2020, Volume 8, Issue 2, Pages: 567-572  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Treatment of Landfill Leachate using Granular  
Multi-Stage Anaerobic Reactor: Optimisation  
through Response Surface Methodology  
1
*
2
3
Aida Batrisyia Jasni , Shreeshivadasan Chelliapan , Mohd Fadhil Md Din and Nithiya  
Arumugam2  
1
School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia  
2
Department of Engineering, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur,  
Malaysia  
Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment, Universiti Teknologi Malaysia,  
3
Skudai, 81310, Johor, Malaysia  
Received: 16/09/2019  
Accepted: 11/02/2020  
Published: 20/05/2020  
Abstract  
One of the most hazardous sources of pollution these days is landfill leachate. This harmful wastewater is not only affecting the  
environment, but also the health of beings surrounding the landfills. Numerous treatments have been used to treat this recalcitrant wastewater;  
however, anaerobic treatment has been in focus in recent years. In this study, we investigated the interactive effects of chemical oxygen  
demand (COD), leachate percentage and pH on the performance of a granular multi-stage anaerobic reactor (GMSAR) treating landfill  
leachate. Response surface methodology (RSM) was utilised to project the interaction effects of the operating conditions of the treatment  
system in terms of COD removal and biogas yield. The optimum region of the GMSAR was acquired at influent COD of 1239 mg/L, a  
leachate percentage of 14.2% and a pH of 7.3. These variables resulted in a 71.9% COD removal and 65.9mL/d of biogas yield. The  
percentage of leachate and COD influent resulted respectively in the most effective parameters on the COD removal and biogas yield of  
GMSAR.  
Keywords: Landfill leachate, Anaerobic treatment, Multi-stage anaerobic reactor, Response surface methodology, Biogas yield  
(
3). Leachate formed from water runoff at landfill often causes  
1
Introduction1  
pollution to the soil, groundwater and surface water (4). Leachate  
enters the surroundings from the bottom of the landfill through  
unsaturated soil stratum and flows to the groundwater and  
eventually to surface water via hydraulic connections. The  
discharge of treated or raw leachate from the treatment facility  
may also taint the environment and affect public health (5).  
1
.1 Landfill leachate  
Most of the developing countries are facing a major problem  
in terms of waste disposal. The disposal of municipal solid waste  
MSW) by dumping or burying it in a designated site is called  
(
landfilling. This, however, does not solve the problem as it  
basically transfers the MSW from urban areas to landfills (1). The  
disposal and improper management of MSW in landfills provide  
the opportunity for toxic substances in MSW to degrade into a  
liquid form called landfill leachate. Generally, landfills can be  
classified into five levels which are levels 0, I, II, III and IV. Table  
Table 1: Classes of landfill sites in Malaysia (6, 7).  
Level  
0
I
Type of Landfill  
Open Dumping  
Controlled tipping  
1
1
shows the classifications of landfill sites in Malaysia. Out of  
58 landfills nationwide, only 17 sites are categorised as sanitary  
II  
III  
IV  
Sanitary landfill with bund and daily cover  
Sanitary landfill with leachate recirculation system  
Sanitary landfill with leachate treatment facilities  
landfills whereas the rest of the sites are classified as unsanitary  
landfills. Level II is regarded as a semi-sanitary landfill due to the  
absence of leachate treatment facilities (2). The first two levels of  
landfills are the most worrisome as the numbers of these type of  
landfills are the highest in the country. These landfills are todays  
main cause of groundwater pollution as they do not have any layer  
of protection to keep the leachate from seeping into the ground  
Leachate is liquid rich in organic matter which can be  
distinguished by its colour, mainly brownish or viscous black.  
The quality of the leachate is influenced by several determinants  
such as age, precipitation, weather variation, waste type and  
Corresponding author: Aida Batrisyia Jasni, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai,  
1310, Johor, Malaysia; E-mail: aida@civil.my.  
8
5
67  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 567-572  
composition, depending on the lifestyle of the surrounding  
population and tip structure. Kurniawan et al. (8) mentioned that  
the composition of the landfill leachate depends greatly on the age  
of the leachate. As the harmful chemical substances found in  
leachate vary, they resulted in the increment of COD value,  
making them difficult to treat. The high COD value which not  
only contains organic matter but also inorganic matter requires a  
very intricate treatment system to treat the landfill leachate.  
and statistical tool, is applied for process modelling and  
optimisation studies (19). RSM has been extensively used in  
various studies as the design of experiment (DOE) and  
optimisation tools in anaerobic digestion (1822). There is no  
information available on literature to the extent of the author’s  
knowledge, on the treatment of landfill leachate using a stage  
granular anaerobic reactor. Therefore, this study used a unique  
four-stage granular multi-stage anaerobic reactor (GMSAR) for  
the treatment of landfill leachate, focusing on the COD removal  
and biogas yield. RSM was applied as a statistically based DOE  
to study the effects of COD influent, percentage of leachate and  
pH on the removal of COD and biogas yield. The optimal  
operating parameters for the COD removal and biogas yield were  
determined.  
1
.2 Stage anaerobic treatment  
Various landfill leachate treatment methods have been studied  
such as physical, chemical and biological which consist of aerobic  
and anaerobic treatments. Recent years have shown a grown  
interest in the area of anaerobic treatments (911). Anaerobic  
digestion is a process carried out by microorganisms that are able  
to live in an oxygen-deprived environment. The disintegration of  
organic substance happens in four stages: hydrolysis,  
acidogenesis, acetogenesis, and methanogenesis.  
2
Materials and Methods  
2
.1 Wastewater characteristics  
In terms of the feed substrate, this study used a mixture of meat  
In pursuance of optimising the environment in the reactor for  
the anaerobic bacteria and to boost the specific conversion  
reactions, physical separation is added in the sludge bed of a  
staged anaerobic treatment reactor. According to Lier et al. (12),  
studies have been conducted for the treatment of carbohydrate  
wastewater under mesophilic conditions by segregating the  
anaerobes involved in anaerobic digestion. The convenience of  
staging in this study is accredited to the high sludge yield of the  
carbohydrate fermenting bacteria. As the carbohydrate is  
fermented or pre-acidified in the first stage, a high volumetric  
fraction is passed on to the next stage for the methanogens to  
increase the methane yield of the anaerobic treatment system (12).  
The advantage of a staged anaerobic treatment system is also  
supported by Zhao et al. (13) who agreed that the anaerobic  
treatment is enhanced and needed only half of the amount of  
biomass in the conventional treatment system to double the  
activity of the anaerobes in the staged treatment system.  
Intanoo et al. (14) mentioned that the arrangement of a stage  
anaerobic reactor provides an ideal surrounding for the  
breakdown of intermediates such as propionate, which is  
beneficial both in mesophilic and thermophilic treatment  
conditions. However, the type and sequence of stages should be  
thoroughly studied in the preliminary stage to select the optimum  
arrangement for a specific application. Nasr et al. (15) applied a  
staged process in an up-flow anaerobic sludge bed (UASB)  
reactor which resulted in a more stable thermophilic treatment  
system. Very low volatile fatty acids concentration and low  
hydrogen partial pressure were obtained in the last compartments.  
The simplest arrangement of a staged anaerobic reactor can be  
achieved by arranging two or more up-flow reactor in series. In  
recent years, an integrated staged reactor comprising of vertically  
and horizontally oriented reactor has been introduced in order to  
enhance the plug flow pattern and spatial biomass separation  
and yeast extract for a start-up. In anaerobic treatment, the start-  
up of the reactor is an important phase for the stabilisation of the  
reactor. The substrate used for the reactor stabilisation is crucial  
in determining a successful start-up process. Various substrates  
have been used by researchers in order to smoothen and reduce  
the time taken for the start-up process. Most of the researchers  
used glucose as their substrate during the acclimatisation period.  
Though the glucose initially showed a good result in removing  
COD, the performance of the reactor deteriorated as the pH levels  
of glucose decreased abruptly (2325). There are several  
researchers who used a different substrate for the start-up process  
such as meat extract (26). The characteristics of the meat extract  
are suitable for the start-up process as it contains vitamins, fats,  
carbohydrates, and protein. However, the COD removal was only  
7
2% which was quite low (27). A study conducted by Zupancic  
et al. (28) revealed that yeast extract is a good co-substrate which  
enhances the biomethane production of wastewater. Therefore,  
this study used a mixture of meat and yeast extracts as substrates  
during the start-up and acclimatisation period. This combination  
of both meat and yeast extracts is theoretically able to increase the  
performance of the reactor during the start-up process in terms of  
COD removal and biogas yield. The feed used in this study is a  
matured landfill leachate supplied by Worldwide Landfill Sdn  
Bhd, Jeram, Selangor. The characteristics of the leachate are  
given in Table 2. The start-up of the GMSAR was accomplished  
using a mixture dilution of Bovril soup stock and yeast extract and  
the ingredients are shown in Table 3.  
Table 2: Characteristics of matured leachate  
Results  
8.0  
Units  
-
pH  
Temperature  
COD  
26.0  
2500  
486  
°C  
mg L-1  
(16,17).  
mg L-1  
mg L-1  
The efficiency of anaerobic treatment is further increased by  
5
BOD @ 20°C  
providing the optimal conditions for wastewater treatment.  
Nonetheless, the optimisation process is conducted in an obsolete  
way where a parameter is changed while the others are kept  
constant, which is too resource-consuming (18). To overcome this  
problem, response surface methodology (RSM), a mathematical  
Total Suspended Solids  
Ammoniacal Nitrogen  
220  
7
17  
mg L-1  
(AN)  
5
68  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 567-572  
Figure 1: GMSAR configuration  
2.2 Reactor configuration  
Table 3: Ingredients of meat and yeast extract  
Ingredients  
Yeast Extract  
Protein  
Carbohydrates  
Fat  
Weight per 100 g  
The GMSAR consisted of a working volume of 11.2 L and  
equipped with sampling ports at 15 cm from the base that allowed  
biological solid and liquid samples to be withdrawn from the  
sludge bed (Figure 1). The influent wastewater entered through a  
38.4 g  
19.2 g  
0.1 g  
2
.7 cm internal diameter downcomer tube in the head plate that  
extended to within 55 cm of the reactor base and allowed feed to  
flow upward through the sludge bed. A temperature controller and  
heater strip were installed to retain the temperature at 37°C.  
Peristaltic pumps were used to control the influent feed rate to the  
GMSAR (Masterflex L/S, Easy Load II Pump Head). The  
GMSAR had anaerobic granular sludge as the sludge blanket.  
Fiber  
Sodium  
3.1 g  
4.3 g  
Thiamine  
Riboflavin  
Niacin  
Folic acid  
Vitamin B12  
Meat Extract  
Protein  
5.8 mg  
7.0 mg  
160.0 mg  
2500 μg  
15.0 μg  
2
.3 Experimental procedure  
The start-up of GMSAR lasted for 36 days. Initially, the reactor  
13.3 g  
was inoculated with the granular sludge with 40% of the reactor's  
effective volume and then filled with tap water. After that, the  
GMSAR was left for about 8 days for the acclimatisation of the  
reactor. During the start-up of GMSAR, the feed was prepared  
using 30 ml of meat and yeast extract mixture and 18 L of tap  
water which gave a COD value of 300 mg/l. The pH profile of the  
reactor during the start-up showed stable performance at an  
average pH of 7.0, which confirmed that the reactor had a suitable  
pH level. As for the COD removal efficiency, the removal  
efficiency gradually increased to 90% and the leachate was  
gradually introduced into the feed for the treatment of landfill  
leachate.  
The main objective of this study is to optimise selected variable  
factors including COD, percentage of leachate, and pH to evaluate  
the performance of the process by analysing COD removal and  
biogas yield as responses. As the variables concerned were only  
three, RSM was applied in the design of experiment using the  
Carbohydrates  
Fat  
Potassium  
Sodium  
24.4 g  
0.1 g  
1200 mg  
3510 mg  
Anaerobic granular sludge was used to seed the GMSAR. The  
utilisation of anaerobic granular sludge as the seed sludge in the  
present study was due to the efficient methane yield and pollutant  
removal as reported by Lu et al. (29). The anaerobic granular  
sludge contained a total suspended solid of 46,730 mg/L and  
4
4,940 mg/L of total volatile suspended solids. The reactor was  
filled with tap water to the working volume. Subsequently, the  
reactor was flushed with nitrogen gas to displace residual air in  
the system before introducing the feed. The reactor was allowed  
to stabilise at 37°C for 24 hours for 7 days without further  
modification.  
5
69  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 567-572  
two-level full factorial design (FFD). In the two-level FFD, the  
number of experiments is 2 , where k is the number of variables.  
Table 4 represents the value of factors in the experiment and the  
responses accordingly.  
and 85.19% of the variability in the COD removal and biogas  
k
yield responses respectively. Kainthola et al. (31) stated that the  
2
statistical model with R value in the range of 0.75  1 shows that  
it is the best fit model. Adequate precisions in Table 5 measured  
the signal to noise ratio and a value of more than 4 was desirable.  
Adequate precision of the models was adequate as the values were  
12.9235 and 8.3882 respectively. According to the model, the  
effect on each factor on the removal of COD was the percentage  
of leachate > pH > COD influent. On the other hand, the COD  
influent affected the biogas yield the most.  
Table 4: The experimental plan of GMSAR and its raw  
responses result.  
Factors  
Responses  
COD Percentage  
Influent of Leachate pH  
COD  
Removal  
(%)  
Biogas  
Yield  
(mL/d)  
59  
11.2  
84.23  
14  
37  
42  
27.35  
16.2  
Run  
(
mg/L)  
1239  
270  
1239  
270  
(%)  
0
30  
30  
0
1
2
3
4
5
6
7
8
7.3  
6.6  
7.3  
6.6  
6.6  
6.6  
7.3  
7.3  
89.7  
5.12  
59  
80.2  
23.5  
77.8  
90.7  
12.8  
Table 5: ANOVA results for responses  
Sum of  
squares  
Mean  
square  
Source  
df  
F-value p-value  
COD Removal  
Model  
A-COD  
1239  
1239  
270  
30  
0
0
8662.44  
4
1
2165.61 26.20  
467.87 5.66  
0.0114  
0.0977  
4
7
67.87  
Influent  
270  
30  
B-Percentage  
of Leachate  
C-pH  
079.31  
1
7079.31 85.65  
0.0027  
2
.4 Analytical methods  
To assess the efficiency of the GMSAR, the COD was  
537.59  
577.66  
0.9722  
1
1
537.59  
577.66  
6.50  
6.99  
0.0839  
0.0774  
AB  
2
measured based on the Standard Close Reflux Method using a  
HACH COD reactor described in the Standard Methods (No.  
R
2
Adjusted R 0.9351  
2
5
220) (APHA, 2005) while the biogas yield was determined using  
Predicted R 0.8021  
an optical bubble counter (30).  
Adeq  
1
2.9235  
Precision  
Biogas Yield  
Model  
3
Results and Discussions  
3796.95  
944.51  
2
1
1
1898.47 14.38  
2944.51 22.31  
0.0084  
0.0052  
0.0518  
3
.1 Statistical analysis  
A-COD  
Influent  
C-pH  
The FFD method was chosen to attain the correlation between  
2
the manipulating parameters and the process responses. Table 4  
shows the operating parameters involved (COD influent,  
percentage of leachate and pH) in terms of absolute units and the  
experimental data collected for the process responses (COD  
removal and biogas yield). In this study, eight experimental runs  
were performed by FFD in accordance with Table 4. The number  
852.43  
0.8519  
852.43  
6.46  
2
R
2
Adjusted R 0.7927  
Predicted R 0.6209  
Adeq  
Precision  
2
8
.3882  
k
of runs was determined using formulae 2 , where k is the number  
of factors. The experimental results were then subjected to  
response surface analysis to investigate the interactive effects of  
parameters COD influent (A), percentage of leachate (B) and pH  
3.2 COD removal and biogas yield  
In this study of landfill leachate treatment using GMSAR, B,  
AB, C and A were ascertained as significant model terms for the  
COD removal. Percentage of leachate (B) had the highest effect  
on COD removal with an F-value of 7079.31 followed by the  
interaction between COD influent and percentage of leachate, pH,  
and COD influent with F-values of 577.46, 537.59 and 467.87,  
respectively.  
The percentage of leachate played the biggest role in the  
removal of COD in this configuration of the anaerobic treatment  
system. As seen in Table 4, the COD removal decreased  
tremendously as the percentage of leachate injected into the stock  
solution increased. This result is corresponding to a study by  
Berenjkar et al. (32), whereby it was observed that the removal of  
COD decreased significantly with the increment of leachate into  
sewage sludge. The response surface plot for the relationship  
between the factors on the efficiency in removal of COD is shown  
in Figure 2. As can be seen, the COD removal decreases as the  
percentage of leachate increases. Though the COD influent was  
low, the high percentage of leachate in the stock solution reduced  
the removal of COD. This is consistent with the results of the  
variance analysis (Table 5). A high COD removal may have been  
(
C) on each factor. The regression model for the COD removal  
and biogas yield in coded terms, respectively, are as follows:  
COD Removal = -0.001754A -2.86536B + 23.42143C +  
0
.001169AB 76.88524  
Eq. (1)  
Eq. (2)  
Biogas yield = 0.039598A + 29.49286C 198.47919  
Eqs. (1) and (2) were figured out to attain the optimum value  
of each of the operating parameters to maximise the COD removal  
and biogas yield in the anaerobic treatment of landfill leachate  
using GMSAR. The adequacy and significance of the  
mathematical regression model were determined by analysis of  
variance (ANOVA). The results of the ANOVA are exhibited in  
Table 5. The F-value of the model for COD removal was 26.20,  
while the F-value for the biogas yield model was 14.38 which  
implied that both the models were significant. There were only  
1
.14% and 0.84% of chance, respectively, that the F-values this  
2
large could occur due to noise. The R value of 0.9722 revealed  
that these particular mathematical models could explain 97.22%  
5
70  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 567-572  
prevented by the toxicity of the landfill leachate itself which  
inhibited the acclimatisation of the microorganism to the  
recalcitrant wastewater (3).  
Figure 3: Surface plot of effects of COD influent and pH on the biogas  
yield  
4
Conclusions  
In this research, the GMSAR was found to be effective in  
biologically treating the landfill leachate. The RSM data showed  
the significant and interactive effects of the variables, COD  
influent, percentage of leachate and pH on the COD removal and  
biogas yield of the treatment. The results of the experiments  
revealed that GMSAR had the capability of treating the heavily  
polluted landfill leachate. The optimum conditions of the  
GMSAR were obtained at COD influent = 1239 mg/L, leachate  
percentage of 14.2% and pH at 7.3, at which the COD removal  
efficiency and biogas yield were 71% and 65 mL/d.  
Figure 2: Surface plot of effects of COD influent and percentage of  
leachate on COD removal  
Figure 3 displays the surface plot of the interaction of factors,  
COD influent and pH, on the biogas yield of this configuration of  
the landfill leachate treatment system. The most significant model  
term for the biogas yield was the COD influent which had an F-  
value of 2944.51, followed by pH with an F-value of 852.43. As  
discerned in Table 4 and variance analysis, the percentage of  
leachate did not affect the biogas yield. The largest contributor to  
the biogas yield was the COD influent. The higher the COD  
influent, the higher the biogas yield. The pH level also contributed  
to the amount of biogas yielded as the microorganism worked best  
in a near-neutral condition. The highest collection of the biogas  
yield in this study was recorded at 84 mL/d when the COD  
influent was 1239 mg/L and the pH was 7.3. The stages of  
GMSAR were for a better separation of acidogenesis and  
methanogenesis which theoretically, would be able to yield a high  
amount of biogas. However, the methanogens in the  
methanogenesis phase grew very slowly which reduced the  
consumption of volatile fatty acids (VFA), products from the  
acidogenesis stage. This resulted in the accumulation of VFA and  
inhibited the production of biogas (33, 34). This is similar to this  
study in which the biogas yield could be considered in the average  
region in comparison to the other types of anaerobic treatment  
system of landfill leachate (35,36).  
Acknowledgement  
The journal editorial board thanks the following reviewers to  
review this article. The authors would like to thank Universiti  
Teknologi Malaysia and Razak Faculty of Technology and  
Informatics for funding this research. The research was carried  
out using Vote Number Q. K130000.3040.01M17 and Q.  
K130000.2540.20H05.  
Ethical issue  
The authors are aware of and comply with the best practices  
in publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. The authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
3
.3 Process optimisation  
An experiment was conducted in the optimised condition as  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
predicted by the model to validate its accuracy and the  
experimental data corresponded to the prediction of the model  
(
Table 4). Under these optimal conditions (COD influent = 1239  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses, and manuscript writing  
mg/L, leachate percentage = 14.2% and pH = 7.3), the maximum  
COD removal and biogas yield were obtained as 71% and  
6
5mL/d, respectively. These results validated the accuracy of the  
model as the responses were comparable to the predictive values.  
5
71  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 567-572  
rotating disc electrocoagulation on cadmium removal: Parameter  
optimization and response surface methodology. Sep Purif Technol.  
References  
1
.
Sivathass Bannir S, Chelliapan S, Md. Din MF, Nasri NS, Abdullah  
N, Yuzir A. Performance of an up-flow anaerobic sludge bed (UASB)  
reactor for treating landfill leachate containing heavy metals and  
formaldehyde. Desalin Water Treat. 2017;86:518.  
2
018;195(September 2017):1219.  
2
1. Kainthola J, Kalamdhad AS, Goud V V. Optimization of methane  
production during anaerobic co-digestion of rice straw and hydrilla  
verticillata using response surface methodology. Fuel. 2019;235(July  
2
3
.
.
Samsudin MDM, Don MM. Municipal solid waste management in  
Malaysia: Current practices, challenges and prospect. J Teknol  
2
018):929.  
2
2
2. Safari M, Abdi R, Adl M, Kafashan J. Optimization of biogas  
productivity in lab-scale by response surface methodology. Renew  
Energy. 2018;118:36875.  
(Sciences Eng. 2013;62(1):95101.  
Luo J, Zhou J, Qian G, Liu J. Effective anaerobic biodegradation of  
municipal solid waste fresh leachate using a novel pilot-scale reactor:  
Comparison under different seeding granular sludge. Bioresour  
Technol. 2014;165(C):1527.  
3. Aris MAM, Chelliapan S, Md Din MF, Anuar AN, Shahperi R,  
Selvam SB, et al. Effect of organic loading rate (OLR) on the  
performance of modified anaerobic baffled reactor (MABR)  
supported by slanted baffles. Desalin Water Treat. 2017;79:5663.  
4. Yeshanew MM, Frunzo L, Luongo V, Pirozzi F, Lens PNL, Esposito  
G. Start-up of an anaerobic fl uidized bed reactor treating synthetic  
carbohydrate rich wastewater. J Environ Manage. 2016;184:45664.  
5. Alkarimiah R, Mahat SB, Yuzir A, Din MFM, Chelliapan S.  
Performance of an innovative multi-stage anaerobic reactor during  
start-up period. African J Biotechnol. 2011;10(54):11294302.  
6. Hamawand I. Anaerobic digestion process and bio-energy in meat  
industryꢀ: A review and a potential. Renew Sustain Energy Rev.  
4
5
6
.
.
.
Zhang Q, Tian B, Zhang X, Ghulam A, Fang C, He R. Investigation  
on characteristics of leachate and concentrated leachate in three  
landfill leachate treatment plants. Waste Manag. 2013;33(11):2277–  
2
2
2
2
8
6.  
Ye J, Mu Y, Cheng X, Sun D. Treatment of fresh leachate with high-  
strength organics and calcium from municipal solid waste  
incineration plant using UASB reactor. Bioresour Technol.  
2
011;102(9):5498503.  
Fauziah and Agamuthu P. Municipal Solid Waste Management in  
Malaysia: Strategies in Reducing The Dependency on Landfills. J  
Chem Inf Model. 2012;53:160.  
2
015;44:3751.  
7. Andriamanohiarisoamanana FJ, Saikawa A, Tarukawa K, Qi G, Pan  
Z, Yamashiro T, et al. Energy for Sustainable Development  
Anaerobic co-digestion of dairy manure , meat and bone meal , and  
crude glycerol under mesophilic conditionsꢀ: Synergistic effect and  
kinetic studies. Energy Sustain Dev. 2017;40:118.  
8. Zupanč GD, Škrjanec I, Marinšek Logar R. Anaerobic co-digestion  
of excess brewery yeast in a granular biomass reactor to enhance the  
production of biomethane. Vol. 124, Bioresource Technology. 2012.  
p. 32837.  
7
8
.
.
Yaacob WZW. Pengurusan sisa pepejal. 2010;151.  
Kurniawan TA, Lo WH, Chan GYS. Physico-chemical treatments for  
removal of recalcitrant contaminants from landfill leachate. J Hazard  
Mater. 2006;129(13):80100.  
9
1
.
El-Gohary FA, Kamel G. Characterization and biological treatment  
of pre-treated landfill leachate. Ecol Eng. 2016;94:26874.  
2
2
0. Dastyar W, Amani T, Elyasi S. Investigation of affecting parameters  
on treating high-strength compost leachate in a hybrid EGSB and  
fixed-bed reactor followed by electrocoagulation  flotation process.  
Process Saf Environ Prot. 2015;95:111.  
9. Lu X, Zhen G, Ledezma A, Chen M, Ni J, Hojo T, et al. Bioresource  
Technology Operation performance and granule characterization of  
1
1. Sahinkaya E, Dursun N, Ozkaya B, Kaksonen AH. Use of landfill  
leachate as a carbon source in a sulfidogenic fluidized-bed reactor for  
the treatment of synthetic acid mine drainage. Miner Eng.  
upflow anaerobic sludge blanket  
wastewater with starch as the sole carbon source. Bioresour Technol.  
015;180:26473.  
( UASB ) reactor treating  
2
2
013;48:5660.  
3
3
3
0. Shahperi R, Din MF, Chelliapan S, Aris MA, Selvam SB, Abdullah  
N. Optimization of methane production process from synthetic  
glucose feed in a multi-stage anaerobic bioreactor. Desalin Water  
Treat. 2016;3994(December):110.  
1. Kainthola J, Kalamdhad AS, Goud V V. Optimization of methane  
production during anaerobic co-digestion of rice straw and hydrilla  
verticillata using response surface methodology. Fuel.  
1
1
1
2. Lier JB van, Zee FP van der, Tan NCG, Rebac S, Kleerebezem R.  
Advances in High Rate Anaerobic Treatment: Staging of Reactor  
Systems. Water Sci Technol. 2001;44(8):1525.  
3. Zhao K, Thunman H, Pallarès D, Ström H. Control of the solids  
retention time by multi-staging a fluidized bed reactor. Fuel Process  
Technol. 2017;167:17182.  
4. Intanoo P, Rangsanvigit P, Malakul P, Chavadej S. Optimization of  
separate hydrogen and methane production from cassava wastewater  
using two-stage upflow anaerobic sludge blanket reactor (UASB)  
system under thermophilic operation. Bioresour Technol.  
2
019;235(February 2018):929.  
2. Berenjkar P, Islam M, Yuan Q. Co-treatment of sewage sludge and  
mature landfill leachate by anaerobic digestion. Int J Environ Sci  
Technol. 2019 May;16(5):246574.  
3. Galway NUI. Investigation of Microbial Community Structure and  
Function Underpinning Grass and Food Waste. 2016.  
4. Goli A, Shamiri A, Khosroyar S, Talaiekhozani A, Sanaye R, Azizi  
K. A Review on different aerobic and anaerobic treatment methods  
in dairy industry wastewater. J Environmental Treatmnt Techniques,  
2
014;173:25665.  
3
3
1
1
5. Nasr M, Tawfik A, Ookawara S, Suzuki M. Biological hydrogen  
production from starch wastewater using a novel up-flow anaerobic  
staged reactor. BioResources. 2013;8(4):495168.  
6. Alia M, Farghalya A, Roux S Le, Peu P, Dabert P, Tawfik A.  
Potentials of using non-inoculated self-aerated immobilized biomass  
reactor for post- treatment of up-flow anaerobic staged reactor  
treating high strength industrial wastewater. J Chem Technol  
Biotechnol. 2017;92(5):106575.  
2
019; 7(1): 113-141.  
3
3
5. Begum S, Anupoju GR, Sridhar S, Bhargava SK, Jegatheesan V,  
Eshtiaghi N. Evaluation of single and two stage anaerobic digestion  
of landfill leachate: Effect of pH and initial organic loading rate on  
volatile fatty acid (VFA) and biogas production. Bioresour Technol.  
1
7. Casas ME, Chhetri RK, Ooi G, Hansen KMS, Litty K, Christensson  
M, et al. Biodegradation of pharmaceuticals in hospital wastewater  
by staged Moving Bed Biofilm Reactors (MBBR). Water Res.  
2
018;251(November 2017):36473.  
6. Abdelhay A, Albsoul A, Hadidi F, Abuothman A. Optimization and  
Modeling of Biogas Production From Green Waste/Biowaste Co-  
Digestion Using Leachate and Sludge. Clean - Soil, Air, Water.  
2
015;83:293302.  
1
1
8. Optimal conditions for the biological removal of ammonia from  
wastewater of a petrochemical plant using the response surface  
methodology. 2018;4(3):31524.  
9. Rastegar SO, Mousavi SM, Shojaosadati SA, Sheibani S.  
Optimization of petroleum refinery effluent treatment in a UASB  
reactor using response surface methodology. J Hazard Mater.  
2
016;44(11):155763.  
2
011;197:2632.  
2
0. Xu L, Cao G, Xu X, He C, Wang Y, Huang Q, et al. Sulfite assisted  
5
72