Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 756-761  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Synthesis and Swelling Kinetic Study of BSA-based  
Hydrogel Composite by Subcritical Water  
Technology  
1
1
1
2
Zahra M. Esfahan * , Shamsul Izhar * , Mohd Halim Shah Ismail , Hesam Kamyab , Yoshida  
1
1
Hiruyuki , Razif Harun  
1
Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43300 Serdang, Selangor, Malaysia  
Department of Engineering, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia  
2
Received: 29/08/2019  
Accepted: 15/04/2020  
Published: 20/05/2020  
Abstract  
This study, for the first time, aimed to analyse ‘Bovine serum albumin’ hydrogel composite by simple and quick method (SCWT)  
since not only there had been some indications that the low temperature subcritical water treatment may be as valuable products as its  
high temperature treatment, but also, the positive outcome would put a stop to the waste of energy and money. For BSA-based hydrogel  
at first, the optimum conditions were identified by assessing the effect of different influential parameters (SCWT temperature, time).  
SCWT was done using a batch subcritical reactor. Additionally, the characterization tests were carried out on the BSA-based hydrogels  
which was produced by this unique method. BSA-based Hydrogel preparation condition by SCWT accurately was investigated and  
optimized SCWT condition according to maximum ESR (50%). Schott kinetic swelling model provided evidence to approve two-step  
water diffusion mechanism in BSA-based hydrogel by SCWT.  
Keywords: Bovine Serum Albumin, Subcritical Water, Batch Reactor, Hydrogel  
1
Introduction 1  
Biomaterials have been proven to be quiet beneficial to  
motivated researchers to investigate on replacing the time  
consuming, toxic methods by clean and safe SCW technology.  
According to the literature, it is assumed that BSA solution  
under Sub-CW treatment, has aggregation-decomposition-  
aggregation-decomposition pathway (15). In this case, this  
study assumes that BSA coagulates to BSA solid network  
(BSA-based hydrogel). So based on this, Sub-CW treatment  
of BSA can be a great, novel method for producing BSA-based  
hydrogel without using any chemicals and crosslinker in a very  
short time.  
Continuous efforts have been made to produce strong and  
biocompatible bovine serum albumin hydrogels with retained  
protein function; for example, the ability to bind, and release  
types of well-defined molecules (16, 17, 18, 19). The BSA-  
based hydrogels made by the thermal method have already been  
well established and have been working on the induction gel  
mechanism of proteins such as BSA (20, 21, 22). The main  
drawback of heat-inducing method is the broadly protein  
denaturation, with the risk of compromising protein  
functionality and biocompatibility (23). Moreover, besides the  
disadvantages of the denaturation problem, the time consumed  
by the incubation process is another drawback (24, 25).  
Electrostatically-triggered serum albumin hydrogels is another  
preparation method of albumin hydrogels introduced very  
recently (25). Despite the fact that this proposed method  
reduced the time consumption and solved the denaturation  
problem, still it is long and needs chemicals that are not  
human beings as they have a diverse range of applications in  
food, medicine, and many other areas (1, 2, 3). For instance, the  
vast range of proteins has been used as a good source of  
protein-based biomaterials (4). It is not surprising that the  
demand for natural and organic products has increased  
significantly worldwide as they are considered less harmful in  
comparison with non-organic products. Nowadays, there are  
numerous natural products in the market for cosmetics, food  
additives, and medicinal purposes (5). Many of the above-  
mentioned biomaterials are protein-based (6, 7). Protein-based  
hydrogels are the most common biopolymers shaped from  
proteins and have medical applications in the drug delivery  
system, tissue engineering, ect (8, 9). However, the quality and  
difficulty of each method varies significantly for different  
protein sources (10, 11, 12). Therefore, given the afore-  
mentioned importance of biomaterials for natural products,  
finding highly efficient isolation methods for protein-based  
biomaterials as well as understanding and identifying the  
applications and properties for each protein-based biomaterial  
is vitally important. Subcritical water technology is a novel  
method that recently take an attention of researchers to  
produced variable biomaterials such as bioplastic and biomass  
without using additive, catalyst or any toxic chemicals (13, 14).  
Additionally, promising properties of water in high temperature  
and pressure range (SCW) and coagulation of the protein  
structure under subcritical water treatment conditions  
Corresponding author: Shamsul Izhar, Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43300  
Serdang, Selangor, Malaysia. Email: z_m_esfahani@yahoo.com and shamizhar@upm.edu.my.  
7
56  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 756-761  
environmental friendly. So, there is still a need for a faster and  
environmental friendly method to replace it. Protein-based  
biomaterials such as hydrogels produced with Subcritical  
Water Treatment (SCWT) are a new promising method, which  
is safe, fast, economical, and environmental friendly in  
comparison with other new methods that are used to produce  
protein-based biomaterials. Treatment of BSA by Sub-CW  
does not use any additives or catalyst; it is cheap and  
environmental friendly (15). Furthermore, Sub-CW treatment  
has been shown to require significantly short process time (few  
minutes) and utilises lower amount of raw material.  
(SR) = W  
t
/W  
d
(1)  
The swelling behavior of hydrogel in different temperature  
range of distilled water was explored. The swelling tests were  
performed in ionic medium solutions, prepared as explained by  
Wang et al. (28). In a typical experiment about 0.2 g of sample  
was weighed (W  
for 6 hours, after which they were removed and blotted dry, and  
their weights were recorded (W ). The equilibrium swelling  
1
) and immersed in different swelling media  
2
ratio (ESR) of the hydrogel in distillate water was computed  
with the equation below:  
ESR (grgr) = (W  
2
-W  
1
) W  
2
(2)  
2
Materials and method  
2
.1 Materials  
2
.5 BSA-based hydrogel swelling kinetic model  
In this study, two kinetic models were used to study the  
In this study, couples of chemical materials were used for  
different purposes. Bovine serum albumin (BSA, fraction V)  
was used as a model protein in SCWT experiments provide by  
Wako, Japan. Chloric acid and sodium hydroxide (Sigma  
Aldrich) were used to study the effect of pH on BSA-based  
hydrogel swelling behavior in acidic and base media. Ionic  
solutions (eg. different concentration of NaCl) was used to  
discuss the impact of ionic strength on BSA-based hydrogels.  
kinetic models and the mechanism of swelling for BSA-based  
hydrogel by SCWT process. (Table 1).  
Table1. Applied swelling kinetic models for BSA-based  
hydrogels  
Plotting  
Kinetic  
parameters constant(s)  
Model  
Equation  
n
Fickian diffusion  
f = M  
t
/M  
= K  
1
t
lnf vs. t  
k
k
1
2
2
.2 BSA-based hydrogel preparation  
For producing BSA-based hydrogel, 10gr BSA was  
weighted by AND balance series GR-200 from Japan and was  
gently dissolved in Milli-Q water in a volumetric flask with  
shaking. For solution of BSA, subcritical water reaction was  
Schotts second-  
order  
2
2 ∞  
dS/dt = k (S - S) t/s vs. t  
0
done in the range of 80-200 C for 30 seconds to 30 minutes and  
3
Result and Discussion  
gel-like bovine serum albumin biopolymer (GBSA) was made  
in a batch reactor. Hydrogel solid was formed by composition  
of BSA in sub-critical water process. In high concentration of  
initial BSA solution, at some temperature range only gel phase  
was produced depending on the reaction time as well. A batch  
laboratory-scale sub critical fluid system was used for this  
research. The reactor was a stainless steel batch reactor(  
SUS316, i.d 7.5 mm×150.4 mm) length, capped with Swagelok  
fittings. 3ml BSA solution charged into the reactor tube of  
which one was side capped with Swagelok fitting. After  
purging argon gas, Sealing of the reactor with Swagelok fitting  
was done followed by immersion into a preheated oil bath  
thermometer inspecting Celsius M type (Thomas Kagaku Co.  
Ltd., Japan) that contained silicone oil for reaction temperature  
BSA-based hydrogels were synthesized by self-coagulation  
of ‘Bovine serum albumin’ solutions under SCWT temperature  
from 80 C and above. Coagulation of BSA started at 90 C and  
gelation process was continued by rising temperature to 120 C  
Figure1). Although by increasing SCWT temperature, more  
gel network was formed, since at 130 C that the accumulated  
gel decomposes to the smaller molecules and by increasing  
temperature. It totally decomposed to smaller molecules that  
will discuss them in our next paper.  
0
0
0
(
0
0
lower than 200 C. The synthesis reactions were performed in  
the range of 80-130°C. After the desired reaction time, the  
reactor was immediately removed from salt bath or oil bath and  
cooled by immersion in a chilled water (20L) bath.  
2
.3 Freeze-drying  
For removing water from the product the method of Robert  
0
0
et al. was followed (26). After removing water, put samples in  
Figure 1: BSA-based hydrogel, prepared at a) 90 C, b) 100 C, c)  
0
0
the refrigerator (-1 C) over a night and after that kept at -40 ºC  
1100C, d) 120 C by SCWT, Freezer dried BSA-based hydrogel  
0
0
0
0
for further precipitation. After 24 hrs, the precipitate was  
collected and dried using freeze drying system (FTS) for 72 hr  
27).  
prepared at e) 90 C, f) 100 C, g) 110 C and h) 120 C  
(
3.1 Effect of coagulation temperature on ESR of hydrogel  
The lower range of temperature was the lowest temperature  
that BSA molecules start to coagulate (i.e. 80 C) that has the  
ability to bring the water to the boiling point (near subcritical  
point) (29). The gel preparation temperature increased from  
100 C to 120 C, the equilibrium swelling ratio (ESRs)  
decreased from 49 to 40, demonstrating the swelling behavior  
was reliant on SCWT temperature (Figure 2). In addition,  
incomplete gelation at the minimum temperature may be  
accounted for by the slower BSA coagulation during process  
which is essential for forming of hydrogel bonds. Similar result  
0
2
.4 BSA-based hydrogel behavior  
After reaction, remove whole solid from the reactor  
carefully and prepare predetermined amounts of solid (present  
weight of dry sample, W ). The swollen hydrogels were  
removed from water and weighed at regular interval times (W ).  
0
0
d
t
The swelling ratios of solid matrices were established from the  
weight change before and after swelling: swelling ratio  
7
57  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 756-761  
was also reported by other studies that used low temperature  
range of Sub-CW treatment of BSA. For example, Aida et al.  
point. The equilibrium swelling ratio of BSA-based hydrogel  
was measured for hydrogels that prepared at 1-20 minutes but  
ESR% did not change considerably after 9 minutes of Sub-CW  
treatment. Thus, coagulation and gelation of BSA was  
considered to be completed after 9 mins reaction time, when  
the ESR curve reaches the steady state.  
(2017) demonstrated that the lower temperature of BSA Sub-  
CW treatment at 5 minutes as a result of slow-heating and mass  
transfer that caused protein aggregation in batch reactor. The  
0
decrease of ESR in 120 C accounted for by starting  
decomposition of the sample as the result of hydrolysis of  
formed solid.  
3.3 Optimization of SCWT operational condition  
The results provided evidence that for reaching the highest  
percentage of swelling ratio in BSA-based hydrogel, SCWT  
temperature should be high enough to provide sufficient  
temperature for coagulating the BSA while not resulting in any  
undesirable reactions such as decomposition and hydrolysis  
(they can be undesirable for producing hydrogel). Additionally,  
the result confirmed the suggested mechanism of Sub-CW  
treatment of protein that the accumulation of protein is  
commerce when the SCWT temperature is sufficient for water  
to be in subcritical region and protect the sample completely  
from the direct heat and at the same time prevent  
denaturation(29)( drawback of direct heating gelation of BSA.  
The result showed that for obtaining highest possible  
equilibrium swelling ratio, the SCWT time should only be long  
enough to let all BSA molecules to coagulated (32). Obviously,  
longer treatment time is not necessary and it is only the wastes  
of energy since no significant changes in swelling ratio of BSA-  
based hydrogel.  
Figure 2: Relation between Equilibrium swelling ratio (ESR) of BSA-  
based hydrogel and BSA-based hydrogel preparation temperature in  
different time course  
The decomposition, and hydrolysis are the common  
possible reactions that may happen during SCWT method that  
perform at high temperatures or long decomposition times (30,  
3
.4 Swelling kinetic model  
3
1). So, it is essential to identify the best practical SCWT time  
For a better understanding of the swelling model of BSA-  
and temperature for coagulation the best possible ESR of BSA-  
based hydrogel occurrence of undesirable reactions. In short,  
the coagulation process was more efficient at medium  
based hydrogel prepared by SCWT at different operational  
conditions, the mechanism of the swelling was assessed using  
two different models. The swelling behavior of BSA-based  
hydrogels was analyzed with these models to find the best  
model for describing the swelling behavior in neutral pH levels.  
0
temperatures (i.e. 100 or 110 CUse the "Insert Citation" button  
to add citations to this document). As the result, the prepared  
BSA-based hydrogel was better coagulated from the Bovine  
0
serum albumin at SCWT temperature of 100-120 C.  
3
.2 Effect of Sub-CW coagulation time course on ESR of  
hydrogel  
Duration of Sub-CW treatment is another important  
parameter in BSA coagulation process. It should be long  
enough to all protein in the initial solution coagulated and form  
the gel network. In order to find the optimum time for the  
complete gelation of BSA, the equilibrium swelling ratio (ESR)  
of BSA-based hydrogel at coagulation temperature of 80-  
0
1
20 C were measured during the coagulation time until the  
Figure 4: Swelling test of GBSA100, GBSA110, GBSA120 in  
distillated water  
maximum percentage of swelling ratio was observed (Figure  
).  
3
Swelling kinetic of GBSA100, GBSA110, GBSA120 were  
investigated in distillated water (pH= 7) and result observed in  
figure 4. The parameters of the two kinetic models and their R²  
(coefficient of determination) were calculated using plotting  
method. It is obvious that Fickian diffusion model showed the  
lowest fit to the experiment data compared to Schott model  
(Table 2). So, it was concluded that this model cannot properly  
explain the swelling of BSA-based hydrogel by Sub-CW  
treatment.  
For Fickian swelling kinetic model, when gel swells in  
media, three steps occur: to start with water diffusion into the  
BSA-based hydrogel structure; then, the swelled chains rest;  
and finally, the hydrogel grows. ln(f) versus ln (t) of selected  
hydrogels were driven. In distillate water, diffusion exponent n  
and characteristic constant K were computed from slopes and  
intercepts of the lines are recorded in Table 2. The n values  
were all in the range from 0.45 0.47 territory, showing the  
swelling conduct at the underlying swelling stage was  
Figure 3: Relation between Equilibrium swelling ratio (ESR) of BSA-  
based hydrogel and preparation time in different SCWT temperature  
0
The maximum swelling achieved in 100 C after 9 minutes,  
4
9%. BSA-based hydrogels by SCWT have the high swelling  
0
at 100, 110 and 120 C after samples reached the equilibrium  
7
58  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 756-761  
overwhelmed by Fickian dispersion. Linear relations of t/S  
with t are plotted; the kinetic parameters computed from the  
slopes and intercepts of the lines are listed in Table 2. It can be  
seen that the related coefficients (R) are all beyond 0.998,  
indicating the Schotts second-order kinetic equation was  
appropriate in describing the whole swelling process. The  
results provided evidence that both models of Fickian diffusion  
and second-order schotte model fitted with experiment results.  
As it can be seen in Table 2, The Fickian diffusion model’s  
kinetic constants had increased by the increase of SCWT  
temperature. Despite the fact that Fickian kinetic model was  
better fitted to the data, model of second order diffusion had  
significantly higher R² (0.998 and above).  
results, the coagulation of BSA-based hydrogel from BSA  
solution follows second order Schott model through the whole  
swelling process. For Fickian dispersion, three stages  
happening in progression are proposed when dry gel swells in  
water: to start with, water particles diffuse into the polymer  
structure; second, the hydrated polymer chains rest; and third,  
the polymer arrange grows to the encompassing. In the first  
swelling step, (Mt/M∞≤60%), the main equation that describe  
permeation in the second step of swelling: f = Mt/M∞ = Ktn,  
where Mt was the mass of water absorbed at time t and M∞ was  
the gel mass at equilibrium, K was a characteristic constant  
showed network structure of gels and n was the diffusion  
exponent. . For n < 0.5, Fickian diffusion would be the best  
model to explain swelling producer; for 0.5 < n < 1, the  
transport would be anomalous (non-Fickian diffusion); and for  
n = 1, the relaxation of polymer chains would control the  
system. Charts of ln (f) versus ln (t) of selected hydrogels were  
driven in Fig. 5.  
The Fickian diffusion kinetic model describing a swelling  
mechanism that occurs in fast water diffusion processes using  
one rate constant (k; Table 2;(33)) whereas model of second  
order schott describes the gelation using a kinetic constant for  
slow and fast stage of water diffusion process (k and S∞; Table  
2
;(34, 35)). Second-order schott and Fickian diffusion kinetic  
models were one of the best kinetic models for explaining the  
protein-based swelling mechanism (35). On the basis of the  
proposed model, the water mechanism in BSA-based dry  
hydrogel consists of two stages. First is the fast penetration of  
the water on or near the particle surface and second is the slow  
diffusion through the particles.  
Table 2: Values of the kinetic parameters  
Fickian diffusion model Schotts model  
Sample  
2
-1  
2
N
K
R
k
1
(min ) R  
S
GBSA100 0.47 0.179 0.998  
GBSA110 0.45 0.177 0.998  
GBSA120 0.45 0.159 0.991  
33.33  
9.09  
12.82  
0.999 50  
0.999 47.62  
0.998 43.48  
These two stages can be easily identified in the figure 4.  
The fast swelling can be identified during the beginning of  
swelling process (first 3th hours), in which the swelling ratio  
increases rapidly due to high-capacity purses and mass transfer.  
As it is clear, swelling in acidic media grows more sharply in  
gel compare to the pure water. In short, the swelling kinetic  
model provided evidence that coagulation temperature (i.e.  
SCWT temperature) affects the gelation process, equilibrium  
swelling ratio of hydrogel, and the kinetic of swelling  
hydrogels. The result of swelling kinetic modelling showed that  
the gelation of BSA-based hydrogel from BSA solution under  
Sub-CW treatment follows Fickian diffusion model in early  
hours of swelling. Based on the swelling kinetic modelling  
4
Conclusion  
In the current study BSA-based hydrogels was successfully  
synthesized with Subcritical water technology. The result in  
general indicated that subcritical water treatment (SCWT)  
method is a better alternative as a current method of BSA-based  
hydrogel preparation since the BSA-based biomaterials using  
SCWT were obtained in significantly shorter time without  
adding any reagents or crosslinkers (toxic materials). It was  
found that temperature was the most influential parameter of  
preparing BSA-based hydrogel as well as initial BSA solution  
concentration.  
(a)  
(b)  
Figure 5: (a) kinetic theory of Fickian, (b) Schotts second-order kinetic model  
7
59  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 756-761  
[
Internet]. 2018 Sep  
5
[cited 2017 Oct 17];5(9):770915.  
5
References  
Williams DF. On the nature of biomaterials. Biomaterials  
Internet]. 2009 Oct 1 [cited 2018 Nov 19];30(30):5897909.  
Available from:  
https://www.sciencedirect.com/science/article/pii/S01429612090  
7261.  
Available  
from:  
1
.
http://pubs.acs.org/doi/abs/10.1021/acssuschemeng.7b01146.  
6. Clark AH, Kavanagh GM, Ross-Murphy SB. Globular protein  
gelation - theory and experiment. FOOD Hydrocoll [Internet].  
[
1
1
2
001 [cited 2018 Dec 22];15(46):383400. Available from:  
0
https://kclpure.kcl.ac.uk/portal/en/publications/globular-protein-  
gelation--theory-and-experiment(85135aff-15d2-46fb-9261-  
4
2
.
Siracusa V, Rocculi P, Romani S, Rosa MD. Biodegradable  
polymers for food packaging: a review. Trends Food Sci Technol  
5f7c0bb086b)/export.html.  
[
Internet]. 2008 Dec 1 [cited 2018 Nov 19];19(12):63443.  
Available from:  
https://www.sciencedirect.com/science/article/pii/S09242244080  
2185.  
7. Oss-Ronen L, Seliktar D. Polymer-conjugated albumin and  
fibrinogen composite hydrogels as cell scaffolds designed for  
affinity-based drug delivery. Acta Biomater [Internet]. 2011 Jan 1  
0
[
cited 2018  
https://www.sciencedirect.com/science/article/pii/S17427061100  
3363?via%3Dihub.  
8. Sun Y, Huang Y. Disulfide-crosslinked albumin hydrogels. J  
Mater Chem [Internet]. 2016 Apr 20 [cited 2018 Dec  
2];4(16):276875. Available from:  
http://xlink.rsc.org/?DOI=C6TB00247A.  
Nov 25];7(1):16370. Available from:  
3
.
Campoccia D, Montanaro L, Arciola, Renata, Carla. A review of  
the biomaterials technologies for infection-resistant surfaces.  
Biomaterials [Internet]. 2013 Nov 1 [cited 2018 Nov  
0
1
1
1
9];34(34):853354. Available from:  
https://www.sciencedirect.com/science/article/pii/S01429612130  
9174.  
B
2
0
4
5
6
.
.
.
Martins JT, Bourbon AI, Pinheiro AC, Fasolin LH, Vicente AA.  
Protein-Based Structures for Food Applications: From Macro to  
Nanoscale. Front Sustain Food Syst [Internet]. 2018 Nov 9 [cited  
9. Iemma F, Spizzirri UG, Puoci F, Muzzalupo R, Trombino S, Picci  
N. Radical Cross-Linked Albumin Microspheres as Potential Drug  
Delivery Systems: Preparation and In Vitro Studies. Drug Deliv  
2
018  
Nov  
19];2:77.  
Available  
from:  
[
Internet]. 2005 Jan 10 [cited 2018 Nov 25];12(4):22934.  
Available from:  
http://www.tandfonline.com/doi/full/10.1080/1071754059095269  
https://www.frontiersin.org/article/10.3389/fsufs.2018.00077/full.  
Mie A, Andersen HR, Gunnarsson S, Kahl J, Kesse-Guyot E,  
Rembiałkowska E, et al. Human health implications of organic  
food and organic agriculture: a comprehensive review. Environ  
Health [Internet]. 2017 [cited 2018 Nov 19];16(1):111. Available  
from: http://www.ncbi.nlm.nih.gov/pubmed/29073935.  
0
.
2
2
0. Ferry JD. Protein Gels. Adv Protein Chem [Internet]. 1948 Jan 1  
cited 2018 Nov 25];4:178. Available from:  
https://www.sciencedirect.com/science/article/abs/pii/S00653233  
8600042.  
[
Gagner J., Kim W, Chaikof E. Designing protein-based  
biomaterials for medical applications. Acta Biomater [Internet].  
0
1. Jian H, Xiong YL, Guo F, Huang X, Adhikari B, Chen J. Gelation  
enhancement of soy protein isolate by sequential low- and  
ultrahigh-temperature two-stage preheating treatments. Int J Food  
2
014 Apr 1 [cited 2018 Nov 19];10(4):154257. Available from:  
https://www.sciencedirect.com/science/article/pii/S17427061130  
5072.  
0
Sci Technol [Internet]. 2014 Dec  
5];49(12):252937. Available  
http://doi.wiley.com/10.1111/ijfs.12694.  
1
[cited 2018 Nov  
from:  
7
8
.
.
Choi SM, Chaudhry P, Zo SM, Han SS. Advances in protein-based  
materials: from origin to novel biomaterials. In Springer,  
Singapore; 2018 [cited 2018 Nov 19]. p. 161210. Available from:  
http://link.springer.com/10.1007/978-981-13-0950-2_10.  
Ma X, Sun X, Hargrove D, Chen J, Song D, Dong Q, et al. A  
Biocompatible and Biodegradable Protein Hydrogel with Green  
and Red Autofluorescence: Preparation, Characterization and in  
Vivo Biodegradation Tracking and Modeling. Sci Rep.  
2
2
2. Sun XD, Holley RA. Factors Influencing Gel Formation by  
Myofibrillar Proteins in Muscle Foods. Compr Rev Food Sci Food  
Saf [Internet]. 2011 Jan 1 [cited 2018 Nov 25];10(1):3351.  
Available http://doi.wiley.com/10.1111/j.1541-  
337.2010.00137.x.  
3. Carter DC, Ho JX. Structure of serum albumin. Adv Protein Chem  
Internet]. 1994 [cited 2018 Nov 25];45:153203. Available from:  
from:  
4
2
2
2
016;6(January):112.  
[
9
1
1
1
.
Kharkar PM, Kiick KL, Kloxin AM, Anseth KS, Kobel S, Lutolf  
MP, et al. Designing degradable hydrogels for orthogonal control  
of cell microenvironments. Chem Soc Rev [Internet]. 2013 Apr 22  
http://www.ncbi.nlm.nih.gov/pubmed/8154369.  
4. Amdursky N, Mazo MM, Thomas MR, Humphrey EJ, Puetzer JL,  
St-Pierre J-P, et al. Elastic serum-albumin based hydrogels:  
mechanism of formation and application in cardiac tissue  
engineering. Journalof Mater Chem B [Internet]. 2018 Sep 21  
[
cited 2017 Jun 30];42(17):733572. Available from:  
http://xlink.rsc.org/?DOI=C3CS60040H.  
0. Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-Based  
Hydrogels As Scaffolds for Tissue Engineering Applications: A  
Review. Biomacromolecules [Internet]. 2011 May 9 [cited 2018  
[
cited 2018 Nov 25];6(35):560412. Available from:  
http://www.ncbi.nlm.nih.gov/pubmed/30283632.  
2
5. Baler K, Michael R, Szleifer I, Ameer GA. Albumin hydrogels  
formed by electrostatically triggered self-assembly and their drug  
delivery capability. Biomacromolecules [Internet]. 2018 Oct 13  
Nov  
29];12(5):1387408.  
Available  
from:  
http://pubs.acs.org/doi/abs/10.1021/bm200083n.  
1. Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S.  
Superabsorbent hydrogel composites and nanocomposites: A  
review. Polym Compos [Internet]. 2011 Feb 1 [cited 2018 Nov  
[
cited 2018 Nov 25];15(10):362533. Available from:  
http://www.ncbi.nlm.nih.gov/pubmed/25148603.  
2
2
6. Liu WR, Langer R, Klibanov AM. Moisture-induced aggregation  
of lyophilized proteins in the solid state. Biotechnol Bioeng  
1
9];32(2):27789.  
Available  
from:  
http://doi.wiley.com/10.1002/pc.21046.  
[
Internet]. 1991 Jan 20 [cited 2018 Dec 22];37(2):17784.  
2. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug  
delivery. Adv Drug Deliv Rev [Internet]. 2008 Dec 14 [cited 2018  
Available from: http://www.ncbi.nlm.nih.gov/pubmed/18597353  
7. Lewis LM, Johnson RE, Oldroyd ME, Ahmed SS, Joseph L,  
Saracovan I, et al. Characterizing the freeze-drying behavior of  
model protein formulations. AAPS PharmSciTech [Internet]. 2010  
Dec [cited 2018 Dec 22];11(4):158090. Available from:  
http://www.ncbi.nlm.nih.gov/pubmed/21057905.  
8. Wang W, Kang Y, Wang A. Synthesis, characterization and  
swelling properties of guar gum-g-poly(sodium acrylate-co-  
styrene)/muscovite superabsorbent composites. Sci Technol Adv  
Mater [Internet]. 2010 [cited 2018 Dec 22]; Available from:  
Nov from:  
https://www.sciencedirect.com/science/article/pii/S0169409X080  
2275.  
19];60(15):163849.  
Available  
0
1
1
1
3. Abdelmoez W, Yoshida H. Synthesis of a novel protein-based  
plastic using sub-critical water technology. AIChE J [Internet].  
2
2
006 Jul [cited 2016 Oct 4];52(7):260717. Available from:  
http://doi.wiley.com/10.1002/aic.10849.  
4. Sheehan JD, Savage PE. Molecular and Lumped Products from  
Hydrothermal Liquefaction of Bovine Serum Albumin. [cited  
http://iopscience.iop.org/article/10.1088/1468-6996/11/2/025006/pdf.  
2
018  
May  
19];  
Available  
from:  
2
9. Takeda K, Wada A, Yamamoto K, Moriyama Y, Aoki K.  
Conformational change of bovine serum albumin by heat  
treatment. J Protein Chem [Internet]. 1989 Oct [cited 2017 Oct  
https://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.7b02854.  
5. Aida TM, Oshima M, Smith RL. Controlled conversion of proteins  
into high-molecular-weight peptides without additives with high-  
temperature water and fast heating rates. ACS Sustain Chem Eng  
1
7];8(5):6539.  
Available  
from:  
http://link.springer.com/10.1007/BF01025605.  
7
60  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 756-761  
3
0. Yoshida H, Takahashi Y, Terashima M. Reaction kinetics in  
production of oil, proteins, organid acids, and amino acids from  
fish meat by Sub-Critical water hydrolysis. biotechnol. 1999;199–  
2
02.  
3
1. Rogalinski T, Herrmann S, Brunner G. Production of amino acids  
from bovine serum albumin by continuous sub-critical water  
hydrolysis. J Supercrit Fluids [Internet]. 2005 Nov 1 [cited 2018  
May from:  
https://www.sciencedirect.com/science/article/pii/S08968446050  
0586.  
19];36(1):4958.  
Available  
0
3
3
2. Viganó J, Machado AP da F, Martínez J. Sub- and supercritical  
fluid technology applied to food waste processing. J Supercrit  
Fluids. 2014 Sep;96:27286.  
3. Pourjavadi, Mahdavinia GR. Superabsorbency, pH-sensitivity and  
swelling kinetics of partially hydrolyzed chitosan-g-  
poly(acrylamide) hydrogels. Turkish J Chem. 2006;30(5):595–  
6
08.  
3
3
4. Huang Y, Zhang B, Xu G, Hao W. Swelling behaviours and  
mechanical properties of silk fibroin  polyurethane composite  
hydrogels. Compos Sci Technol [Internet]. 2013;84:1522.  
Available  
from:  
http://dx.doi.org/10.1016/j.compscitech.2013.05.007.  
5. Gharekhani H, Olad A, Mirmohseni A, Bybordi A. Superabsorbent  
hydrogel made of NaAlg-g-poly(AA-co-AAm) and rice husk ash:  
Synthesis, characterization, and swelling kinetic studies.  
Carbohydr Polym [Internet]. 2017 Jul 15 [cited 2018 May  
2
2];168:113. from:  
https://www.sciencedirect.com/science/article/pii/S01448617173  
303X.  
Available  
0
7
61