Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 797-803  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
The Potential of Napier Grass Leaf Fibres as an  
Acoustic Absorber  
1
*
1
1
1
1
Zaiton Haron , Khairulzan Yahya , Nurathirah Mohd Fasli , Nadirah Darus , Suhaida Galib ,  
2
1
Herni Halim , Tuan Nor Farazila Tuan Mat  
1
Department of Structures and Materials, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johore Bahru, MALAYSIA  
2
School of Civil Engineering, University Sains Malaysia, Penang, Malaysia  
Received: 14/09/2019  
Accepted: 17/04/2020  
Published: 20/05/2020  
Abstract  
Acoustic absorbers are introduced to treat poor acoustic enviroment in rooms. However, many available acoustic absorbers in the market  
are composed of hazardous materials. Therefore, there are demands for the use of sustainable materials in the production of acoustic absorbers.  
This research investigated the sound absorption potential of grass leaf fibres, i.e. Napier grass, as material for acoustic absorbers. Various  
bound Napier grass fibre samples, with and without binder under normal press with different thickness, were prepared and tested by using an  
impedance tube test for sound absorption coefficient (SAC) determination. Samples with binder under hot press with thickness of 10mm  
were also prepared. The results revealed that 5mm and 20mm fibres, respectively, when bonded with urea formaldhyde (UF) under normal  
press and with thickness of 30mm, produced a relatively high SAC for frequencies at 500 Hz, 1000 Hz and 2500 Hz, and thus resulted in a  
high average NRC value of 0.59. This exceeded the value for synthetic fibre-glass and was similar to rockwool. Moreover, the sound  
absorption performance of 20 mm fibre size hot pressed samples were better than hot pressed 5mm fibre size at 500 Hz frequency until 1000  
Hz, as well as the bulk and fibre bonded with UF samples for all frequencies. This study concluded that non-toxic Napier grass fibres can be  
used in the production of sustainable acoustic absorbers.  
Keywords: Napier grass, Sound absorber, Natural fibre, Sound absorption coefficient  
Introduction1  
Napier's fibres cellulose content is relatively high and this  
1
indicates that the fibres are strong and of good quality and may be  
suitable for sound absorber. According to Daud et al. [19], the  
percentage of chemical composition content of Napier fibres is  
said to be 12.3% of cellulose, 80.4% of holocellulose, 68.2% of  
hemicellulose, 52.0% of NaOH and 10.7% of lignin. This grass  
Acoustic absorbers alter the quality of acoustics inside a  
room. Absorber materials consist of synthetic fibres like glass  
wool and rock-wool, which are normaly used due to its good  
acoustic performance. However, the production of synthetic  
absorbers have ‘negative’ impacts to the environment due to  
-
1
-1  
produces a higher dry matter yield of 70 tonnes ha yr [20].  
When noise incident strikes an absorber the sound energy can be  
dissipated in the form of heat, and thus results in the reduction of  
sound energy. The absorbed sound energy can be described by  
sound absorption coefficient (SAC) between 0 and 1 at some  
frequencies. A value of 0 indicates that the surface of absober has  
poor absorption while that approaching 1 shows good absorption.  
According to Mamtaz et al. [21], natural fibres were found to have  
good (SAC) at mid and high frequencies, provided that the  
thickness is sufficient to provide the viscous friction through air  
vibration. Xiang et al. [8] found that kapok fibre with thickness  
2
significant release of CO into the atmosphere. Not only that, but  
also the disposition of this synthetic absorber is harmful to the  
environment. Therefore, alternative green materials that can  
produce comparable sound absorbers are needed and of current  
interest. Researches had so far explored the capability of natural  
fibres as an acoustic absorber, such as tea-leaf fibres [1, 2], paddy  
fibres [4, 5], jute fibres [6], ijuk (Arenga pinnata) [7], kapok fibres  
[8], kenaf fibres [9], sisal-kenaf composite [10], pineapple threads  
[11] and sugarcane baggasse [12, 13]. However, none of the  
studies was conducted on grass leaf fibres. One of the grass types  
that is fast-growing, easily found and abundant in Malaysia is  
Napier or elephant grass. Napier grass is also easily found in the  
tropical and subtropical regions across the world [14] (Figure 1).  
Napier resembles sugarcane in height and in method of  
propagation [15]. But in terms of value added, sugarcane fibres  
are not only useful for some new product inventions [16-18] but  
are also good at absorbing sound [12].  
4
0mm produced an average noise reduction coefficient higher  
than that of 20mm, especially at low frequencies. In addition,  
density of materials also changed the sound absorption  
performance. Koizumi et al. [22] found that increased sample  
density could increase acoustic performance in the range of  
medium to high frequency regions.  
Corresponding author: Zaiton Haron, Department of Structures and Materials, School of Civil Engineering, Faculty of Engineering,  
Universiti Teknologi Malaysia, Johore Bahru, MALAYSIA .Email: zaitonharon@utm.my.  
7
97  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 797-803  
(a)  
Napier grass/elephant  
(b) Napier grass distribution arround the world [12]  
Figure 1: Napier grass  
Density is related to porosity because at high frequency, the  
higher the density the higher the porosity and sound absorption.  
Yahya and Desmond [23] found that when bamboo fibre densities  
increased, the number of bamboo fibre per unit area of the sample  
will also increase. This would allow increased friction between  
surfaces, causing the high acoustic energy to be dissipated, and  
thus increased the SAC of sample.  
In these mixtures, samples of approximately the same density  
were developed by using 5mm and 20 mm sized fibres that were  
treated with 5% of NAOH to remove lignin. Meanwhile, for the  
third mixture hot pressed method was carried out with samples of  
higher density. In the first mixture, absorber samples which  
contained 5mm NAF fibres without binder and have bulk density  
3
of 160 kg/m with thickness of 10mm, 20mm and 30 mm were  
3
Resin may change sound absorption performance of natural  
fibres as it filled the spaces within and between fibres  
obtained, and denoted as Bulk (5mm)_160 kg/m . This density  
was selected after several trials for its workable criteria. Next,  
3
[
21](Mamtaz et al. ), and thus increased flow resistivity and sound  
absorption higher than those unbonded. Furthermore, Antonio  
24] suggested that a fibrous layer which underwent compression  
with the same density of 160 kg/m , absorber samples that  
contained 20mm NAF combined with 5mm NAF fibres in the  
ratio of 70:30 were prepared, also with thickness of 10mm, 20mm  
and 30 mm. These absorber samples were denoted as Bulk  
[
produced high tortuosity behaviour due to decrease in  
characteristic lengths and porosity. Tortuosity for porous media is  
3
(20mm)_160 kg/m . The second mixture samples were bonded  
the ratio of the characteristic length (L  
e
) to the sample thickness  
with UF to achieve slightly higher density samples with  
thickness of 10mm, 20mm and 30 mm for 5mm and 20mm fibre  
size, respectively. The series for 5mm NAF bonded with 40% UF  
(L) [25]. Antonio [24] mentioned that passageways for sound  
travels became small and caused the sound waves to use these  
available small passageways for their propagation, and thus  
reducing the SAC at certain frequencies.  
3
by weight was to achieve a density of 186 kg/m (5mm+UF-186  
3
kg/m ). Meanwhile, the series for 20mm NAF combined with  
Therefore, this paper , demonstrates the acoustic performance  
of Napier grass leaf fibre (NAF) as a sound absorber. Sound  
absorber specimens made from two different sizes of fibre,  
bonded and unbonded with resin were produced. The effects of  
fibre sizes, density and thickness of absorber specimens on  
absorption coefficient and noise reduction were investigated.  
Microstructures and porosity were used to explain the behaviour  
of acoustical performance. The benefit of study is  
thedetermination of NAF potential as an alternative material for  
sound absorber.  
5mm NAF and bonded with UF in mix ratio of 60:40, was for  
3
3
density of 212 kg/m (20mm+UF-212 kg/m ). The mix  
ratio,which was also obtained after several trials, were made to  
obtain a good intact between fibres and UF. After the fibres were  
mixed, the mixture of materials was manually pressed in a 98mm  
diameter cylindrical casing with specified thickness (Figure 4),  
and then it underwent a drying process.  
Bulk 5mm  
Bulk 20mm  
5mm+UF  
2
Materials and Methods  
Three types of mixtures were developed to obtain the NAF  
20mm+UF  
absorber specimens with specific density. The first and second  
mixtures were to obtain samples without and with binder,which  
were fabricated with hand lay up dan normal press method.  
Figure 4: Specimens with and without binder  
Third samples were specimen with UF under the hot press method  
3
3
for high density samples (927 kg/m and 1059 kg/m ) of 10mm  
thickness (hot pressed 5 mm +UF and hot pressed 20mm+UF).  
The mixtures were developed by mix ratio of 50:50 (fibre:UF).  
The mixture then placed in a 190.5mm x 190.5 mm x 20mm box  
mould made of woods (Figure 5(a)). This wooden mould was  
designed for producing a sample that run the compression process  
in a hot press machine to form the required sample size. The  
mould was then removed from its position and transferred to a hot  
press machine and heated up to 130 °C for 2 min (Figure 5). After  
(
a) Napier grass leaves  
(b) Shredded Napier  
grass leaves fiber  
(c) Urea  
formaldehyde  
(UF)  
fiber with 5mm size  
(size 20mm)  
Figure 3: Materials used  
7
98  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 797-803  
that, the 'hot press' machine was released and the composite was  
3
cooled at room temperature. This resulted in density of 927 kg/m  
3
and 1059 kg/m for 5 mm and 20 mm NAF bonded with UF,  
respectively.  
5
mm HP  
(a) Impedance Test according  
to ISO 10534-2  
(b) Specimen holder  
5
m
m
N
A
F
+
or  
Figure 6: Sound absorption test  
UF  
50:50  
Compacted  
Hot pressed  
20 mm HP  
3
Result and Discussions  
2
0
m
m
N
A
F
3.1 Microstructures of materials  
Figures 7(a) depicts SEM micrographs for the magnification  
of 300x which shows fibrillar structure of NAF while Figure 7(b)  
for magnification 1000x evidences in a rough surface topography  
of open cell as well as the porosity existing in fibres. An energy-  
dispersive X-ray spectroscopy analysis (EDX) analysis shows  
that the open NAF cells contain Carbon (55.8%), Oxygen  
Figure 5: Specimen preparation of hot press NAF: (a) UF
mixture in wooden mould (c) hot press machine (d) specim
hot press  
The acoustic performance of each absorber sample was  
measured by using an impedance tube in accordance with ASTM  
E1050-98 [26] (Figure 6). Absorber samples were placed at a  
sample holder located the end of the impedance tube. The surface  
of the sample is normally encountered towards incoming sound  
waves, while the other end of the impedance tube is the location  
of the sound source. The sound source consists of white noise  
that is generated from the computer. Two microphones are  
performed with a loud generator of loud speakers. SAC for one  
third octave band were meaured and stored in the computer.  
Based on the SAC values, noise reduction coefficient (NRC),  
a scalar quantity to represent the amount of sound energy  
absorbed when it pounds a surface, were determined. Similar with  
SAC, NRC can define the nature of a surface based on the value,  
in which approaching 0 indicates the surface has good reflection,  
whereas approaching 1 depicts good absorption. NRC is  
determined by calculating the arithmetic mean of the absorption  
coefficient at 250 Hz, 500 Hz, 1000 Hz and 2000 Hz. The acoustic  
performance of rockwool and fibreglass absorber available in the  
current market were also tested for comparison. A scanning  
electronic microscope (SEM) was used for specimens’  
microstructure observation.  
(43.8%), Natrium (0.3%) and Calcium (0.1%) (Table 2).  
(
a) Structure of fibres under  
(b) Structure of fibres under  
magnification 1000x  
magnification 300x  
Figure 7: SEM micrographs for Fibres  
Figure 8(a) and Figure 8 (b) shows the UF filled in and  
between fibres (UF) and evidence that some macro pores (p)  
existed in the hot press sample surfaces. Based on these SEM  
micrographs, it showed that both fibre sizes were bonded well  
with UF but there were less pores for the 20mm sized fibre  
samples as compared to 5mm sized fibre samples. The bonding  
between fibres and UF matrix for 5mm sized fibre samples were  
examined by EDX showed that chemical elements of UF matrix  
Table 1: Mix proportion of NAF absorber  
Type of  
Sample  
5mm  
20mm  
NAF,  
%
NAF  
%
UF,  
%
Thickness,  
mm  
Density,  
ρ(kg/m3)  
NAF %  
(among others carbon, oxygen, silicon, alluminium, and kalium)  
were present in the fibres bonded with UF, which indicated the  
penetration of UF in the open cells (Table 2).  
Bulk NAF  
100  
30  
-
100  
100  
60  
0
10,20,30  
10,20,30  
10, 20,30  
10, 20, 30  
10  
160  
160  
186  
212  
927  
5
mm  
Bulk-NAF  
0mm  
NAF 5mm +  
UF  
NAF  
0mm+ UF  
Hot  
70  
-
0
2
uf  
p
100  
30  
40  
40  
50  
p
p
70  
-
60  
2
100  
50  
p
p
press_NAF  
mm  
p
uf  
p
5
p
p
Hot  
30  
70  
50  
50  
10  
1059  
uf  
p
press_NAF  
0mm  
uf  
2
(
a) Hot pressed 5 mm fibres  
(b) Hot pressed 20mm fibres  
size bonded with UF  
size bonded with UF  
Figure 8: SEM micrographs for hot pressed samples  
7
99  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 797-803  
Table 2: Chemical composition detected by using EDX test  
waves energy to decrease due to a longer time taken by sound  
waves to travel through the sample. This can be seen through the  
SEM analysis in Figure 8, whereby 20mm sized fibre samples  
demontrated a denser surface. Therefore, sound energy loss  
through friction between sound waves and air molecules; hence  
improved sound absorption, especially at 1000 Hz. It was also  
observed that the bonded samples with higher density, either  
compacted manually or hot pressed, had higher NRC despite their  
different SAC curves.  
Fibres  
bonded with  
Fibres  
without UF  
Composition  
UF matrix  
UF  
56.5  
41.0  
1.0  
0.6  
0.1  
0
0.4  
0.2  
0.2  
0.1  
Carbon (C)  
Oxygen (O)  
Silicon (Si)  
Aluminum (Al)  
Kalium (K)  
68.5  
30.9  
0
0
0
0
0
0.1  
0.5  
0
71.4  
23.0  
2.6  
2.3  
0.2  
0.1  
0.1  
0.1  
0
Ferum (Fe)  
Magnesium (Mg)  
Calsium (Ca)  
Natrium (Na)  
Phosphorus (P)  
1
0.9  
0
0
0
.8  
.7  
.6  
0
3
.2 Effect of fibres size and density on sound absorption  
Generally, sound incidents were absorbed by the rough  
surface of topogphy and porosity of fibres (Figure 7). In detail,  
the effect of fibre sizes and density on the SAC of NAF absorber  
samples with the same thickness of 10mm can be seen in Figure  
0.5  
0
.4  
.3  
0
0.2  
0.1  
0
0
500  
1000  
1500  
2000  
9
. Bulk sample made of 5 mm sized NAF had a high SAC value  
Frequency, Hz  
as compared to those bulk sample made of 20 mm sized NAF  
fibres. The finding was similar with a study reported by Mamtaz  
et al. [21] which found that more subtle fibres absorbed more  
sound than thick and large-sized fibres. However, the trend was  
not similar with samples bonded with UF due to slight disparities  
in density. The binder increased the density of samples and caused  
uncertain effect on SAC. NAF with sizes of 5mm and 20mm  
bonded with UF produced a similar SAC with those bulk of 5mm.  
This implied that the coarser fibre of 20mm bonded with UF  
sample showed a consistent increase in sound absorption  
performance. The SAC for the 20mm NAF bonded with UF  
sample increased at 630 Hz up to 2000 Hz higher than the bulk  
sample.  
Bulk(5mm)_160 kg/m3  
Bulk(20mm)_160 kg/m3  
5
mm + UF_186kg/m3  
0mm+ UF_212kg/m3  
2
Hot press_5mm_927 kg/m3  
Hot press_20mm_1059 kg/m3  
Figure 9: Effect of size of fibres and density on sound absorption of 10  
mm thickness of samples  
5
00 Hz  
1000 Hz  
2000 Hz  
NRC  
The highest SAC was produced by the 20mm fibre size hot  
pressed sample with value of 0.74 at a frequency of 1000 Hz.  
Moreover, the sound absorption performance of 20 mm fibre size  
hot pressed samples was better than the hot pressed 5mm fibre  
size samples at 500 Hz frequency to 1000 Hz and the bulk and  
fibre bonded with UF samples for all frequency. This difference  
was actually related to the density value of the absorber samples,  
whereby the density value for 20mm fibre size hot pressed  
absorber samples was the highest, followed by fibre size of 5mm  
hot pressed samples, 20mm fibre size bonded with UF, 5mm fibre  
size bonded with UF and all bulk samples.  
It could also be seen that the hot press samples had a  
bell-  
shaped pattern of SAC. This implied that the SAC curves for hot  
pressed demonstrated the tortuosity effect (with peak value) and  
higher SAC for frequency that ranged below 1600 Hz. The denser  
sample caused the peak of SAC curve to shift to the 1000Hz. It  
can be seen that the hot pressed sample with coarser fibres yielded  
a more tortuous path. As the fibres were compressed, the sound  
that travelled through the fibres decreased and air flow resistivity  
increased. The sound waves found their way through the small  
passageways available for their propagation, and thus the viscous  
losses also decreased [24], reducing the SAC at frequency greater  
than 1600 Hz. Further, Figure 10 shows the effect of density on  
sound absorption at 500 Hz, 1000 Hz and 2000 Hz by absorber  
samples of 10 mm thickness. Generally, with the same sample  
thickness, hot pressed samples with 20 mm fibres showed higher  
SAC for 500 Hz, 1000 Hz and 2000 Hz, because hot press the  
characteristic length increase giving a more tortuous path. Air  
flow resistivity increased and this caused the incident sound  
Figure 10: Effect of absorbers samples density on sound absorption at  
00 Hz, 1000 Hz, 2000 Hz and NRC of 10 mm thickness of samples  
5
3
.3 Effect of thickness on sound absorption  
Figure 11 indicates the SAC of NAF 20mm sized fibre  
absorber samples, which increases by thickness, with and without  
binder. Generally, as the sample thickness increases, the SAC for  
all frequency ranges are also increased. Based on the achieved  
results, the variation in thickness altered the SAC curve and peak  
shape. The sample of 30 mm thickness, with binder and without  
binder, and manually compacted had a bell-shaped SAC curve,  
denoting the more tortuous path and reached a peak SAC  
8
00  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 797-803  
approximation of more than 0.99 at 1250 Hz. The SAC for 20mm  
and 10mm thicknesses samples reached 0.99 and 0.52,  
respectively, at frequency 2000Hz. For low frequency at 500 Hz  
the bonded samples with UF reached a higher SAC of 0.60 as  
compared to those unbonded samples.  
1
0
.8  
0.6  
0
.4  
.2  
0
0
1
0
500  
1000  
1500  
2000  
0.5  
Frequency, Hz  
Bulk 5mm-10mm  
Bulk 5mm-20mm  
Bulk 5mm-30mm  
5mm+UF-10mm  
0
0
500  
1000  
1500  
2000  
Frequency, Hz  
5mm+UF-20mm  
Figure. 12: SAC of absorber samples with fibre size of 5mm for  
thickness of 10mm, 20mm, and 30mm with and without binder.  
Bulk 20mm-10mm  
Bulk 20mm-30mm  
Bulk 20mm-20mm  
20mm+UF-10mm  
20mm+UF-30mm  
20mm+UF-20mm  
Figure 11: Sound absorption of absorber with NAF fibre size of 20mm  
for thickness of 10mm, 20mm, and 30mm with and without binder.  
Similarly, absorber samples of 5 mm sized fibres with UF and  
bulk at 30 mm thicknesses resulted in more tortuous paths and  
reached similar values of SAC (Figure 12). Moreover, both have  
higher SAC values as compared to the other thickness. The  
thicker samples demonstrated a higher SAC at lower frequency.  
Furthermore, the NRC increased as the thickness increased, for  
both samples with bulk density and bonded with UF (Figure 11).  
The trend that NRC showed was that the thicker the sample, the  
higher the NRC; this was similar to Xiang et al. [8] finding which  
used kapok fibre. This showed that sample thickness caused the  
incident sound waves energy to decrease due to the longer time  
taken by sound waves to travel through the sample. UF filled the  
spaces within and between fibres and in the fibre samples. It  
increased flow resistivity and increased sound absorption higher  
than those unbonded. This was in agreement with Mamtaz et al.  
Figure 13: NRC of absorber samples with fiber size of 5 and 20mm for  
thickness of 10mm, 20mm, and 30mm with and without binder.  
[
21] who concluded that resin may achieve effective sound  
1
absorption performance. Also, NRC is average absorption, and  
thus it showed that finer fibre samples, both bonded and  
unbonded, demonstrated higher noise reduction capability,  
whereas the coarser fibre samples showed a higher peak SAC  
curve. This finding was similar with a study reported by Mamtaz  
et al. [21], in which more subtle fibres absorbed more sound than  
the thick and large-sized fibres.  
0
0
.8  
.6  
0.4  
0
.2  
0
3
.4 Comparison with current synthetic fibres  
Figure 14 and Figure 15 compare the acoustic performance of  
0
500  
1000  
1500  
2000  
absorber samples with the samples of rockwool and fibreglass  
absorber available in the current market of about the same range  
of thickness. It can be seen that except for bulk 5mm sample, all  
Napier fibres were able to achieve a high SAC value of greater  
than 0.8 as compared to the SAC value of synthetic fibres at a  
frequency range of 1000 Hz and above.  
Frequency, Hz  
Bulk 5mm-30mm  
5mm-UF-30mm  
Bulk 20mm-30mm  
Fiber galss-25 mm  
Rockwool 35 mm  
2
0mm-UF-30mm  
Figure 14: Comparison of sound absorption of NAF absorber samples  
with rockwool and fibreglass.  
8
01  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 797-803  
ii.  
NAF with UF binder has higher acoustic performance as  
compared to the bulk sample  
250 Hz  
500 Hz  
1000 Hz  
2000 Hz  
NRC  
iii.  
Under the hot press condition, the 20mm fibres size has  
higher acoustic performance than those 5 mm fibre size  
hot press. SAC curves are more tortuous as compared to  
those bulk or bound with UF  
iv.  
v.  
Generally, the thicker the sample, the higher the acoustic  
performance  
The best sound absorption performance by considering  
the low and high frequencies is given by 5mm fibre size  
bound with UF. It is better than the 25 mm thick  
fibreglass and 35 mm thick rockwool samples.  
It can be inferred that NAF poses great significant potential  
to be utilised as raw material for acoustic absorber production.  
Therefore, this may overcome the environmental problem caused  
by the production of synthetic acoustic absorbers.  
Acknowledgements.  
This work is supported by the Research University Grant  
Scheme (GUP: Q.J130000.2522.19H76) financed by the Ministry  
of Higher Education, Malaysia.  
References  
1
.
Ersoy S, Küçük H. Investigation of industrial tea-leaf-fibre waste  
material for its Sound absorption properties, Applied Acoustics  
7
0(1):215-220, 2009.  
2
.
Wong K, Ahsan Q, Putra A, Subramonian S, Nor MJM. Preliminary  
study on the sound absorption behavior of spent tea leaves filled with  
natural rubber latex binder. J Teknologi, 79(5-2):5964. 2017.  
Mediastika CE. Jerami sebagai bahan baku panel akustik pelapis  
dinding. DIMENSI, J Archit Built Environ, 36(1):20. 2009.  
Ahmed OH, Husni MH, Anuar AR, Hanafi MM. Towards sustainable  
use of potassium in pineapple waste. Sci World J 4:10071013. 2004.  
Putra A, Abdullah Y, Efendy H, Mohamad WMFW, Salleh NL.  
Biomass from paddy waste fibers as sustainable acoustic material.  
3
4
5
.
.
.
Figure 15: Comparison of NRC for NAF absorber samples with  
thickness of 30mm with and without binder with synthetic absorber.  
Advances  
in  
Acoustics  
and  
Vibration,  
2013.  
At frequency 500 Hz and below, all NAF absorber samples,  
except unbonded with fibre size of 20mm, were satisfactory and  
more than the synthetic rockwool samples, which were 5 mm  
thicker. Meanwhile, all samples exceeded the SAC of synthetic  
fibreglass of 25mm. Obviously, the 5mm bonded with UF had  
SAC of more than 0.5 at frequency 500 Hz and above, which was  
better than than the fibreglass and rockwool absorbers. As shown  
in Figure 14, the 5mm fibre bonded with UF and unbonded  
samples of thickness 20mm30mm, produced relatively high  
SAC for frequencies 500 Hz, 1000 Hz and 2500 Hz, and thus  
resulting in high NRC values of 0.55 to 0.6, which exceeded the  
synthetic fibreglass and similar to those of rockwool. However,  
when considering the higher SAC at 500 Hz and the sample  
condition which was more solid and bound together, the 5mm  
bonded with UF with 30mm thickness sample indeed has  
potential to replace synthetic fibres in the manufacture of acoustic  
panels.  
http://dx.doi.org/10.1155/2013/605932.  
6. Fatima S, Mohanty A. Acoustical and fire-retardant properties of jute  
composite materials. Applied Acoustics 72(2):10814. 2011  
7. Ismail L, Ghazali MI, Mahzan S, Zaidi AMA. Sound absorption of  
Arenga Pinnata natural fiber. World Acad Sci Eng Technol 67:804–  
6
. 2010.  
8
.
Xiang Hai-Fan, Wang D, Liu H, Zhao N, Xu J. Investigation on sound  
absorption properties of kapok fibers. Chinese Journal of Polymer  
Science (English Edition). 31. 521-529. 10.1007/s10118-013-1241-  
8
. 2012.  
9. Lim ZY, Putra A, Nor MJM, Yaakob MY. Sound absorption  
performance of natural kenaf fibres. Applied Acoustics130:107–14.  
2018.  
0. Dunne R, Desai D, Sadiku R. A Review of the Factors that Influence  
Sound Absorption and the Available Empirical Models for Fibrous  
1
Materials,  
Acoust  
Aust  
45:  
453.  
2017.  
https://doi.org/10.1007/s40857-017-0097-4.  
1
1
1
1. Azma P, Khai HO, Mohd Zulkefli S, Mohd Jailani MN, Muhamad  
HH, Iwan P. Sound absorption of extracted pineapple-leaf fibres,  
Applied Acoustics 136 915, 2018.  
2. Putra A, Abdullah Y, Efendy H, Farid WN, Ayob MR, Sajidin Py  
MS. Utilizing Sugarcane Wasted Fibers as a Sustainable Acoustic  
Absorber, Procedia Engineering 53: 632-638, 2013.  
3. Carvalhoa STM, Mendesa LM, Cesar AAdS, Flórez JB, Blanco J,  
Mori FA. Rabelo GF. Acoustic Characterization of Sugarcane  
Bagasse Particleboard Panels, Mat. Res. 18(4), 2015.  
14. Negawo AT, Teshome A, Kumar A, Hanson J, Jones C.  
Opportunities for Napier Grass (Pennisetum purpureum)  
Improvement Using Molecular Genetics. Agronomy. 7. 2017.  
4
Conclusions  
In this paper, the acoustic performance of NAF absorber  
samples with and without binder was evaluated. It was found  
that:  
i.  
Bulk samples of 5 mm size of fibre has higher acoustic  
performance as compared to those samples with 20 mm  
fibre size;  
8
02  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 797-803  
1
5. Edward P. Richard EP, Anderson WF. Sugarcane, Energy Cane and  
Napier Grass, Cellulosic Energy Cropping Systems, First Edition.  
Edited by Douglas L. Karlen. John Wiley & Sons, Ltd. 2014.  
1
1
1
1
6. Reza SMS. Experimental Studies of Strength and Cost Analysis of  
Mortar Using Bagasse Waste Obtained from Sugarcane Factory of  
Bangladesh, Journal of Environmental Treatment Techniques 7(3):  
3
00-305, 2019.  
7. Reza SMS, Islam S. Utilization Potential of Waste from Sugarcane  
Factory of Bangladesh as Partial Replacement of Cement in Concrete  
Journal of Environmental Treatment Techniques 7(1): 109-112,  
2
019.  
8. AssefaAragaw T. Proximate Analysis of Cane Bagasse and  
Synthesizing Activated Carbon: Emphasis on Material Balance .  
Journal of Environmental Treatment Techniques 4(4): 102-110,  
2
016.  
9. Daud Z, Mohd Hatta M Z, Mohd Kassim ASMK. and Mohd Aripin  
A. Analysis of Napier grass (Pennisetum purpureum) as a potential  
alternative fibre in paper industry, Material Research Innovation,  
2
014.  
2
2
2
2
0. Zailan MZ, Yaakub H and Jusoh S. Yield and Nutritive Quality of  
Napier (Pennisetum Purpureum) Cultivars as Fresh and Ensiled  
Fodder. The Journal of Animal & Plant Sciences, 1(28): 63-72, 2018.  
1. Mamtaz H, Fouladi MH, Al-Atabi M, Namasivayam SN. Acoustic  
Absorption of Natural Fiber Composites, Journal of engineering,  
2
016. http://dx.doi.org/10.1155/2016/5836107.  
2. Koizumi T, Tsujiuchi N, Adachi A. The development of sound  
absorbing materials using natural bamboo fibers. High Performance  
Structures and Materials, 4:157166, 2002.  
3. Yahya MN, Desmond DVSC. A Review on the Potential of Natural  
Fibre for Sound Absorption Application, IOP Conf. Ser.: Mater. Sci.  
Eng. 226 012014, 2017.  
2
2
4. Antonio J. Acoustic behaviour of fibrous materials. Chapter 11,  
Woodhead Publishing Limited, 2011.  
5. Rui Z, Man X, Roberto VN, Kay W. Influence of pore tortuosity on  
hydraulic conductivity of pervious concrete: Characterization and  
modelling. Construction and Building Materials 125: 11581168,  
2
016.  
2
6. ASTM E1050-98(2006), Standard Test Method for Impedance and  
Absorption of Acoustical Materials Using A Tube, Two Microphones  
and A Digital Frequency Analysis System, ASTM International,  
West Conshohocken, PA, 2006.  
8
03