2020, Volume 8, Issue 2, Pages: 582-588  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Stability and Super Stability of Fuzzy Approximately  
Ring Homomorphisms and Fuzzy Approximately  
Ring Derivations  
N. Eghbali  
Department of Mathematics, Facualty of Mathematical Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran  
Received: 05/08/2014  
Accepted: 15/02/2020  
Published: 20/05/2020  
Abstract  
In this paper, we establish the Hyers-Ulam-Rassias stability of ring homomorphisms and ring derivations in the uniform case on fuzzy  
Banach algebras.  
Keywords: Fuzzy normed space; Approximately ring homomorphism; Stability  
1
Introduction1  
It seems that the stability problem of functional equations had  
퐷(푎+푏)=퐷(푎)+퐷(푏),  
퐷(푎푏)=퐷(푎)푏+퐷(푏)푎,  
for every 푎,푏∈퐴;  
for every 푎,푏∈퐴.  
been first raised by Ulam [12]. An answer to this problem has  
been given at first by Hyers [5] and then by Th. M. Rassias as  
follows [10]. Suppose  and  are two real Banach spaces and  
푓:퐸 →퐸 is a mapping. If there exist 훿≥0and 0≤푝<ꢀsuch  
that ||푓(푥+푦)−푓(푥)−푓(푦)||≤훿(||푥|| +||푦|| ) for all  
푥,푦∈, then there is a unique additive mapping 푇:퐸 →퐸  
It is of interest to consider an approximately ring derivation  
on a Banach algebra. First of all, does there exist an  
approximately ring derivation  which is not an exact ring  
derivation? If such a mapping do exist, then it seems natural to  
consider the following stability problem: does there exist ring  
derivation near to ? The purpose of this paper is to prove the  
stability of fuzzy approximately ring derivations. In fact, under a  
mild assumption that is without order, we show the Bourgin-  
type [1] super stability result.  
1
2
1
2
1
1
2
such that ||푓(푥)−푇(푥)||≤ꢂ훿||푥|| /|ꢂ−ꢂ |for every 푥∈퐸.  
1
In 1991, Gajda [2] gave a solution to this question for 푝>ꢀ. For  
the case 푝=ꢀ, Th. M. Rassias and Šemrl [11] showed that there  
exists a continuous real-valued function 푓:ℝ→such that can  
not be approximated with an additive map. In 1992, Gavruta [3]  
generalized the result of Rassias for the admissible control  
functions. Moreover the approximately mappings have been  
studied extensively in several papers. (See for instance [6], [7]).  
Fuzzy notion introduced firstly by Zadeh [13] that has been  
widely involved in different subjects of mathematics. Zadeh’s  
definition of a fuzzy set characterized by a function from a  
nonempty set to [0,ꢀ]. Later, in 1984 Katsaras [8] defined a  
fuzzy norm on a linear space to construct a fuzzy vector  
topological structure on the space. Defining the class of  
approximately solutions of a given functional equation one can  
ask whether every mapping from this class can be somehow  
approximated by an exact solution of the considered equation in  
the fuzzy Banach algebra.  
2 Preliminaries  
In this section, we provide a collection of definitions and  
related results which are essential and used in the next  
discussions. Definition 2.1 Let  be a real linear space. A  
function 푁:푋×ℝ→[0,ꢀ]is said to be a fuzzy norm on if for  
all 푥,푦∈and all 푡,푠∈,  
(N1) 푁(푥,푐)=0for 푐≤0;  
(N2) 푥=0if and only if 푁(푥,푐)=ꢀfor all 푐>0;  
(N3) 푁(푐푥,푡)=푁(푥, )if 푐≠0;  
|ꢄ|  
(N4) 푁(푥+푦,푠+푡)≥푚푖푛{푁(푥,푠),푁(푦,푡)};  
(N5) 푁(푥,.) is non-decreasing function on  and  
푙푖푚 푁(푥,푡)=ꢀ;  
a
ꢃ→∞  
To answer this question, we use here the definition of fuzzy  
normed spaces given in [8] to exhibit some reasonable notions of  
fuzzy approximately ring homomorphism in fuzzy normed  
algebras and we will prove that under some suitable conditions an  
approximately ring homomorphism from an algebra into a  
fuzzy Banach algebra can be approximated in a fuzzy sense by  
a ring homomorphism from to . Let be a real or complex  
Banach algebra. A mapping 퐷:퐴→ is said to be a ring  
derivative if  
(N6) for 푥≠0, 푁(푥,.)is (upper semi) continuous on .  
The pair (푋,푁)is called a fuzzy normed linear space.  
Example 2.2 Let (푋,||.||)be a normed linear space. Then  
Corresponding author: N. Eghbali, Department of Mathematics, Facualty of Mathematical Sciences, University of Mohaghegh Ardabili,  
6199-11367, Ardabil, Iran. E-mail: nasrineghbali@gmail.com,eghbali@uma.ac.ir.  
5
5
82  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 582-588  
0
,
ꢈ푡≤ꢈꢈ0;ꢈ  
ꢊꢏꢋ  
ꢊ ꢐꢊ ꢐꢊ  
ꢂ 휑(ꢂ 푥,ꢂ 푦)<ꢎ.  
,
ꢈ0<푡≤ꢈꢈꢉ|푥|ꢉ;ꢈ  
푁(푥,푡)=  
ꢉ|푥|ꢉ  
In particular, the similar results hold for 휑(푥,푦)=||푥|| +  
|
|푦|| , where 푞>ꢀ. Stability and super stability of fuzzy  
,
ꢈ푡>ꢉ|푥|ꢉ.  
approximately ring homomorphisms and fuzzy approximately  
ring derivations (N. Eghbali Tue Dec 24 00:16:25 2019).  
is a fuzzy norm on . Definition 2.3 Let (푋,푁)be a fuzzy  
normed linear space and {푥 }be a sequence in . Then {푥 }is  
3
Stability of fuzzy approximately ring  
homomorphism  
said to be convergent if there exists 푥∈푋 such that  
푙푖푚 푁(푥 −푥,푡)=ꢀfor all 푡>0. In that case, is called  
We start our work with definition of fuzzy approximately ring  
ꢊ→∞  
homomorphism. Definition 3.1 Let be a linear algebra, (푌,푁)  
a fuzzy Banach algebra and 휃≥0. We say that 푓:푋→is a  
fuzzy approximately ring homomorphism map if  
the limit of the sequence {푥 } and we denote it by 푁−  
푙푖푚 푥 =푥. Definition 2.4 A sequence {푥 }in  is called  
ꢊ→∞ ꢊ  
Cauchy if for each 휀>0and each 푡>0there exists such that  
for all 푛≥푛 and all 푝>0, we have 푁(푥 −푥 ,푡)>ꢀ−휀.  
ꢊꢌꢁ  
푙푖푚 푁(푓(푥푦)−푓(푥)푓(푦),푡휃||푥|| ||푦|| )=ꢀ,  
ꢃ→∞  
It is known that every convergent sequence in a fuzzy normed  
space is Cauchy and if each Cauchy sequence is convergent, then  
the fuzzy norm is said to be complete and furthermore the fuzzy  
normed space is called a fuzzy Banach space. Let be an algebra  
and (푋,푁)be complete fuzzy normed space. The pair (푋,푁)is  
said to be a fuzzy Banach algebra if for every 푥,푦∈푋and 푠,푡∈  
 we have 푁(푥푦,푠푡)≥푚푖푛{푁(푥,푠),푁(푦,푡)}. Example 2.5  
Let(푋,||.||)be a Banach algebra. Define,  
uniformly on 푋×푋. Theorem 3.2 Let  be a normed linear  
algebra and (푌,푁)a fuzzy Banach algebra. Let 휃≥0and 푞≥  
,푞≠. Suppose that 푓:푋→is a function such that  
0
푙푖푚 푁(푓(푥+푦)−푓(푥)−푓(푦),푡휃(||푥|| +||푦|| ))=ꢀ,  
ꢃ→∞  
uniformly on 푋×푋and  
푙푖푚 푁(푓(푥푦)−푓(푥)푓(푦),푡휃||푥|| ||푦|| )=ꢀ,  
(3.1)  
ꢃ→∞  
0
, ꢈ푎≤ꢈꢈ||푥||;ꢈ  
, ꢈ푎>||푥||.  
푁(푥,푎)=ꢍ  
uniformly on 푋×푋. Then there is a unique ring homomorphism  
푇:푋→such that  
Then (푋,푁)is a fuzzy Banach algebra. Theorem 2.6 Let 푋  
be a linear space and (푌,푁)be a fuzzy Banach space. Let 휑:푋×  
푋→[0,ꢎ)be a control function such that  
2ꢕꢃ||ꢓ||ꢖ  
푙푖푚 푁(푇(푥)−푓(푥), 12|)=ꢀ  
ꢃ→∞  
|
ꢐꢊ  
휑̃ (푥,푦)=∑ ꢂ 휑(ꢂ 푥,ꢂ 푦)<ꢎ,  
ꢊꢏꢋ  
uniformly on . Proof. Theorem 2.6 and Corollary 2.7 show that  
there exists a unique additive mapping such that  
for all 푥,푦∈. Let 푓:푋→ be a uniformly approximately  
additive function with respect to in the sense that  
2
ꢕꢃ||ꢓ||ꢖ  
|)=,  
|12ꢖꢗꢘ  
푙푖푚 푁(푇(푥)−푓(푥),  
(3.2)  
푙푖푚 푁(푓(푥+푦)−푓(푥)−푓(푦),푡휑(푥,푦))=ꢀ  
ꢃ→∞  
ꢃ→∞  
ꢑ(2 ꢓ)  
2ꢒ  
where 푥∈푋. Now we only need to show that is a multiplicative  
uniformly on 푋×푋. Then 푇(푥)=푁−푙푖푚∞  
for all 푥∈  
1ꢐꢔ  
function. Put 푠=  
and fix 푥,푦∈arbitrarily. By (3.2) we  
exists and defines an additive mapping 푇:푋→such that if  
for some 훿>0, 훼>0  
|1ꢐꢔ|  
have  
ꢗꢚ  
2
ꢕꢃꢊ ||ꢊ ꢓ||  
푁(푓(푥+푦)−푓(푥)−푓(푦),훿휑(푥,푦))>훼,  
for all 푥,푦∈; then  
ꢐꢙ  
ꢐꢙ  
푙푖푚 푁(푛 푇(푛 푥)−푛 푓(푛 푥),  
)=ꢀ.  
ꢃ→∞  
12ꢖꢗꢘ  
|
|
Using the additivity of we have:  
푁(푇(푥)−푓(푥),훿/ꢂ 휑̃ (푥,푥))>훼,  
2
ꢕꢃꢊ()||ꢓ||ꢖ  
)=ꢀ.  
ꢐꢙ  
푙푖푚 푁(푇(푥)−푛 푓(푛 푥),  
ꢃ→∞  
|1ꢐ2ꢘ  
for every 푥∈푋. Proof. [9]. Corollary 2.7 Let be a normed  
linear space and (푌,푁)a fuzzy Banach space. Let 휃≥0and 0≤  
푞<ꢀ. Suppose that 푓:푋→is a function such that  
|
2
ꢕꢃꢊ()||ꢓ||ꢖ  
Since ()<0we obtain ꢊ→∞  
=0. So  
12ꢖꢗꢘ  
|
|
푙푖푚 푁(푓(푥+푦)−푓(푥)−푓(푦),푡휃(||푥|| +||푦|| ))=ꢀ  
ꢃ→∞  
2
ꢕꢃꢊ()||ꢓ||ꢖ  
there is some 푛 >0such that  
<푡for all 푛≥푛1  
1
12ꢖꢗꢘ  
|
|
uniformly on 푋×푋. Then there is a unique additive mapping  
푇:푋→such that  
ꢐꢙ ꢙ  
Hence 푙푖푚 푁(푇(푥)−푛 푓(푛 푥),푡)≥  
ꢃ→∞  
ꢚ(ꢖꢗꢘ) ꢖ  
2ꢕꢃꢊ ||ꢓ||  
|1ꢐ2ꢘ  
and 푡>0.  
푙푖푚 푁(푇(푥)−푛 푓(푛 푥),  
ꢐꢙ  
). So  
ꢃ→∞  
||||ꢖ  
)=ꢀ  
|
2
푙푖푚 푁(푇(푥)−푓(푥),  
ꢃ→∞  
2ꢖꢗꢘ  
1
ꢐꢙ  
푁−푙푖푚 푛 푓(푛 푥)=푇(푥)ꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈ(3.3)  
ꢊ→∞  
uniformly on . Proof. [9].  
ꢐꢊ  
Remark 2.8 Using the sequence {ꢂ 푓(ꢂ 푥)}, one can get  
dual version of Theorem 2.6 and Corollary 2.7 when the control  
function satisfies  
Using (3.1) we get  
푙푖푚 푁(푓((푛 푥)푦)−푓(푛 푥)푓(푦),푡휃||푛 푥|| ||푦|| )=ꢀ,  
ꢃ→∞  
5
83  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 582-588  
for all 푥,푦∈. Thus  
Moreover for each fuzzy norm on , we have  
ꢐꢙ  
푙푖푚 푁(푛 푓((푛 푥)푦)−  
푁(푓(푥+푦)−푓(푥)−푓(푦),푡(||푥||+||푦||))  
ꢃ→∞  
ꢐꢙ  
ꢙ(ꢔꢐ1)  
푛 푓(푛 푥)푓(푦),푡휃푛  
||푥|| ||푦|| )=ꢀ,  
=푁(훽푥 (||푥+푦||−||푥||−||푦||),푡(||푥||+||푦||))  
ꢃ(||ꢓ||ꢌ||ꢝ||)  
ꢙ(ꢔꢐ1)  
=푁(훽푥,  
)≥푁(훽푥 ,푡)(푥,푦∈푋,푡∈ℝ).  
||ꢓꢌꢝ||ꢐ|ꢓ||ꢐ||ꢝ||  
for all 푥,푦∈푋. Since 푙푖푚 푡휃푛  
||푥|| ||푦|| =0, there is  
ꢊ→∞  
some 푛 >0such that  
2
Therefore by the item (N5) of the Definition 2.1, we get  
푡휃푛(1)||푥|| ||푦|| <푡,  
푙푖푚 푁(푓(푥+푦)−푓(푥)−푓(푦),푡(||푥||+||푦||))=ꢀ,  
ꢃ→∞  
uniformly on 푋×푋. Also,  
for all 푛≥푛 . We get  
2
푁(푓(푥푦)−푓(푥)푓(푦),푡||푥||||푦||)=푁(훼푥푦+훽푥 ||푥푦||−  
ꢐꢙ  
ꢐꢙ  
푙푖푚 푁(푛 푓((푛 푥)푦)−푛 푓(푛 푥)푓(푦),푡)≥  
ꢃ→∞  
ꢐꢙ  
(훼푥+훽푥 ||푥||)(훼푦+훽푥 ||푦||),푡||푥||||푦||)=푁(훼푥푦+  
푙푖푚 푁(푛 푓((푛 푥)푦)−  
ꢃ→∞  
ꢐꢙ  
ꢙ(ꢔꢐ1)  
푛 푓(푛 푥)푓(푦),푡휃푛  
||푥|| ||푦|| ).  
2
훽푥 ||푥푦||−훼 푥푦−훼훽푥푥 ||푦||−훼훽푥 푦||푥||−  
2
2
훽 푥 ||푥||||푦||,푡||푥||||푦||)≥푚푖푛{푁((ꢀ−  
So  
푁−푙푖푚 푛 푓ꢛ(푛 푥)푦ꢜ=푁−  
ꢃ||ꢓ||||ꢝ||  
5
ꢃ||ꢓ||||ꢝ||  
5
ꢃ||ꢓ||||ꢝ||  
),  
5
ꢐꢙ  
2 2  
훼)훼푥푦,  
),푁(||푥푦||훽푥,  
),푁(훽 푥 ||푥||||푦||,  
ꢊ→∞  
ꢐꢙ  
푙푖푚 푛 푓(푛 푥)푓(푦)ꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈ(3.4)  
ꢊ→∞  
ꢃ||ꢓ|||ꢝ||  
ꢃ||ꢓ||||ꢝ||  
)}  
푁(훼훽푥푥 ||푦||,  
),푁(훼훽푥 푦||푥||,  
By putting 푛 =푚푖푛{푛 ,푛 }and applying (3.3) and (3.4) we  
1 2  
5
5
have  
ꢐꢙ  
푇(푥푦)=푁−푙푖푚 푛 푓(푛 (푥푦))=푁−  
ꢊ→∞  
where 푥∈푋and 푡∈ℝ. Taking into account the following  
inequalities  
ꢐꢙ  
푙푖푚 푛 푓(푛 푥)푓(푦)=푇(푥)푓(푦),  
ꢊ→∞  
for all 푥,푦∈. From this equation by the additivity of we have:  
ꢃꢉ|ꢓ|ꢉꢉ|ꢝ|ꢉ  
5
ꢃꢉ|ꢓ|ꢉꢉ|ꢝ|ꢉ  
ꢟ=푁ꢠ훼푥푦, 5|1| ꢢ≥  
푁ꢞ(ꢀ−훼)훼푥푦,  
푇(푥)푓(푛 푦)=푇(푥(푛 푦))=푇(푛 푥)푓(푦)=푛 푇(푥)푓(푦),  
ꢐꢙ  
for all 푥,푦∈. Therefore 푇(푥) 푓(푛 푦)=푇(푥)푓(푦). By  
letting tend to infinity we see that 푇(푥)푇(푦)=푇(푥)푓(푦)for  
all 푥,푦∈푋. To prove the uniqueness property of , assume that  
푁ꢠ훼푥푦, ꢢꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈ(3.5)  
5
is another ring homomorphism satisfying  
ꢃ||ꢓ||||ꢝ||  
5
ꢃ||ꢓ||||ꢝ||  
)≥푁(훽푥 ,푡/ꢣ), (3.6)  
5||ꢓꢝ||  
푁(||푥푦||훽푥,  
)=푁(훽푥,  
ꢂ휃푡||푥||ꢔ  
푙푖푚 푁(푇 (푥)−푓(푥),  
)=ꢀ  
ꢔꢐ1  
ꢃ→∞  
|
ꢀ−ꢂ |  
ꢃ||ꢓ||||ꢝ||  
5
2
2
2 2  
푁(훽 푥 ||푥||||푦||,  
)=푁(훽 푥 ,푡/ꢣ),  
ꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈ(3.7)  
We have  
ꢃ||ꢓ||||ꢝ||  
ꢃ||ꢓ||  
ꢋ 5|ꢤ|  
ꢐꢙ  
푁(훼훽푥푥 ||푦||,  
)=푁(훼푥푥 , )≥푁(훼푥푥 ,푡/ꢣ),(3.8)  
푁(푇(푥)−푇 (푥),푡)≥푚푖푛{푁(푇(푥)−푛 푓(푛 푥),푡/  
5
ꢐꢙ  
ꢂ),푁(푇 (푥)−푛 푓(푛 푥),푡/ꢂ)}  
ꢃ||ꢓ||||ꢝ||  
5
ꢃ||ꢝ||  
푁(훼훽푥 푦||푥||,  
)=푁(훼푥 푦, )≥푁(훼푥 푦,푡/ꢣ),(3.9)  
ꢋ ꢋ  
5|ꢤ|  
Given, 휀>0by (3.3) we can find some 푡 >0such that  
ꢐꢙ  
it can be easily seen that 푙푖푚 푁(푓(푥푦)−  
푁(푇(푥)−푛 푓(푛 푥),푡/ꢂ)≥ꢀ−휀,  
ꢃ→∞  
푓(푥)푓(푦),푡||푥||||푦||)=ꢀuniformly on 푋×푋and therefore the  
conditions of Theorem 3.2 are fulfilled. Now we suppose that  
there exists a unique ring homomorphism  satisfying the  
conditions of Theorem 3.2. By the equation  
and  
ꢐꢙ  
푁(푇 (푥)−푛 푓(푛 푥),푡/ꢂ)≥ꢀ−휀,  
푙푖푚 푁ꢠ푓(푥+푦)−푓(푥)−푓(푦),푡ꢛꢉ|푥|ꢉ+ꢉ|푦|ꢉꢜꢢ=ꢀ(3.10)  
for all 푡/ꢂ≥푡 , 푥∈푋and 푛∈ℕ. So  
ꢃ→∞  
for given 휀>0, we can find some 푡 >0such that  
푁(푇(푥)−푇 (푥),푡)≥ꢀ−휀,  
푁(푓(푥+푦)−푓(푥)−푓(푦),푡(||푥||+||푦||))≥ꢀ−휀,  
for all 푡>0. Hence by items (N5) and (N2) of definition 2.1 we  
have 푇(푥)=푇 (푥)for all 푥∈푋. In the following example we  
will show that Theorem 3.2 does not necessarily hold for 푞=ꢀ.  
for all 푥,푦∈and all 푡≥푡 . By using the simple induction on  
, we shall show that  
Example 3.3 Let be a Banach algebra, 푥 ∈푋and 훼,훽are  
real numbers such that |훼|≥ꢀ−||푥||||푦||and |훽|≤||푥||for  
every 푥∈푋. Put:  
푁(푓(ꢂ 푥)−ꢂ 푓(푥),푡푛ꢂ ||푥||)≥ꢀ−휀.  
ꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈ(3.11)  
putting 푦=푥in (3.10), we get (3.11) for 푛=ꢀ. Let (3.11) holds  
for some positive integer . Then  
푓(푥)=훼푥+훽푥 ||푥||,(푥∈푋).  
5
84  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 582-588  
ꢊꢌ1  
ꢊꢌ1  
ꢊꢌ1  
2ꢕꢃꢊ()||ꢓ||ꢖ  
푁(푓(ꢂ 푥)−ꢂ 푓(푥),푡(푛+ꢀ)ꢂ ||푥||)≥  
ꢐꢙ  
ꢐꢙ  
ꢊꢌ1  
푙푖푚 푁(푛 퐷(푛 푥)−푛 푓(푛 푥),  
)=ꢀ,  
ꢃ→∞  
|1ꢐ2ꢘ  
|
푚푖푛{푁(푓(ꢂ 푥)−ꢂ푓(ꢂ 푥),푡(||ꢂ 푥||+  
ꢊꢌ1  
ꢊꢐ1  
|
|
|ꢂ 푥||)),푁(ꢂ푓(ꢂ 푥)−ꢂ 푓(푥),ꢂ푡푛(||ꢂ 푥||+  
ꢊꢐ1  
|ꢂ 푥||))≥ꢀ−휀.  
for all 푥∈푋. By the additivity of ,  
2
ꢕꢃꢊ()||ꢓ||ꢖ  
This completes the induction argument. We observe that  
ꢐꢙ  
푙푖푚 푁(퐷(푥)−푛 푓(푛 푥),  
)=ꢀ,  
ꢃ→∞  
12ꢖꢗꢘ  
|
|
푙푖푚 푁(푇(푥)−푓(푥),푛푡||푥||)≥ꢀ−휀.  
ꢊ→∞  
for  
all 푥∈푋.Since 푠(푞−ꢀ)<0  
we  
obtain  
ꢚ(ꢖꢗꢘ) ꢖ  
||ꢓ||  
=0. So there is some  >0 such that  
Hence  
2ꢕꢃꢊ  
푙푖푚∞  
12ꢖꢗꢘ  
|
1
|
2ꢕꢃꢊ()||ꢓ||ꢖ  
<
푙푖푚 푁ꢛ푇(푥)−푓(푥),푛푡ꢉ|푥|ꢉꢜ=ꢀꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈ  
(3.12)  
ꢊ→∞  
for all 푛≥푛1 and 푡>0. Hence  
|
1ꢐ2ꢘ  
|
ꢐꢙ ꢙ  
푙푖푚ꢃ→∞푁(푇(푥)−푛 푓(푛 푥),푡)≥푙푖푚ꢃ→∞푁(푇(푥)−  
ꢚ(ꢖꢗꢘ) ꢖ  
One may regard 푁(푥,푡)as the truth value of the statement  
the norm of is less than or equal to the real number ’. So (3.12)  
is a contradiction with the non-fuzzy sense. This means that there  
ꢐꢙ  
2ꢕꢃꢊ  
||ꢓ||  
). So  
푛 푓( 푥),  
|1ꢐ2ꢘ  
|
is no such a .  
ꢐꢙ  
푁−푙푖푚 푛 푓(푛 푥)=퐷(푥).  
ꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈ(4.3)  
ꢊ→∞  
4
Stability and super stability of fuzzy  
approximately ring derivation  
By (4.1) we have  
We start our work with definition of fuzzy approximately ring  
derivation. Definition 4.1 Let (푋,푁)be a fuzzy Banach algebra  
and 휃≥0. We say that 푓:푋→푋is a fuzzy approximately ring  
derivation if  
ꢐꢙ  
푙푖푚 푁(푛 푓((푛 푥)푦)−푥푓(푦)−  
ꢃ→∞  
ꢐꢙ  
ꢐꢙ  
푛 푓(푛 푥)푦,푡휃푛 ||푛 푥|| ||푦|| )=ꢀ,  
for all 푥,푦∈푋. Since 푠(푞−ꢀ)<0 we obtain  
푙푖푚 푁(푓(푥푦)−푥푓(푦)−푓(푥)푦,푡휃||푥|| ||푦|| )=ꢀ,  
ꢃ→∞  
ꢙ(ꢔꢐ1)  
ꢔ ꢔ  
||푥|| ||푦|| =0. So there is some 푛 >0such  
2
ꢔ ꢔ  
푙푖푚 푡휃푛  
ꢊ→∞  
that 푡휃푛  
ꢙ(ꢔꢐ1)  
||푥|| ||푦|| <푡, for all 푛≥푛 and 푡>0. Hence:  
2
uniformly on 푋×푋. Definition 4.2 Let (푋,푁)be a fuzzy Banach  
a fuzzy  
algebra and 휃≥0. We say that 푓:푋→ is  
ꢐꢙ  
ꢐꢙ  
ꢐꢙ  
푙푖푚 푁(푛 푓((푛 푥)푦)−푥푓(푦)−푛 푓(푛 푥)푦,푡)≥  
ꢃ→∞  
approximately Jordan derivation if  
푙푖푚 푁(푛 푓((푛 푥)푦)−푥푓(푦)−  
ꢃ→∞  
ꢐꢙ  
ꢙ(ꢔꢐ1) ꢔ ꢔ  
||푥|| ||푦|| ).  
2
2ꢔ  
푛 푓(푛 푥)푦,푡휃푛  
푙푖푚 푁(푓(푥 )−ꢂ푥푓(푥),푡휃||푥|| )=ꢀ,  
ꢃ→∞  
So  
uniformly on 푋×푋. Theorem 4.3 Let (푋,푁)be a fuzzy Banach  
algebra, 휃≥0and 푞≥0,푞≠ꢀ. Suppose that 푓:푋→is a  
function such that  
ꢐꢙ  
푁−푙푖푚 푛 푓((푛 푥)푦)=푁−푙푖푚 (푥푓(푦)+  
ꢊ→∞  
ꢊ→∞  
ꢐꢙ  
푛 푓(푛 푥)푦)ꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈ  
(4.4)  
푙푖푚 푁(푓(푥+푦)−푓(푥)−푓(푦),푡휃(||푥|| +||푦|| ))=ꢀ,  
ꢃ→∞  
By putting 푛 =푚푖푛{푛 ,푛 }and applying (4.3) and (4.4 we get  
1 2  
uniformly on 푋×푋and  
ꢐꢙ  
퐷(푥푦)=푁−푙푖푚 푛 푓(푛 (푥푦))=푁−  
ꢊ→∞  
ꢐꢙ  
푙푖푚ꢊ→∞푛 푓((푛 푥)푦)ꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈ  
(4.5)  
all  
푙푖푚 푁(푓(푥푦)−푥푓(푦)−푓(푥)푦,푡휃||푥|| ||푦|| )=ꢀ, (4.1)  
ꢃ→∞  
ꢐꢙ  
푥푓(푦)+푁−푙푖푚 푛 푓(푛 푥)푦=푥푓(푦)+퐷(푥)푦,ꢈfor  
ꢊ→∞  
uniformly on 푋×푋. Then there is a unique ring derivation  
퐷:푋→such that  
푥,푦∈. Then by (4.5) and the additivity of , we have  
푥푓(푛 푦)+푛 퐷(푥)푦=푥푓(푛 푦)+퐷(푥)푛 푦=퐷(푥(푛 푦))=  
퐷((푛 푥)푦)=푛 푥푓(푦)+퐷(푛 푥)푦=푛 푥푓(푦)+푛 퐷(푥)푦.  
Therefore 푥푓(푦)=푥푛 푓(푛 푦) for all 푥,푦∈. By letting 푛  
tend to infinity we see that 푥푓(푦)=푥퐷(푦) for all 푥,푦∈푋.  
Combining this formula with equation (4.5) we get 퐷(푥푦)=  
푥퐷(푦)+퐷(푥) for all 푥,푦∈푋. The proof of uniqueness  
property of is similar to the proof of Theorem 3.2.  
Corollary 4.4 Theorem 4.3 satisfies for fuzzy approximately  
Jordan derivation.  
2
ꢕꢃ||ꢓ||ꢖ  
ꢐꢙ  
푙푖푚 푁(퐷(푥)−푓(푥),|  
|)=ꢀ,  
ꢃ→∞  
12ꢖꢗꢘ  
uniformly on . Proof. Theorem 2.6 and Corollary 2.7 show that  
there exists a unique additive mapping such that  
||||ꢖ  
|)=ꢀ,ꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈ  
2
푙푖푚 푁(퐷(푥)−푓(푥),|  
(4.2)  
ꢃ→∞  
12ꢖꢗꢘ  
where 푥∈푋. Now we only need to show that is a map such  
Proof. As same as the proof of Theorem 4.3 we have  
1ꢐꢔ  
that 퐷(푥푦)=푥퐷(푦)−퐷(푥)푦for all 푥,푦∈. Put 푠=|  
and  
ꢐꢙ  
퐷(푥)=푁−푙푖푚 푛 푓(푛 푥). (4.6)  
1ꢐꢔ|  
ꢊ→∞  
A quite similar argument to the proof of Theorem 4.3 shows that  
fix 푥,푦∈푋arbitrarily. By (4.2) we have  
2
ꢐ2ꢙ  
2ꢙ  
퐷(푥 )=푁−푙푖푚 푛 푓(푛 푥). By Definition (4.2) we  
ꢊ→∞  
have  
ꢃ→∞  
,  
ꢐ2ꢙ  
2ꢙ 2  
ꢐꢙ  
ꢐ2ꢙ  
2ꢔ  
2
ꢕꢃ||ꢊ ꢓ||  
푙푖푚 푁(푛 푓(푛 푥 )−ꢂ푛 푥푓(푛 푥),푡휃푛 ||푛 푥|| )=  
푙푖푚 푁(퐷(푛 푥)−푓(푛 푥),  
)=ꢀ,  
ꢃ→∞  
1ꢐ2ꢘ  
|
|
for all 푥∈푋.  
Since ꢂ푠(푞−ꢀ)<0we obtain 푙푖푚 푡휃푛  
2ꢙ(ꢔꢐ1)  
2ꢔ  
||푥|| =0.  
ꢊ→∞  
for all 푥∈푋. Thus  
So there is some 푛 >0such that  
5
85  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 582-588  
푡휃푛2(1)||푥|| <푡,  
2ꢔ  
for all 푛≥푛 and 푡>0. Hence  
2
for all 푛≥푛 and 푡>0. Hence  
ꢐ2ꢙ  
2ꢙ 2  
ꢐꢙ  
ꢐ1  
ꢐ1  
ꢐ1  
푙푖푚 푁(푛 푓(푛 푥 )−ꢂ푛 푥푓(푛 푥),푡)≥  
푁(푟푓(푛 푥푎)−푟푛 푥푓(푎)−푟푓(푛 푥)푎,푡/4)≥  
ꢃ→∞  
2ꢙ 2  
ꢐ2ꢙ  
푙푖푚 푁(푛 푓(푛 푥 )−  
(4.12)  
ꢃ→∞  
2ꢙ(ꢔꢐ1)  
2ꢔ  
ꢐ1  
ꢐ1  
ꢂ푛 푥푓(푛 푥),푡휃푛  
||푥|| ),  
푁(푟푓(푛 푥푎)−푟푛 푥푓(푎)−  
ꢐ1  
ꢐꢔ  
for all 푥∈푋. So  
푟푓(푛 푥)푎,푡휃푟푛 ||푥|| ||푎|| ).  
ꢐ2ꢙ  
2ꢙ  
푁−푙푖푚 푛 푓(푛 푥)=푁−푙푖푚 ꢂ푛 푥푓(푛 푥).  
By using (4.9) and (4.8) for given 휀>0we can find some 푡 ,푡 >  
ꢊ→∞  
ꢊ→∞  
1 2  
(4.7)  
0such that  
Now by using (4.6) and (4.7) we get  
ꢗꢖ ꢖ  
ꢥꢃꢕꢊ ||ꢓꢦ||  
ꢢ≥ꢀ−휀,ꢈ(4.13)  
2
ꢐ1  
ꢐ1  
푁ꢠ퐷ꢛ(푛 푥)(푟푎)ꢜ−푟푓(푛 푥푎),  
2
ꢐ2ꢙ  
2ꢙ 2  
|1ꢐ2ꢘ  
|
퐷(푥 )=푁−푙푖푚 푛 푓(푛 푥 )=푁−  
푙푖푚 ꢂ푛 푥푓(푛 푥)=ꢂ푥퐷(푥),  
ꢊ→∞  
ꢐꢙ  
ꢊ→∞  
for every 푥∈푋.  
and  
ꢐ1  
ꢐ1  
푁(푟푓(푛 푥푎)−푟푛 푥푓(푎)−  
ꢐ1  
ꢐꢔ  
푟푓(푛 푥)푎,푡휃푟푛 ||푥|| ||푎|| )≥ꢀ−휀,  
Theorem 4.5 Let (푋,푁)be a fuzzy Banach algebra, 휃≥0and  
푞≥0,푞≠ꢀ. Suppose that 푓:푋→푋is a function such that  
for all 푡≥푡 . So by combining (4.10), (4.11), (4.12) and (4.13)  
푙푖푚 푁(푓(푥+푦)−푓(푥)−푓(푦),푡휃(||푥|| +||푦|| ))=ꢀ,  
ꢃ→∞  
we get  
uniformly on 푋×푋and  
푙푖푚 푁(푓(푥푦)−푥푓(푦)−푓(푥)푦,푡휃||푥|| ||푦|| )=ꢀ,  
ꢐ1  
ꢐ1  
ꢐ1  
ꢃ→∞  
푁(퐷((푛 푥)(푟푎))−푟푛 푥푓(푎)−푓(푛 푥)푟푎,푡/ꢂ)≥ꢀ−  
휀. (4.14)  
(4.8)  
uniformly on 푋×푋.  
Then we have  
푥{푓(푟푎)−푟푓(푎)}=0,  
for every 푎,푥∈and 푟∈ℚ−{0}.  
By applying (4.8) we have  
푙푖푚 푁(푛 푥푓(푟푎)+푓(푛 푥)푟푎−  
ꢐ1  
ꢐ1  
ꢊ→∞  
ꢐꢔ ꢔ  
ꢐ1  
푓((푛 푥)(푟푎)),푡휃푛 푟 ||푥|| ||푎|| )=ꢀ.  
ꢐꢔ ꢔ  
Since 푙푖푚 푡휃푛 푟 ||푥|| ||푎|| =0, there exists  >0  
ꢊ→∞  
such that  
푡휃푛 푟 ||푥|| ||푎|| <푡/ꢂ  
for every 푛≥푛 and 푡>0. So  
Proof. Pick 푎,푥∈and 푟∈ℚ−{0}arbitrarily. By Theorem 4.3  
there exists a unique ring derivation such that:  
ꢐꢔ ꢔ  
2
ꢕꢃ||ꢓ||ꢖ  
|)=,  
푙푖푚 푁(퐷(푥)−푓(푥),|  
(4.9)  
ꢃ→∞  
1ꢐ2ꢘ  
ꢐ1  
ꢐ1  
ꢐ1  
푁(푛 푥푓(푟푎)+푓(푛 푥)푟푎−푓((푛 푥)(푟푎)),푡/ꢂ)≥  
4.15)  
(
ꢐ1 ꢐ1  
푁(푛 푥푓(푟푎)+푓(푛 푥)푟푎−  
ꢔ ꢔ  
where 푥∈푋. Recall that is additive, and so it is easy to see  
that 퐷(푟푏)=푟퐷(푏)for every 푏∈푋. Fix 푛∈ℕarbitrarily  
and we get  
ꢐ1  
ꢐꢔ ꢔ  
푓((푛 푥)(푟푎)),푡휃푛 푟 ||푥|| ||푎|| ),  
for all 푡≥푡.  
Given 휀>0, we can find some >0such that  
ꢐ1  
ꢐ1  
ꢐ1  
푁(퐷((푛 푥)(푟푎))−푟푛 푥푓(푎)−푓(푛 푥)푟푎,푡/ꢂ)≥  
4.10)  
(
ꢐ1  
ꢐ1  
ꢐ1  
ꢐ1 ꢐ1  
푁(푛 푥푓(푟푎)+푓(푛 푥)푟푎−  
ꢐ1 ꢐꢔ ꢔ ꢔ  
푚푖푛{푁(퐷((푛 푥)(푟푎))−푟푓(푛 푥푎),푡/4),푁(푟푓(푛 푥푎)−  
푟푛 푥푓(푎)−푟푓(푛 푥)푎,푡/4)}.  
ꢐ1  
ꢐ1  
푓((푛 푥)(푟푎)),푡휃푛 푟 ||푥|| ||푎|| )≥ꢀ−휀,  
4.16)  
for all 푡≥푡 . So  
(
By (4.9) we have  
ꢗꢘ ꢖ  
ꢥꢃꢕ||ꢊ ꢓꢦ||  
)=ꢀ.  
ꢐ1  
ꢐ1  
ꢐ1  
2
ꢐ1  
ꢐ1  
푁(푛 푥푓(푟푎)+푓(푛 푥)푟푎−푓((푛 푥)(푟푎)),푡/ꢂ)≥ꢀ−  
휀. (4.17)  
푙푖푚 푁(퐷((푛 푥)(푟푎))−푟푓(푛 푥푎),  
ꢊ→∞  
12ꢖꢗꢘ  
|
|
2
ꢥꢃꢕ||ꢓꢦ||ꢖ  
=0, there is some  >0 such that  
Also we have:  
Since 푙푖푚∞  
12ꢖꢗꢘ  
|
1
|
ꢗꢖ ꢖ  
ꢃꢕꢊ ||ꢓꢦ||  
<
2
푡/4for all 푛≥푛 and 푡>0. Hence  
ꢐ1 ꢐ1 ꢐ1  
푁(푓((푛 푥)(푟푎))−푟푛 푥푓(푎)−푓(푛 푥)푟푎,푡/ꢂ)≥  
12ꢖꢗꢘ  
|
1
|
(
4.18)  
ꢐ1  
ꢐ1  
푚푖푛{푁(푓((푛 푥)(푟푎))−퐷((푛 푥)(푟푎)),푡/  
ꢐ1  
ꢐ1  
ꢐ1  
ꢐ1  
ꢐ1  
푁(퐷((푛 푥)(푟푎))−푟푓(푛 푥푎),푡/4)≥  
4),푁(퐷((푛 푥)(푟푎))−푟푛 푥푓(푎)−푓(푛 푥)푟푎,푡/4)}.  
ꢗꢖ ꢖ  
ꢥꢃꢕꢊ ||ꢓꢦ||  
).  
2
ꢐ1  
ꢐ1  
푁(퐷((푛 푥)(푟푎))−푟푓(푛 푥푎),  
4.11)  
|
1ꢐ2ꢘ  
|
(
By (4.9) we have  
Also by (4.8) we get  
ꢐ1  
ꢐ1  
푙푖푚 푁(푟푓(푛 푥푎)−푟푛 푥푓(푎)−  
ꢗꢖ  
ꢊ→∞  
2
ꢃꢕꢥ ꢊ ||ꢓꢦ||  
ꢐ1  
ꢐ1  
ꢐ1  
ꢐ1  
푟푓(푛 푥)푎,푟푡휃||푛 푥|| ||푎|| )=ꢀ.  
푙푖푚ꢊ→∞푁(푓((푛 푥)(푟푎))−퐷((푛 푥)(푟푎)),  
)=  
|
1ꢐ2ꢘ  
|
ꢐꢔ  
Since 푙푖푚 푡휃푟푛 ||푥|| ||푎|| =0, there is some  >0such  
.  
ꢊ→∞  
2
that  
ꢐꢔ  
푡휃푟푛 ||푥|| ||푎|| <푡/4  
5
86  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 582-588  
ꢗꢖ ꢖ ꢖ  
ꢃꢕꢊ ꢥ ||ꢦꢓ||  
=0, there is some 푛 >0such  
2ꢕꢃꢊ()||ꢓ||ꢖ  
2
Since 푙푖푚∞  
for every 푥∈푋. Since 푙푖푚∞  
=0, there is some  
1ꢐ2ꢘ  
|
|1ꢐ2ꢖꢗꢘ|  
|
ꢗꢖ  
2
ꢃꢕꢊ ꢥ ||ꢦꢓ||  
ꢚ(ꢘꢗꢖ)||||ꢖ  
<푡for every 푛≥푛. So  
2
that  
<푡/4, for all 푛≥푛 and 푡>0. Hence  
12ꢖꢗꢘ  
>0such that  
|
|
12ꢖꢗꢘ  
| |  
ꢐ1  
ꢐ1  
푁(푓((푛 푥)(푟푎))−퐷((푛 푥)(푟푎)),푡/4)≥  
ꢙ ꢐꢙ ꢙ ꢐꢙ ꢙ ꢐꢙ  
푁(푛 퐷(푛 푥)−푛 푓(푛 푥),푡)≥푁(푛 퐷(푛 푥)−  
ꢗꢖ ꢖ ꢖ  
ꢃꢕꢊ ꢥ ||ꢦꢓ||  
).  
2
ꢐ1  
ꢐ1  
푁(푓((푛 푥)(푟푎))−퐷((푛 푥)(푟푎)),  
|
1ꢐ2ꢘ  
|
2ꢕꢃꢊ ||ꢊ ꢓ||  
ꢗꢚ  
ꢐꢙ  
푛 푓(푛 푥),  
).  
|
1ꢐ2ꢘ  
|
By (4.9) for given 휀>0, we can find some 푡 >0such that  
By using (4.23) for given 휀>0, we can find some  >0  
such that  
ꢗꢖ ꢖ ꢖ  
ꢃꢕꢊ ꢥ ||ꢦꢓ||  
ꢢ≥ꢀ−  
2
ꢐ1  
ꢐ1  
푁ꢠ푓ꢛ(푛 푥)(푟푎)ꢜ−퐷ꢛ(푛 푥)(푟푎)ꢜ,  
1ꢐ2ꢘ  
|
|
ꢗꢚ  
2
ꢕꢃꢊ ||ꢊ ꢓ||  
ꢐꢙ  
ꢐꢙ  
푁(푛 퐷(푛 푥)−푛 푓(푛 푥),  
)≥ꢀ−,  
휀,ꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈ(4.19)  
12ꢖꢗꢘ  
|
|
for all 푡≥푡 . Hence  
for all 푡≥푡 . Now by combining (4.14), (4.19) and (4.18) we get  
푁(퐷(푥)−푓(푥),푡)=ꢀ,  
ꢐ1  
ꢐ1  
ꢐ1  
푁ꢠ푓ꢛ(푛 푥)(푟푎)ꢜ−푟푛 푥푓(푎)−푓(푛 푥)푟푎, ꢢ≥ꢀ−  
2
휀.ꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈꢈ(4.20)  
for all 푡>0. So by using item (N2) of Definition 2.1, we have  
퐷(푥)=푓(푥) for every 푥∈푋, which shows that  is a ring  
derivation.  
On the other hand, we have  
ꢐ1  
푁(푛 푥(푓(푟푎)−푟푓(푎)),푡)≥  
(4.21)  
Ethical issue  
ꢐ1  
ꢐ1  
ꢐ1  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
푚푖푛{푁(푛 푥푓(푟푎)+푓(푛 푥)푟푎−푓((푛 푥)(푟푎)),푡/  
ꢐ1  
ꢐ1  
ꢐ1  
ꢂ),푁(푓((푛 푥)(푟푎))−푟푛 푥푓(푎)−푓(푛 푥)푟푎,푡/ꢂ)}.  
(avoidance of guest authorship), dual submission, manipulation  
So by combining (4.21), (4.20) and (4.17) we have  
푁(푛 푥(푓(푟푎)−푟푓(푎)),푡)≥ꢀ−휀. Hence 푁(푥(푓(푟푎)−  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
ꢐ1  
푟푓(푎)),푛푡)≥ꢀ−휀. Now by using item (N2) of Definition 2.1  
we get 푥(푓(푟푎)−푟푓(푎))=0. In the following Theorem we  
consider the conditions for super stability of approximately ring  
derivations. Theorem 4.6 Let (푋,푁)be a fuzzy Banach algebra  
without order, 휃≥0and 푞≥0,푞≠ꢀ. Suppose that 푓:푋→is  
a function such that  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
푙푖푚 푁(푓(푥+푦)−푓(푥)−푓(푦),푡휃(||푥|| +||푦|| ))=ꢀ,  
ꢃ→∞  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing  
uniformly on 푋×푋and  
푙푖푚 푁(푓(푥푦)−푥푓(푦)−푓(푥)푦,푡휃||푥|| ||푦|| )=ꢀ,  
ꢃ→∞  
(
4.22)  
References  
uniformly on 푋×푋. Then is a ring derivation. Proof. Let be  
a unique ring derivation as in Theorem 4.3. Fix 푛∈ℕarbitrarily,  
and put 푠=  
푛 푓(푎)is true for every 푎∈푋. Since if 푓(푛 푎 )≠푛 푓(푎 )  
for some 푎 ∈푋, then it would follow from Theorem 4.5 that  
1ꢐꢔ  
ꢐꢙ  
. It follows from Theorem 4.5 that 푓(푛 푎)=  
1 Bourgin D. G. Approximately isometric and multiplicative transforms  
on continuous function rings. Duke Math. J. 16, 1949, 385397.  
|1ꢐꢔ|  
ꢐꢙ  
ꢐꢙ  
ꢐꢙ  
2
Gajda Z. On stability of additive mappings. Intermat. J. Math. Sci. 14,  
991, 431434.  
1
ꢐꢙ  
ꢐꢙ  
3 P. Gavruta P. A generalization of the Hyers-Ulam-Rassias stability of  
approximately additive mappings. J. Math. Anal. Appl. 184 1994,  
푥{푓(푛 푎 )−푛 푓(푎 )}=0  
4
31436.  
for all 푥∈푋, which would be contradiction because  is  
assumed to be without order. We get from  
4
5
Goguen J. A. -fuzzy sets, J. Math. Anal. Appl. 18, 1967, 145174.  
Hyers D. H. On the stability of the linear functional equation. Proc.  
Natl. Acad. Sci., U.S.A. 27, 1941, 222224.  
Hyers D. H., Isac G. and Rassias Th. M. Stability of functional  
equations in several variables. Birkh푎̈user, Basel. 1998.  
Hyers D. H. and Rassias Th. M. Approximate homomorphisms.  
Aequationes Math. 44 (2-3) ,1992, 125153.  
Katsaras A. K. Fuzzy topological vector spaces II. Fuzzy Sets and  
Systems. 12, 1984, 143154.  
Mirmostafaee A. K. and Moslehian M. S. Fuzzy versions of Hyers-  
Ulam-Rassias theorem. Fuzzy Sets and Systems. 159 (6), 2008, 720–  
2
ꢕꢃ||ꢓ||ꢖ  
|)=ꢀ,  
푙푖푚 푁(퐷(푥)−푓(푥),|  
6
7
8
9
ꢃ→∞  
12ꢖꢗꢘ  
that  
푙푖푚 푁ꢠ푛 퐷(푛 푥)−푛 푓(푛 푥),  
ꢚ ꢗꢚ ꢖ  
ꢕꢃꢊ ||ꢊ ꢓ||  
ꢢ=ꢀ,ꢈꢈ(4.23)  
2
ꢐꢙ  
ꢐꢙ  
ꢃ→∞  
12ꢖꢗꢘ  
|
|
7
29 .  
1
0
Rassias Th. M. On the stability of the linear mapping in Banach  
spaces. Proc. Amer. Math. Soc. 72, 1978, 297300.  
5
87  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 582-588  
1
1 Rassias Th. M. and Šemrl P. On the behavior of mappings which do  
not satisfy Hyers-Ulam stability. Proc. Amer. Math. Soc. 173 ,1993,  
3
25338.  
1
1
2
Ulam S. M., Problems in modern mathematics. Chap. VI, Science  
eds. wiley, New York, 1960.  
3 Zadeh L. A. Fuzzy sets. Inform. and Control. 8, 1965, 338353.  
5
88