Appl Phycol. 2012; 24: 14071418.  
2
013; 3: 31-37.  
55] Acién FG, Gómez-Serrano, Morales-Amaral MM, Fernández  
Sevilla, JM, Molina Grima E. Wastewater treatment using  
microalgae: how realistic a contribution might it be to significant  
urban wastewater treatment?. Appl Microbiol Biotechnol.  
[77]  
Gouveia L, Oliveira AC. Microalgae as a raw material for  
2
016;100 (21): 90139022.  
biofuels production. J Ind Microbiol Biotechnol. 2009; 36: 269-  
74.  
[78] Demirbas D. Importance of algae oil as a source of biodiesel.  
Energ Convers Manage. 2010; 52: 163170.  
[
[
[
56] El-Sheekh MM, Farghl MM, Galal HR, Bayoumi HS.  
Bioremediation of different types of polluted water using  
microalgae. Rend Fis Acc Lincei. 2016; 27: 401410.  
57] Rehman A, Shakoori AR. Tolerance uptake of cadmium and nickel  
by Chlorella sp. isolated from tannery effluents. Pakistan J Zool.  
[79] Ghasemi Y, Rasoul-Amini S, Naseri AT, Montazeri-Najafabady  
N, Mobasher MA, Dabbagh F. Microalgae biofuel potentials  
(Review). Appl Biochem Microbiol. 2012; 48: 126.  
2
004; 36(4): 327-331.  
58] Ajayan KV, Selvaraju M, Thirugnanamurthy K. Growth and  
heavy metal accumulation potential of microalgae grown in  
sewage waste water and petrochemical effluents. Pak J Biol Sci.  
[80]  
Ngoc LDB, Adenan MF, Bato BA, Mansor N, Mahadzir  
S. Biomass and Lipid Yield of Locally Isolated Microalgae. Inter  
J Chem Eng Appli. 2013; 4 (4): 262-265.  
2
011;14(16): 805-811.  
[81] Aravantinou AF, Theodorakopoulos MA, Manariotis ID.  
Selection of microalgae for wastewater treatment and potential  
lipids production.Bioresour Techno 2013; 147: 130134.  
[82] Sukkrom K, Bunnag B, Pavasant P. Enhancement of Lipid  
Production from Ankistrodesmus sp. Int J Chem Eng and Appl.  
2015; 6 (2): 111-114.  
[83] Xin L, Hong-ying H, JiaY. Lipid accumulation and nutrient  
removal properties of a newly isolated freshwater microalga,  
Scenedesmus sp. LX1, growing in secondary effluent. Nw  
Biotech. 2010; 27 (1): 5963.  
[84] Kong QX, Li L, Martinez B, Chen P, Ruan R. Culture of  
microalgae C. reinhardtii in wastewater for biomass feedstock  
production.Appl Biochem Biotechnol. 2010; 160: 918.  
[85] Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. Microalgae  
cultivation in a wastewater dominated by carpet mill effluents for  
biofuel applications. Bioresour Technol. 2010; 101: 30973105.  
[86] Bruton T, Lyons H, Lera Y, Stanley M, BoRasmussen M. A  
review of the potential of marine algae as a source of biofuel in  
Ireland. Sustainable Energy, Ireland. 2009; 88.  
[
[
59] Roy D, Greenlaw PN, Shane BS. Adsorption of heavy metals  
by green algae and ground rice hulls. J Environ Sci Health Part A.  
1
993; 28: 3750.  
60] Wang LM, Min L., Yecong C, Paul C, Yifeng. Cultivation of  
green algae Chlorella sp. in different wastewaters from municipal  
wastewater treatment plant. Appl Biochem Biotechnol. 2010; 162  
(4): 1174-86.  
[
[
61] Saunders RJ, Paul NA, Hu Y, de Nys R. Sustainable sources  
of biomass for bioremediation of heavy metals in wastewater  
derived from coal-fired power generation. PLoS ONE 2012; 7 (5):  
1
-8.  
62] Liu. J, Sun Z, Gerken H. Potential Applications of Microalgae in  
Wastewater Treatments. Recent Advances in Microalgal  
Biotechnology OMICS Group eBooks. Foster City, USA 2016; 9-  
1
8.  
[
[
63] Singh, Thakur IS. Colour removal of anaerobically treated pulp  
and paper mill effluent by microorganisms in two steps bioreactor.  
Bioresour Techno. 2006; 97: 218-223.  
64]Lerner M, Stahl N, Galil NI. Comparative study of MBR and  
activated sludge in the treatment of paper mill wastewater. In  
Forest industry wastewaters VIII IWA publishing, London,  
United Kingdom, 2007; 23-29.  
[
65] Buzzini AP, Pires EC. Evaluation of upflow anerobic sludge  
blanket reactor with partial recirculation of effluent used to treat  
wastewaters from pulp and paper plants. Bioresour Techno. 2007;  
9
8: 1838-1848.  
66] Garg A, Narayana VVVS S, Chaudhary, P, Chand S.  
Treatment of pulp and paper mill effluent Sci Industr Res.  
004; 63: 667-671.  
67] Singhal V, Kumar A, Rai JPN. Phytoremediation of pulp and  
paper mill distillery effluents by channel grass (Vallisneria  
spiralis). J of Scient And Indstr Reaser. 2003; 62: 319-328.  
68] Kaushal J, Bhardwaj P. Potential of Eichhorniacrassipes and  
Lemna minor for degrading Pulp and Paper Mill Effluent using  
Phytoremediation technique along with enhancers. Int J of Adv  
Reser in Sci and Eng. 2017; 6: 1924-1932.  
[
[
[
J
2
[
[
69] Ragunathan R, Swaminathan K . Biological treatment of a pulp  
and paper industry effluent by Pleurotus spp. Worl J of Micro &  
Biotech. 2004; 20: 389393.  
70] Ferdowshi Z. 2013. Screening of fresh water microalgae and  
Swedish pulp and paper mill wastewaters with the focus on high  
algal biomass production. Chalmers university of technology  
Gothenburg, Sweden.  
[
71] Usha MT, Chandra TS, Sarada R, Chauhan VS. 2016. Removal  
of nutrients and organic pollution load from pulp and paper mill  
effluent by microalgae in outdoor open pond. Bioresour Techno.  
72] Chisti Y. Biodiesel from microalgae. Biotechnol . adv. 2007; 25:  
[
[
2
94306.  
73] Malla FA. Khan AS. Rashmi. Sharma GK. Gupta N. Abraham  
G. Phycoremediation Potential of Chlorella minutissima on  
primary and tertiary treated wastewater for nutrient removal and  
biodiesel production. Ecolo.Eng. 2015; 75: 343-349.  
[
74] Sukhija PS, Palmquist DL. Rapid method for determination of  
total fatty acid content and composition of feedstuffs and feaces. J  
Agric Food Chem. 1988; 36: 12021206.  
8
17