Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 604-609  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Yttria Stabilized Zirconia Thin Film as Solid  
Oxide Fuel Cell Electrolyte: Temperature  
Dependent Structures and Morphology  
1
*
2
3
N. F. M. Rahimi , Sathiabama T. Thirugnana , S. K. Ghoshal  
1
Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia  
Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia  
Department ofPhysics, FacultyofScience & Laser Centre,Universiti Teknologi Malaysia 81310, Skudai, Johor, Malaysia  
2
3
Received: 23/10/2019  
Accepted: 23/02/2020  
Published: 20/05/2020  
Abstract  
Fuel Cell is an electrochemical cell that supports clean and alternative energy that is mushrooming nowadays. Being a device  
of clean energy production, highly efficient solid oxide fuel cells (SOFCs) are increasing in demands. It converts the chemical  
energy into electrical energy in an environmentally-friendly way following green technology route. The SOFCs are one type of  
technology that has great promise to improve energy efficiency and to provide the society with clean and abundant energy. Yttria-  
stabilized zirconia (YSZ) is used as theelectrolyte in SOFC wherein its synthesis with controlled properties is important to obtain  
the highest energy efficiency. The overall characteristics of the YSZ thin-film electrolyte in the SOFC are determined by its  
structures and morphologies. Based on these factors, a series of YSZ thin films were deposited on the sapphirewafer substrateby  
the dip-coating method and sintered in the temperature range of 900  1500 ˚C. The temperature dependent structural and  
morphological attributes of such thin films were determined and the prepared samples were characterized using XRD, AFM and  
Raman spectroscopy. TheXRD patterns of the samples revealed the change in the crystallinity and phase, with an increase in the  
sintering temperatures while a tetragonal structurewas observed at 1300 ˚C. Furthermore, the Raman spectral analyses supported  
the XRD results. The AFM morphology analysis of the thin films showed an increase in the grain size from 132.25 to 995.2 nm.  
The observed temperature-dependent changes in the structures and morphological attributes of these films may be useful for  
achieving high ionic conductivity required for an efficient SOFC construction.  
Keywords: SOFC, Green technology, YSZ electrolyte, Thin film, Dip-coating, Structures, Morphology  
1
Introduction  
In recent years, generating highly efficient, clean, and  
environmentally-friendly sources of energy, energy carrier,  
and many more have become one of the biggest challenges  
for researchers, engineers, and prosumers. There are a lot of  
green technologies such as biomass, fuel cell and solar cell  
13). One of thegreen technologies that have gained overall  
interest is fuel cell technology due to global warming that is  
now well underway due to the emission of flow out gasses,  
electrical efficiencies (5). Themost important part of SOFC  
is electrolyteas thesubject itself uses solid ceramic materials  
as the electrolyte (7). Zirconia is widely used in a corrosive  
environment. Usually, it can be found in pipes, steel alloys,  
bricks, ceramic, and artificial gemstones. Zirconia is also  
utilised for catalytic converters. In other words, zirconia  
materials are very universal and widely used. Pure zirconia  
1
(
(
2
ZrO ) is chosen as the electrolyte material for SOFC  
application as it has more advantages in terms of its  
properties, such as mechanical, optic, hardness, strength, and  
high ionic conductivity (810). At atmospheric pressure,  
x x  
such as CO , NO and so on (4). It is worrisome for future  
nature outcomes if this continues happening unchecked (5).  
Therefore, it is important to improve the properties of the  
YSZ electrolyte films useful for SOFCs. A fuel cell converts  
chemical energy to electrical energy in which no combustion  
is required during the process (6). In this paper, one of the  
fuel cell types called Solid Oxide Fuel Cell (SOFC) is  
presented. SOFC has the greatest potential of any fuel  
technology due to low-cost ceramic materials and high  
ZrO  
2
has three polymorphic structures between room  
temperature until its melting point is reached at 2826 ˚C,  
namely monoclinic, tetragonal, and cubic (3,11). At room  
temperature, themonoclinic structureis thermodynamically  
stable before turning tetragonal when it reaches 1170 ˚C.  
After that, above 2370 ˚C (12), a stable cubic structure is  
formed. However, the tetragonal and cubic structures can be  
Corresponding author: N. F. M. Rahimi, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310,  
Skudai, Johor, Malaysia. E-mail: fathirahrahimi@gmail.com.  
604  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 604-609  
stabilised at room temperature either by doping with cation  
covalent/trivalent as stabilisers (e.g. Y O , CaO, and MgO)  
2 3  
recorded between 20 ˚ to 90 ˚ with the step size of 0.01˚.  
Meanwhile, the Atomic Force Microscope(Nanowizard® 3  
Atomic Force Microscope) was utilised to analyse the  
morphology, surface roughness, and thickness of the thin  
films. Theimage of the AFM was recorded with a scale of 3  
µm . Raman Spectrometer (UNIDRON Micro Raman  
Mapping System) was employed to measure the vibration  
bond and crystal structure of the thin films.  
or by lowering the crystallite size so that it can fix to more  
effective applications in various fields (13). In the SOFC  
system, a cubic structure is the most stable structure for  
electrolytes and performs the best and highest ionic  
conductivity functions due to its equal number number of  
vacant oxygen sites in all crystalline lattice directions.  
2
Among all dopants used to stabilise ZrO  
2
, the most suitable  
typeis Y because of high oxygen ion conductivity. Yttria  
has the cubic form of rare earth oxide structure by itself  
according to the ordering of oxygen vacancies in thefluorite  
2
O
3
3
Results and Discussions  
3
.1 X-Ray Diffraction crystal phase analysis  
Figure 1 shows theXRD patterns of thesynthesised YSZ  
2 2 3  
structure, along with thedirections [111] (14). ZrO -Y O or  
thin films with one coating layer sintered at different  
temperatures. The samples sintered at 900, 1000, 1300,  
Yttria-stabilised zirconia (YSZ) is the cubic solid solution  
system, whereas tetragonal is also unexceptional because of  
both structures’ desire to stabiliseat a high temperature (15).  
When increasing the value of doping, the conductivity of  
YSZ will rise and reach the maximum, thus yielding many  
contributions in wide-ranging applications. It offers good  
properties such as high mechanical strength, good chemical  
stability, high level of oxygen-ion conductivity, and low  
thermal conductivity (16,17). The amount of yttriumdoping  
is one of theparameters that must becontrolled as it will later  
influence thegrain size, martensitetemperature, and strength  
properties. According to (11,18), 8mol% of doping yttrium  
show the highest ionic conductivity performance.  
1
400, and 1500 ˚C were named as YSZ9, YSZ10, YSZ13,  
YSZ14, and YSZ15, respectively. The peak appeared when  
thethin films weresintered at 1300 ˚C and above dueto grain  
growth happening during the heating process. The XRD  
patterns revealed thetetragonal structurefor YSZ13, YSZ14,  
and YSZ15 with thehighest peak (101) corresponding to the  
tetragonal structure. The peak (101) increased from YSZ13  
to YSZ14 and decreased at YSZ15. The change of crystal  
phase in the thin films is shown in Figure 2 by the shifting  
peak at (101) and its increasing intensity. The shifting  
showed that the stress and strain effect happened in the film  
growth during the heating process. The highest intensity  
indicated more crystallinity in the thin films accordingly (8).  
The crystallitesize, strain and lattice parameter were shown  
in Table 1. The crystallite size was calculated by using  
Scherrer Formula where the full width at half maximum  
(FWHM) of the most intense diffraction peak was chosen:  
2
Materials and Experimentals  
2
.1 Chemicals Materials  
Chemicals acquired from Sigma Aldrich to deposit the  
YSZ films were Yttria-stabilised zirconia (IV) oxide,  
ethanol, and polyethylene glycol (PEG).  
푘휆  
퐷 =  
2
.2 Instruments  
(1)  
훽 cos 휃  
The dip-coater machine (PTL-MM01) was used for the  
preparation of thin films. The hotplate(IKA C-MAG HS 7)  
and ultrasonic bath (BRANSON 3510) were also utilised.  
where D is Crystallite Size, k is shape factor constant, β is  
FWHM, θ is diffraction angle (in radians) and λ is  
wavelength of X-ray. The lattice strain, ε was calculated by  
Williamson-Hall relation:  
2
.3 YSZ thin films deposition  
By mixing yttria-stabilised zirconia (IV) oxide (Sigma  
Aldrich, particle size below 100 nm) with PEG as the binder  
in a certain amount of ethanol, thesuspension for dip coating  
was prepared. Themixture was stirred for 2 h on thehotplate  
at room temperature before subjected to the ultrasonic  
treatment for another 30 min. Sapphirewafer was used as the  
substrate, with a dimension of 1 cm × 1 cm. The samples  
were cleaned in the ultrasonic bath using ethanol followed  
by acetonebefore they wererinsed in distilled water and kept  
dry and clean before they could be used. The coating speed  
was fixed at 150 mm/s as each layer of the coating was  
prepared. The final process of sintering process was set for  
훽 푐표푠 휃  
=
4
(2)  
In equation 2 ε is latticestrain. Last relation equation was  
used to find the lattice parameter of tetragonal YSZ:  
1
2  
2 + 푘2  
2  
2  
=
+
2  
(3)  
where d is lattice planer sapcing, h, k, and l is the value of  
miller indices for a specific Bragg refelction, while a and c  
both is lattice parameter. A small difference was seen in the  
value of a and c for YSZ13 and YSZ14 compared to YSZ15,  
which was reflected by the change in bond distance during  
the heating process (19). Besides, the lattice parameter was  
calculated after confirming the tetragonal structure  
according to the existence of peak at (101), (002) and (110).  
Therefore, only YSZ13, YSZ14 and YSZ15 were recorded,  
whereby YSZ14 has the highest crystallite size. Moreover, a  
slightly shift peak towards the right for YSZ13 and YSZ15  
9
00 ˚C, 1000 ˚C, 1300 ˚C, 1400 ˚C, and 1500 ˚C, resulting  
in the samples labelled as YSZ9, YSZ10, YSZ13, YSZ14,  
and YSZ15 respectively, based on the temperature used.  
2
.5 Samples Characterizations  
The X-ray Diffractometer (Rigaku smartlab X-ray  
Diffractometer) With Cu Kα radiation of wavelength, λ ≈  
.154 nm) was used to analysethestructuralcharacterization  
of thin films. The pattern of X-ray diffraction (XRD) was  
0
605  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 604-609  
was observed where YSZ14 recorded the smallest stress  
value. From this analysis, it can be concluded that YSZ14 or  
1400 ˚C is the most optimizetemperaturefor preparing YSZ  
thin film electrolyte.  
Figure 1: XRD patterns of the deposited YSZ thin films  
Figure 2: Magnified view corresponding to the high intensity peak (101) from XRD  
606  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 604-609  
Figure 3: Raman spectra of the selected films  
Figure 4: a) YSZ10, b) YSZ13, c) YSZ14 and d) YSZ15 are 3-Dimensional AFM  
607  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 604-609  
Table 1: Crystallite size, lattice strain and lattice parameter  
of the prepared YSZ thin films  
Crystallite  
4
Conclusions  
A series of YSZ electrolyte thin films were deposited  
onto thec-planeof thesapphiresubstrateat different sintered  
temperatures and the samples were characterised  
accordingly. The sintering temperature variation was found  
to significantly affect the structures and morphologies of  
these films. The XRD analyses showed the formation of  
stable crystalline structures of YSZ sintered at 1400 ˚C. The  
Raman spectra confirmed the occurrence of two prominent  
crystalline YSZ peaks at 1400 ˚C, thereby supporting the  
XRD observation. The morphology of the samples sintered  
at higher temperatures revealed highly disturbed growths  
with thegrains merging together, roughening of surface, and  
size enlargements. It was worth the efforts to improve the  
YSZ thin film structures fromtetragonal to cubic as thecubic  
phase was more stable. Hence, the present findings may be  
useful for the development of SOFCs to support the green  
technology for industrial developments and humanity.  
Sample  
Code  
Lattice  
Lattice  
Size, D  
nm)  
Strain (nm) Parameter  
(
a = 3.598  
0.0054  
YSZ13  
YSZ14  
YSZ15  
24.06  
34.55  
31.02  
c = 5.186  
a = 3.601  
c = 5.186  
0.0038  
a = 3.532  
c = 5.068  
0.004  
3
.2 Raman spectra  
Figure 3 presents the selected Raman spectra of YSZ  
films sintered at 1000 ˚C, 1300 ˚C, 1400 ˚C and 1500 ˚C,  
whereby thesamples are denoted as YSZ10, YSZ13, YSZ14  
and YSZ15, respectively. The observed Raman peaks  
showed three prominent peaks related to the E  
and E (3) symmetric vibration modes of tetragonal YSZ  
crystal(20). YSZ10 and YSZ13 revealed a single peak at 500  
g g  
(1), E (2)  
g
Aknowledgments  
Authors and researchers are sincerely grateful to  
acknowledge the financial support fromUTM and Ministry  
-
1
cm , depicting a tetragonal YSZ with coupled Zr-O bonding  
and stretching mode. Thestretching mode O-Zr-O appeared  
at tetragonal YSZ of YSZ14 thin film at its peak of 281.91  
of  
Education  
through  
GUP  
Vote  
number  
-
1
cm . The three samples supported the XRD result in  
identifying thestructureof thefilm, but YSZ15 did not show  
any signal at all due to some defects occurring during high  
temperature treatments.  
Q.K1300000.2540.20H27 and FRGS 5F050.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
3
.3 Three-Dimensional (3D) AFM analysis  
(avoidance of guest authorship), dual submission and  
Figure 4 depicts the 3-Dimensional AFM images of the  
manipulation of the figures, competing interests, and the  
compliance with policies on research ethics. Authors adhere  
to publication requirements that submitted work is original  
and has not been published elsewhere in any language.  
YSZ thin films. The YSZ thin films displayed homogeneous  
surfaces for YSZ10, YSZ13, YSZ14, and YSZ15, whereas  
YSZ9 was neglected due to the peak absence in the XRD  
pattern prior. Grain growth of the YSZ thin films could be  
seen in the images. By increasing the temperature, the grain  
boundaries were distinguished and small grains stuck  
together to form larger grains. The grain size of the film is  
calculated and shown in Table 2. It could be observed that  
the grain size increased with incremental sintering  
temperatures. Similarly, the root mean square roughness  
Competing interests  
The authors declare that there is no conflict of interest  
that would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution  
for data collection, data analyses and manuscript writing  
(RMS) and average roughness (Ra) were important  
parameters, whereby the roughness also increased as the  
sintering temperature increased. Even though the roughness  
for YSZ15 decreased from 181.1 nm to 129.4 nm, the grain  
size was too big to be considered. This would be important  
for subsequent testing and analysis, such as in terms of  
electrical properties in order to achieve a high performance  
of ionic conductivity.  
References  
1. Salleh SF, Gunawan MF, ZulkarnainMF Bin,Shamsuddin AH,  
Abdullah TART. Modelling and optimization of biomass  
supply chain for bioenergy production. J Environ Treat Tech.  
2
019;7(4):68995.  
2
.
Lee TD, Ebong AU. A review of thin film solar cell  
technologies andchallenges. RenewSustain Energy Rev. 2017;  
Table 2: Grain size, RMS roughness and average roughness  
of the prepared thin film samples  
7
0:128697.  
3
.
Choudhury A, Chandra H, Arora A. Application ofsolidoxide  
fuel cell technology for power generation - A review. Renew  
Sustain Energy Rev. 2013;20:43042.  
Sample  
Code  
Grain Size RMS  
Average  
(nm)  
Roughness Roughness, Ra  
(
nm)  
(nm)  
4. Hoveidi H, Aslemand A, Borhani F, Naghadeh SF. Emission  
andHealth Costs EstimationforAir pollutants fromMunicipal  
Solid Waste Management Scenarios , Case Studyꢀ: NO x and  
SO x Pollutants , Urmia , Iran. J Environ Treat Tech.  
2017;5(1):5964.  
YSZ10  
YSZ13  
YSZ14  
YSZ15  
132.25  
209.55  
232.47  
995.2  
16.87  
25.92  
133.6  
100.4  
20.87  
42.43  
181.1  
129.4  
5
.
Stambouli AB, Traversa E. Solidoxide fuel cells ( SOFCs ): a  
review of an environmentally clean and efficient source of  
608  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 604-609  
energy. 2002;6:43355.  
6
.
Noh H-S, Son J-W, Lee H, SongH-S, Lee H-W, Lee J-H. Low  
Temperature Performance Improvement of SOFC with Thin  
Film Electrolyte and Electrodes Fabricated by Pulsed Laser  
Deposition. J Electrochem Soc. 2009;156(12):B1484.  
Mahato N,Banerjee A,Gupta A,Omar S, Balani K. Progress in  
material selectionforsolidoxide fuel cell technology: A review.  
Prog Mater Sci. 2015;72:141337.  
Manoharan D, Loganathan A, Kurapati V, Nesamony VJ.  
Unique sharp photoluminescence of size-controlled  
sonochemically synthesized zirconia nanoparticles. Ultrason  
Sonochem. 2015;23:17484.  
7
8
.
.
9
1
.
Barelli L, Barluzzi E, Bidini G. Diagnosis methodology and  
technique for solid oxide fuel cells: A review. Int J Hydrogen  
Energy. 2013;38(12):506074.  
0. Hedayat N, DuY, IlkhaniH. Reviewon fabricationtechniques  
for porous electrodes of solid oxide fuel cells by sacri fi cial  
template methods. RenewSustain Energy Rev. 2017;77(August  
2
016):122139.  
1
1
1
1
1. Badwal SPS, Foger K. Solid oxide electrolyte fuel cell review.  
Ceram Int. 1996;22(3):25765.  
2. Kisi EH, HowardCJ. Crystal structures of zirconia phases and  
their inter-relation. KeyEngMater. 1998;154(153154):136.  
3. Jacobson AJ. Materials for Solid Oxide Fuel Cells †. Chem  
Mater Rev. 2010;66074.  
4. NavrotskyA. Thermochemical insights intorefractoryceramic  
materials basedonoxides with large tetravalent cations. J Mater  
Chem. 2005;15(19):1883.  
1
1
1
5. Viazzi C, Bonino JP, Ansart F, Barnabé A. Structural study of  
metastable tetragonal YSZ powders produced via a sol-gel  
route. J Alloys Compd. 2008;452(2):37783.  
6. Figueiredo FML, Marques FMB. Electrolytes for solid oxide  
fuel cells. Wiley Interdiscip Rev Energy Environ.  
2
013;2(1):5272.  
7. ChangrongX, HuaqiangC, HongW, Pinghua Y, GuangyaoM,  
Dingkun P. Sol-gel synthesis of yttria stabilized zirconia  
membranes through controlled hydrolysis of zirconium  
alkoxide. J Memb Sci. 1999;162(12):1818.  
1
1
8. Singhal SC. SOLID OXIDE FUEL CELLSꢀ: AN OVERVIEW.  
2
004;49:9991000.  
9. Talebi T, Haji M, Raissi B, Maghsoudipour A. YSZ electrolyte  
coating on NiO-YSZ composite by electrophoretic deposition  
for solid oxide fuel cells (SOFCs). Int J Hydrogen Energy.  
2
010;35(17):94559.  
2
0. Heiroth S, Frison R, Rupp JLM, Lippert T, BarthazyMeier EJ,  
Müller Gubler E, et al. Crystallization and grain growth  
characteristics of yttria-stabilizedzirconia thinfilms grown by  
pulsed laser deposition.SolidState Ionics. 2011;191(1):1223.  
609