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Abstract 
In this paper, we establish the Hyers-Ulam-Rassias stability of ring homomorphisms and ring derivations in the uniform case on fuzzy 

Banach algebras.  
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1  Introduction1 

It seems that the stability problem of functional equations had 
been first raised by Ulam [12]. An answer to this problem has 
been given at first by Hyers [5] and then by Th. M. Rassias as 
follows [10]. Suppose 𝐸1 and 𝐸2 are two real Banach spaces and 
𝑓: 𝐸1 → 𝐸2 is a mapping. If there exist 𝛿 ≥ 0 and 0 ≤ 𝑝 < 1 such 
that ||𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦)|| ≤ 𝛿(||𝑥||𝑝 + ||𝑦||𝑝) for all 
𝑥, 𝑦 ∈ 𝐸1, then there is a unique additive mapping 𝑇: 𝐸1 → 𝐸2 
such that ||𝑓(𝑥) − 𝑇(𝑥)|| ≤ 2𝛿||𝑥||𝑝/|2 − 2𝑝| for every 𝑥 ∈ 𝐸1. 
In 1991, Gajda [2] gave a solution to this question for 𝑝 > 1. For 
the case 𝑝 = 1, Th. M. Rassias and Šemrl [11] showed that there 
exists a continuous real-valued function 𝑓:ℝ → ℝ such that 𝑓 can 
not be approximated with an additive map. In 1992, Gavruta [3] 
generalized the result of Rassias for the admissible control 
functions. Moreover the approximately mappings have been 
studied extensively in several papers. (See for instance [6], [7]). 
Fuzzy notion introduced firstly by Zadeh [13] that has been 
widely involved in different subjects of mathematics. Zadeh’s 
definition of a fuzzy set characterized by a function from a 
nonempty set 𝑋 to [0,1]. Later, in 1984 Katsaras [8] defined a 
fuzzy norm on a linear space to construct a fuzzy vector 
topological structure on the space. Defining the class of 
approximately solutions of a given functional equation one can 
ask whether every mapping from this class can be somehow 
approximated by an exact solution of the considered equation in 
the fuzzy Banach algebra. 

To answer this question, we use here the definition of fuzzy 
normed spaces given in [8] to exhibit some reasonable notions of 
fuzzy approximately ring homomorphism in fuzzy normed 
algebras and we will prove that under some suitable conditions an 
approximately ring homomorphism 𝑓 from an algebra 𝑋 into a 
fuzzy Banach algebra 𝑌 can be approximated in a fuzzy sense by 
a ring homomorphism 𝑇 from 𝑋 to 𝑌. Let 𝐴 be a real or complex 
Banach algebra. A mapping 𝐷:𝐴 → 𝐴 is said to be a ring 
derivative if 
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 𝐷(𝑎 + 𝑏) = 𝐷(𝑎) + 𝐷(𝑏),        for every 𝑎, 𝑏 ∈ 𝐴; 
𝐷(𝑎𝑏) = 𝐷(𝑎)𝑏 + 𝐷(𝑏)𝑎,         for every 𝑎, 𝑏 ∈ 𝐴.  
 

It is of interest to consider an approximately ring derivation 
on a Banach algebra. First of all, does there exist an 
approximately ring derivation 𝑓 which is not an exact ring 
derivation? If such a mapping 𝑓 do exist, then it seems natural to 
consider the following stability problem: does there exist ring 
derivation near to 𝑓? The purpose of this paper is to prove the 
stability of fuzzy approximately ring derivations. In fact, under a 
mild assumption that 𝐴 is without order, we show the Bourgin-
type [1] super stability result. 
 
2  Preliminaries 

 In this section, we provide a collection of definitions and 
related results which are essential and used in the next 
discussions. Definition 2.1  Let 𝑋 be a real linear space. A 
function 𝑁: 𝑋 × ℝ → [0,1] is said to be a fuzzy norm on 𝑋 if for 
all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡, 𝑠 ∈ ℝ, 
(N1) 𝑁(𝑥, 𝑐) = 0 for 𝑐 ≤ 0; 
(N2) 𝑥 = 0 if and only if 𝑁(𝑥, 𝑐) = 1 for all 𝑐 > 0; 
(N3) 𝑁(𝑐𝑥, 𝑡) = 𝑁(𝑥,

𝑡

|𝑐|
) if 𝑐 ≠ 0; 

(N4) 𝑁(𝑥 + 𝑦, 𝑠 + 𝑡) ≥ 𝑚𝑖𝑛{𝑁(𝑥, 𝑠), 𝑁(𝑦, 𝑡)}; 
(N5) 𝑁(𝑥, . ) is a non-decreasing function on ℝ and 

𝑙𝑖𝑚𝑡→∞𝑁(𝑥, 𝑡) = 1; 
(N6) for 𝑥 ≠ 0, 𝑁(𝑥, . ) is (upper semi) continuous on ℝ. 
The pair (𝑋, 𝑁) is called a fuzzy normed linear space.  

Example 2.2 Let (𝑋, ||. ||) be a normed linear space. Then  
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𝑁(𝑥, 𝑡) =

{
 
 

 
 0,  𝑡 ≤   0; 

𝑡

||𝑥||
,  0 < 𝑡 ≤   ||𝑥||; 

1,  𝑡 > ||𝑥||.

 

is a fuzzy norm on 𝑋. Definition 2.3 Let (𝑋, 𝑁) be a fuzzy 

normed linear space and {𝑥𝑛} be a sequence in 𝑋. Then {𝑥𝑛} is 

said to be convergent if there exists 𝑥 ∈ 𝑋 such that 

𝑙𝑖𝑚𝑛→∞𝑁(𝑥𝑛 − 𝑥, 𝑡) = 1 for all 𝑡 > 0. In that case, 𝑥 is called 

the limit of the sequence {𝑥𝑛} and we denote it by 𝑁 −
𝑙𝑖𝑚𝑛→∞𝑥𝑛 = 𝑥. Definition 2.4 A sequence {𝑥𝑛} in 𝑋 is called 

Cauchy if for each 𝜀 > 0 and each 𝑡 > 0 there exists 𝑛0 such that 

for all 𝑛 ≥ 𝑛0 and all 𝑝 > 0, we have 𝑁(𝑥𝑛+𝑝 − 𝑥𝑛, 𝑡) > 1 − 𝜀. 

It is known that every convergent sequence in a fuzzy normed 

space is Cauchy and if each Cauchy sequence is convergent, then 

the fuzzy norm is said to be complete and furthermore the fuzzy 

normed space is called a fuzzy Banach space. Let 𝑋 be an algebra 

and (𝑋, 𝑁) be complete fuzzy normed space. The pair (𝑋, 𝑁) is 

said to be a fuzzy Banach algebra if for every 𝑥, 𝑦 ∈ 𝑋 and 𝑠, 𝑡 ∈
ℝ we have 𝑁(𝑥𝑦, 𝑠𝑡) ≥ 𝑚𝑖𝑛{𝑁(𝑥, 𝑠), 𝑁(𝑦, 𝑡)}. Example 2.5 

Let(𝑋, ||. ||) be a Banach algebra. Define,  

𝑁(𝑥, 𝑎) = {
0,  𝑎 ≤   ||𝑥||; 
1,  𝑎 > ||𝑥||.

 

Then (𝑋,𝑁) is a fuzzy Banach algebra. Theorem 2.6  Let 𝑋 
be a linear space and (𝑌,𝑁) be a fuzzy Banach space. Let 𝜑:𝑋 ×
𝑋 → [0,∞) be a control function such that 
 
 𝜑̃(𝑥, 𝑦) = ∑∞𝑛=0 2

−𝑛𝜑(2𝑛𝑥, 2𝑛𝑦) < ∞,  
 
for all 𝑥, 𝑦 ∈ 𝑋. Let 𝑓: 𝑋 → 𝑌 be a uniformly approximately 
additive function with respect to 𝜑 in the sense that 
 
 𝑙𝑖𝑚𝑡→∞𝑁(𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦), 𝑡𝜑(𝑥, 𝑦)) = 1  
 

uniformly on 𝑋 × 𝑋. Then 𝑇(𝑥) = 𝑁 − 𝑙𝑖𝑚𝑛→∞
𝑓(2𝑛𝑥)

2𝑛
 for all 𝑥 ∈

𝑋 exists and defines an additive mapping 𝑇: 𝑋 → 𝑌 such that if 

for some 𝛿 > 0, 𝛼 > 0 

 𝑁(𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦), 𝛿𝜑(𝑥, 𝑦)) > 𝛼,  
 
 for all 𝑥, 𝑦 ∈ 𝑋; then 
 
 𝑁(𝑇(𝑥) − 𝑓(𝑥), 𝛿/2𝜑̃(𝑥, 𝑥)) > 𝛼,  
 
 for every 𝑥 ∈ 𝑋. Proof. [9]. Corollary 2.7  Let 𝑋 be a normed 
linear space and (𝑌, 𝑁) a fuzzy Banach space. Let 𝜃 ≥ 0 and 0 ≤
𝑞 < 1. Suppose that 𝑓: 𝑋 → 𝑌 is a function such that 
 
𝑙𝑖𝑚𝑡→∞𝑁(𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦), 𝑡𝜃(||𝑥||

𝑞 + ||𝑦||𝑞)) = 1  
 
uniformly on 𝑋 × 𝑋. Then there is a unique additive mapping 
𝑇: 𝑋 → 𝑌 such that 
 

 𝑙𝑖𝑚𝑡→∞𝑁(𝑇(𝑥) − 𝑓(𝑥),
2𝜃𝑡||𝑥||𝑞

1−2𝑞−1
) = 1  

 
 uniformly on 𝑋. Proof. [9].  

Remark 2.8  Using the sequence {2𝑛𝑓(2−𝑛𝑥)}, one can get 
dual version of Theorem 2.6 and Corollary 2.7 when the control 
function satisfies 

 
 ∑∞𝑛=0 2

𝑛𝜑(2−𝑛𝑥, 2−𝑛𝑦) < ∞.  
 

In particular, the similar results hold for 𝜑(𝑥, 𝑦) = ||𝑥||𝑞 +
||𝑦||𝑞, where 𝑞 > 1. Stability and super stability of fuzzy 
approximately ring homomorphisms and fuzzy approximately 
ring derivations (N. Eghbali Tue Dec 24 00:16:25 2019). 
  
3  Stability of fuzzy approximately ring 

homomorphism 
We start our work with definition of fuzzy approximately ring 

homomorphism. Definition 3.1 Let 𝑋 be a linear algebra, (𝑌, 𝑁) 
a fuzzy Banach algebra and 𝜃 ≥ 0. We say that 𝑓: 𝑋 → 𝑌 is a 
fuzzy approximately ring homomorphism map if  

 
𝑙𝑖𝑚𝑡→∞𝑁(𝑓(𝑥𝑦) − 𝑓(𝑥)𝑓(𝑦), 𝑡𝜃||𝑥||

𝑞||𝑦||𝑞) = 1,  
 
uniformly on 𝑋 × 𝑋. Theorem 3.2  Let 𝑋 be a normed linear 
algebra and (𝑌, 𝑁) a fuzzy Banach algebra. Let 𝜃 ≥ 0 and 𝑞 ≥
0, 𝑞 ≠ 1. Suppose that 𝑓: 𝑋 → 𝑌 is a function such that  

 
𝑙𝑖𝑚𝑡→∞𝑁(𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦), 𝑡𝜃(||𝑥||

𝑞 + ||𝑦||𝑞)) = 1,  
 
uniformly on 𝑋 × 𝑋 and  
 
𝑙𝑖𝑚𝑡→∞𝑁(𝑓(𝑥𝑦) − 𝑓(𝑥)𝑓(𝑦), 𝑡𝜃||𝑥||

𝑞||𝑦||𝑞) = 1, (3.1) 
 
uniformly on 𝑋 × 𝑋. Then there is a unique ring homomorphism 
𝑇: 𝑋 → 𝑌 such that 
 

 𝑙𝑖𝑚𝑡→∞𝑁(𝑇(𝑥) − 𝑓(𝑥),
2𝜃𝑡||𝑥||𝑞

|1−2𝑞−1|
) = 1  

 
uniformly on 𝑋. Proof. Theorem 2.6 and Corollary 2.7 show that 
there exists a unique additive mapping 𝑇 such that  
 

𝑙𝑖𝑚𝑡→∞𝑁(𝑇(𝑥) − 𝑓(𝑥),
2𝜃𝑡||𝑥||𝑞

|1−2𝑞−1|
) = 1,                                 (3.2) 

 
where 𝑥 ∈ 𝑋. Now we only need to show that 𝑇 is a multiplicative 
function. Put 𝑠 =

1−𝑞

|1−𝑞|
 and fix 𝑥, 𝑦 ∈ 𝑋 arbitrarily. By (3.2) we 

have 
 

𝑙𝑖𝑚𝑡→∞𝑁(𝑛
−𝑠𝑇(𝑛𝑠𝑥) − 𝑛−𝑠𝑓(𝑛𝑠𝑥),

2𝜃𝑡𝑛−𝑠||𝑛𝑠𝑥||𝑞

|1−2𝑞−1|
) = 1.  

 
Using the additivity of 𝑇 we have: 
 

𝑙𝑖𝑚𝑡→∞𝑁(𝑇(𝑥) − 𝑛
−𝑠𝑓(𝑛𝑠𝑥),

2𝜃𝑡𝑛𝑠(𝑞−1)||𝑥||𝑞

|1−2𝑞−1|
) = 1.  

 

Since 𝑠(𝑞 − 1) < 0 we obtain 𝑙𝑖𝑚𝑛→∞
2𝜃𝑡𝑛𝑠(𝑞−1)||𝑥||𝑞

|1−2𝑞−1|
= 0. So 

there is some 𝑛1 > 0 such that 
2𝜃𝑡𝑛𝑠(𝑞−1)||𝑥||𝑞

|1−2𝑞−1|
< 𝑡 for all 𝑛 ≥ 𝑛1 

and 𝑡 > 0. Hence 𝑙𝑖𝑚𝑡→∞𝑁(𝑇(𝑥) − 𝑛
−𝑠𝑓(𝑛𝑠𝑥), 𝑡) ≥

𝑙𝑖𝑚𝑡→∞𝑁(𝑇(𝑥) − 𝑛
−𝑠𝑓(𝑛𝑠𝑥),

2𝜃𝑡𝑛𝑠(𝑞−1)||𝑥||𝑞

|1−2𝑞−1|
). So 

 
𝑁 − 𝑙𝑖𝑚𝑛→∞𝑛

−𝑠𝑓(𝑛𝑠𝑥) = 𝑇(𝑥)                                                  (3.3) 
 
Using (3.1) we get 
 
𝑙𝑖𝑚𝑡→∞𝑁(𝑓((𝑛

𝑠𝑥)𝑦) − 𝑓(𝑛𝑠𝑥)𝑓(𝑦), 𝑡𝜃||𝑛𝑠𝑥||𝑞||𝑦||𝑞) = 1,  
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for all 𝑥, 𝑦 ∈ 𝑋. Thus 
 
𝑙𝑖𝑚𝑡→∞𝑁(𝑛

−𝑠𝑓((𝑛𝑠𝑥)𝑦) −
𝑛−𝑠𝑓(𝑛𝑠𝑥)𝑓(𝑦), 𝑡𝜃𝑛𝑠(𝑞−1)||𝑥||𝑞||𝑦||𝑞) = 1,  

 
for all 𝑥, 𝑦 ∈ 𝑋. Since 𝑙𝑖𝑚𝑛→∞𝑡𝜃𝑛

𝑠(𝑞−1)||𝑥||𝑞||𝑦||𝑞 = 0, there is 
some 𝑛2 > 0 such that  
 
𝑡𝜃𝑛𝑠(𝑞−1)||𝑥||𝑞||𝑦||𝑞 < 𝑡,  
 
for all 𝑛 ≥ 𝑛2. We get 
 
 𝑙𝑖𝑚𝑡→∞𝑁(𝑛

−𝑠𝑓((𝑛𝑠𝑥)𝑦) − 𝑛−𝑠𝑓(𝑛𝑠𝑥)𝑓(𝑦), 𝑡) ≥
𝑙𝑖𝑚𝑡→∞𝑁(𝑛

−𝑠𝑓((𝑛𝑠𝑥)𝑦) −
𝑛−𝑠𝑓(𝑛𝑠𝑥)𝑓(𝑦), 𝑡𝜃𝑛𝑠(𝑞−1)||𝑥||𝑞||𝑦||𝑞).  

 
So 
 
𝑁 − 𝑙𝑖𝑚𝑛→∞𝑛

−𝑠𝑓((𝑛𝑠𝑥)𝑦) = 𝑁 −
𝑙𝑖𝑚𝑛→∞𝑛

−𝑠𝑓(𝑛𝑠𝑥)𝑓(𝑦)                                                         (3.4) 
 

By putting 𝑛0 = 𝑚𝑖𝑛{𝑛1, 𝑛2} and applying (3.3) and (3.4) we 
have 
 
 𝑇(𝑥𝑦) = 𝑁 − 𝑙𝑖𝑚𝑛→∞𝑛

−𝑠𝑓(𝑛𝑠(𝑥𝑦)) = 𝑁 −
𝑙𝑖𝑚𝑛→∞𝑛

−𝑠𝑓(𝑛𝑠𝑥)𝑓(𝑦) = 𝑇(𝑥)𝑓(𝑦),  
 
for all 𝑥, 𝑦 ∈ 𝑋. From this equation by the additivity of 𝑇 we have: 
 
 𝑇(𝑥)𝑓(𝑛𝑠𝑦) = 𝑇(𝑥(𝑛𝑠𝑦)) = 𝑇(𝑛𝑠𝑥)𝑓(𝑦) = 𝑛𝑠𝑇(𝑥)𝑓(𝑦),  
 
for all 𝑥, 𝑦 ∈ 𝑋. Therefore 𝑇(𝑥)𝑛−𝑠𝑓(𝑛𝑠𝑦) = 𝑇(𝑥)𝑓(𝑦). By 
letting 𝑛 tend to infinity we see that 𝑇(𝑥)𝑇(𝑦) = 𝑇(𝑥)𝑓(𝑦) for 
all 𝑥, 𝑦 ∈ 𝑋. To prove the uniqueness property of 𝑇, assume that 
𝑇∗ is another ring homomorphism satisfying  
 

𝑙𝑖𝑚𝑡→∞𝑁(𝑇
∗(𝑥) − 𝑓(𝑥),

2𝜃𝑡||𝑥||𝑞

|1 − 2𝑞−1|
) = 1 

 
We have 
 
 𝑁(𝑇(𝑥) − 𝑇∗(𝑥), 𝑡) ≥ 𝑚𝑖𝑛{𝑁(𝑇(𝑥) − 𝑛−𝑠𝑓(𝑛𝑠𝑥), 𝑡/

2), 𝑁(𝑇∗(𝑥) − 𝑛−𝑠𝑓(𝑛𝑠𝑥), 𝑡/2)}  
 
Given, 𝜀 > 0 by (3.3) we can find some 𝑡0 > 0 such that 
 
𝑁(𝑇(𝑥) − 𝑛−𝑠𝑓(𝑛𝑠𝑥), 𝑡/2) ≥ 1 − 𝜀, 
 
and 
 
𝑁(𝑇∗(𝑥) − 𝑛−𝑠𝑓(𝑛𝑠𝑥), 𝑡/2) ≥ 1 − 𝜀,  
 
for all 𝑡/2 ≥ 𝑡0, 𝑥 ∈ 𝑋 and 𝑛 ∈ ℕ. So 
 
 𝑁(𝑇(𝑥) − 𝑇∗(𝑥), 𝑡) ≥ 1 − 𝜀,  
 
for all 𝑡 > 0. Hence by items (N5) and (N2) of definition 2.1 we 
have 𝑇(𝑥) = 𝑇∗(𝑥) for all 𝑥 ∈ 𝑋. In the following example we 
will show that Theorem 3.2 does not necessarily hold for 𝑞 = 1. 
 

Example 3.3 Let 𝑋 be a Banach algebra, 𝑥0 ∈ 𝑋 and 𝛼, 𝛽 are 
real numbers such that |𝛼| ≥ 1 − ||𝑥||||𝑦|| and |𝛽| ≤ ||𝑥|| for 
every 𝑥 ∈ 𝑋. Put: 
 
𝑓(𝑥) = 𝛼𝑥 + 𝛽𝑥0||𝑥||, (𝑥 ∈ 𝑋).  

 
Moreover for each fuzzy norm 𝑁 on 𝑋, we have 
 
𝑁(𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦), 𝑡(||𝑥|| + ||𝑦||)) 
= 𝑁(𝛽𝑥0(||𝑥 + 𝑦|| − ||𝑥|| − ||𝑦||), 𝑡(||𝑥|| + ||𝑦||))  

= 𝑁(𝛽𝑥0,
𝑡(||𝑥||+||𝑦||)

||𝑥+𝑦||−|𝑥||−||𝑦||
) ≥ 𝑁(𝛽𝑥0, 𝑡)(𝑥, 𝑦 ∈ 𝑋, 𝑡 ∈ ℝ).  

 
Therefore by the item (N5) of the Definition 2.1, we get  
 𝑙𝑖𝑚𝑡→∞𝑁(𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦), 𝑡(||𝑥|| + ||𝑦||)) = 1,  
  uniformly on 𝑋 × 𝑋. Also,  

 𝑁(𝑓(𝑥𝑦) − 𝑓(𝑥)𝑓(𝑦), 𝑡||𝑥||||𝑦||) = 𝑁(𝛼𝑥𝑦 + 𝛽𝑥0||𝑥𝑦|| −

(𝛼𝑥 + 𝛽𝑥0||𝑥||)(𝛼𝑦 + 𝛽𝑥0||𝑦||), 𝑡||𝑥||||𝑦||) = 𝑁(𝛼𝑥𝑦 +

𝛽𝑥0||𝑥𝑦|| − 𝛼
2𝑥𝑦 − 𝛼𝛽𝑥𝑥0||𝑦|| − 𝛼𝛽𝑥0𝑦||𝑥|| −

𝛽2𝑥0
2||𝑥||||𝑦||, 𝑡||𝑥||||𝑦||) ≥ 𝑚𝑖𝑛{𝑁((1 −

𝛼)𝛼𝑥𝑦,
𝑡||𝑥||||𝑦||

5
),𝑁(||𝑥𝑦||𝛽𝑥0,

𝑡||𝑥||||𝑦||

5
), 𝑁(𝛽2𝑥0

2||𝑥||||𝑦||,
𝑡||𝑥||||𝑦||

5
), 

𝑁(𝛼𝛽𝑥𝑥0||𝑦||,
𝑡||𝑥|||𝑦||

5
), 𝑁(𝛼𝛽𝑥0𝑦||𝑥||,

𝑡||𝑥||||𝑦||

5
)}  

 
where 𝑥 ∈ 𝑋 and 𝑡 ∈ ℝ. Taking into account the following 

inequalities 
 

𝑁((1 − 𝛼)𝛼𝑥𝑦,
𝑡||𝑥||||𝑦||

5
) = 𝑁 (𝛼𝑥𝑦,

𝑡||𝑥||||𝑦||

5|1−𝛼|
) ≥

𝑁 (𝛼𝑥𝑦,
𝑡

5
)                                                                                         (3.5) 

 
𝑁(||𝑥𝑦||𝛽𝑥0,

𝑡||𝑥||||𝑦||

5
) = 𝑁(𝛽𝑥0,

𝑡||𝑥||||𝑦||

5||𝑥𝑦||
) ≥ 𝑁(𝛽𝑥0, 𝑡/5), (3.6) 

 
 
𝑁(𝛽2𝑥0

2||𝑥||||𝑦||,
𝑡||𝑥||||𝑦||

5
) = 𝑁(𝛽2𝑥0

2, 𝑡/5),                   (3.7) 
 
 
𝑁(𝛼𝛽𝑥𝑥0||𝑦||,

𝑡||𝑥||||𝑦||

5
) = 𝑁(𝛼𝑥𝑥0,

𝑡||𝑥||

5|𝛽|
) ≥ 𝑁(𝛼𝑥𝑥0, 𝑡/5), (3.8) 

 
 
𝑁(𝛼𝛽𝑥0𝑦||𝑥||,

𝑡||𝑥||||𝑦||

5
) = 𝑁(𝛼𝑥0𝑦,

𝑡||𝑦||

5|𝛽|
) ≥ 𝑁(𝛼𝑥0𝑦, 𝑡/5), (3.9) 

 
 it can be easily seen that 𝑙𝑖𝑚𝑡→∞𝑁(𝑓(𝑥𝑦) −

𝑓(𝑥)𝑓(𝑦), 𝑡||𝑥||||𝑦||) = 1 uniformly on 𝑋 × 𝑋 and therefore the 
conditions of Theorem 3.2 are fulfilled. Now we suppose that 
there exists a unique ring homomorphism 𝑇 satisfying the 
conditions of Theorem 3.2. By the equation 

  
𝑙𝑖𝑚𝑡→∞𝑁 (𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦), 𝑡(||𝑥|| + ||𝑦||)) = 1(3.10) 
 
for given 𝜀 > 0, we can find some 𝑡0 > 0 such that 
 
 𝑁(𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦), 𝑡(||𝑥|| + ||𝑦||)) ≥ 1 − 𝜀,  
 
for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 ≥ 𝑡0. By using the simple induction on 
𝑛, we shall show that 
 
𝑁(𝑓(2𝑛𝑥) − 2𝑛𝑓(𝑥), 𝑡𝑛2𝑛||𝑥||) ≥ 1 − 𝜀.                 (3.11) 
 
putting 𝑦 = 𝑥 in (3.10), we get (3.11) for 𝑛 = 1. Let (3.11) holds 

for some positive integer 𝑛. Then  



Journal of Environmental Treatment Techniques                                                                                                                                        2020, Volume 8, Issue 2, Pages: 582-588 

585 

 

 
 𝑁(𝑓(2𝑛+1𝑥) − 2𝑛+1𝑓(𝑥), 𝑡(𝑛 + 1)2𝑛+1||𝑥||) ≥

𝑚𝑖𝑛{𝑁(𝑓(2𝑛+1𝑥) − 2𝑓(2𝑛𝑥), 𝑡(||2𝑛𝑥|| +
||2𝑛𝑥||)),𝑁(2𝑓(2𝑛𝑥) − 2𝑛+1𝑓(𝑥),2𝑡𝑛(||2𝑛−1𝑥|| +
||2𝑛−1𝑥||)) ≥ 1 − 𝜀.  

 
This completes the induction argument. We observe that 
 
 𝑙𝑖𝑚𝑛→∞𝑁(𝑇(𝑥) − 𝑓(𝑥), 𝑛𝑡||𝑥||) ≥ 1 − 𝜀.  
 
Hence  
 
𝑙𝑖𝑚𝑛→∞𝑁(𝑇(𝑥) − 𝑓(𝑥), 𝑛𝑡||𝑥||) = 1                                    (3.12) 
 

One may regard 𝑁(𝑥, 𝑡) as the truth value of the statement 
’the norm of 𝑥 is less than or equal to the real number 𝑡’. So (3.12) 
is a contradiction with the non-fuzzy sense. This means that there 
is no such a 𝑇.  
 
4  Stability and super stability of fuzzy 
approximately ring derivation 

We start our work with definition of fuzzy approximately ring 
derivation. Definition 4.1 Let (𝑋, 𝑁) be a fuzzy Banach algebra 
and 𝜃 ≥ 0. We say that 𝑓: 𝑋 → 𝑋 is a fuzzy approximately ring 
derivation if  

 
𝑙𝑖𝑚𝑡→∞𝑁(𝑓(𝑥𝑦) − 𝑥𝑓(𝑦) − 𝑓(𝑥)𝑦, 𝑡𝜃||𝑥||

𝑞||𝑦||𝑞) = 1,  
 
uniformly on 𝑋 × 𝑋. Definition 4.2  Let (𝑋, 𝑁) be a fuzzy Banach 
algebra and 𝜃 ≥ 0. We say that 𝑓: 𝑋 → 𝑋 is a fuzzy 
approximately Jordan derivation if  
 
 𝑙𝑖𝑚𝑡→∞𝑁(𝑓(𝑥

2) − 2𝑥𝑓(𝑥), 𝑡𝜃||𝑥||2𝑞) = 1,  
 
uniformly on 𝑋 × 𝑋. Theorem 4.3  Let (𝑋, 𝑁) be a fuzzy Banach 

algebra, 𝜃 ≥ 0 and 𝑞 ≥ 0, 𝑞 ≠ 1. Suppose that 𝑓: 𝑋 → 𝑋 is a 
function such that  

 
𝑙𝑖𝑚𝑡→∞𝑁(𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦), 𝑡𝜃(||𝑥||

𝑞 + ||𝑦||𝑞)) = 1,  
 
uniformly on 𝑋 × 𝑋 and  
 
𝑙𝑖𝑚𝑡→∞𝑁(𝑓(𝑥𝑦) − 𝑥𝑓(𝑦) − 𝑓(𝑥)𝑦, 𝑡𝜃||𝑥||

𝑞||𝑦||𝑞) = 1, (4.1) 
 
uniformly on 𝑋 × 𝑋. Then there is a unique ring derivation 
𝐷:𝑋 → 𝑋 such that 
 

 𝑙𝑖𝑚𝑡→∞𝑁(𝐷(𝑥) − 𝑓(𝑥),
2𝜃𝑡||𝑥||𝑞

|1−2𝑞−1|
) = 1,  

 
 uniformly on 𝑋. Proof. Theorem 2.6 and Corollary 2.7 show that 
there exists a unique additive mapping 𝐷 such that  
 
𝑙𝑖𝑚𝑡→∞𝑁(𝐷(𝑥) − 𝑓(𝑥),

2𝜃𝑡||𝑥||𝑞

|1−2𝑞−1|
) = 1,                      (4.2) 

 

where 𝑥 ∈ 𝑋. Now we only need to show that 𝐷 is a map such 

that 𝐷(𝑥𝑦) = 𝑥𝐷(𝑦) − 𝐷(𝑥)𝑦 for all 𝑥, 𝑦 ∈ 𝑋. Put 𝑠 =
1−𝑞

|1−𝑞|
 and 

fix 𝑥, 𝑦 ∈ 𝑋 arbitrarily. By (4.2) we have 

 

𝑙𝑖𝑚𝑡→∞𝑁(𝐷(𝑛
𝑠𝑥) − 𝑓(𝑛𝑠𝑥),

2𝜃𝑡||𝑛𝑠𝑥||𝑞

|1−2𝑞−1|
) = 1,  

 

for all 𝑥 ∈ 𝑋. Thus 

 

𝑙𝑖𝑚𝑡→∞𝑁(𝑛
−𝑠𝐷(𝑛𝑠𝑥) − 𝑛−𝑠𝑓(𝑛𝑠𝑥),

2𝜃𝑡𝑛𝑠(𝑞−1)||𝑥||𝑞

|1−2𝑞−1|
) = 1,  

 
for all 𝑥 ∈ 𝑋. By the additivity of 𝐷, 
 
𝑙𝑖𝑚𝑡→∞𝑁(𝐷(𝑥) − 𝑛

−𝑠𝑓(𝑛𝑠𝑥),
2𝜃𝑡𝑛𝑠(𝑞−1)||𝑥||𝑞

|1−2𝑞−1|
) = 1,  

 

for all 𝑥 ∈ 𝑋.Since 𝑠(𝑞 − 1) < 0 we obtain 

𝑙𝑖𝑚𝑛→∞
2𝜃𝑡𝑛𝑠(𝑞−1)||𝑥||𝑞

|1−2𝑞−1|
= 0. So there is some 𝑛1 > 0 such that 

2𝜃𝑡𝑛𝑠(𝑞−1)||𝑥||𝑞

|1−2𝑞−1|
< 𝑡 for all 𝑛 ≥ 𝑛1 and 𝑡 > 0. Hence 

𝑙𝑖𝑚𝑡→∞𝑁(𝑇(𝑥) − 𝑛
−𝑠𝑓(𝑛𝑠𝑥), 𝑡) ≥ 𝑙𝑖𝑚𝑡→∞𝑁(𝑇(𝑥) −

𝑛−𝑠𝑓(𝑛𝑠𝑥),
2𝜃𝑡𝑛𝑠(𝑞−1)||𝑥||𝑞

|1−2𝑞−1|
). So 

 
𝑁 − 𝑙𝑖𝑚𝑛→∞𝑛

−𝑠𝑓(𝑛𝑠𝑥) = 𝐷(𝑥).                                     (4.3) 
 
By (4.1) we have 
 
 𝑙𝑖𝑚𝑡→∞𝑁(𝑛

−𝑠𝑓((𝑛𝑠𝑥)𝑦) − 𝑥𝑓(𝑦) −
𝑛−𝑠𝑓(𝑛𝑠𝑥)𝑦, 𝑡𝜃𝑛−𝑠||𝑛𝑠𝑥||𝑞||𝑦||𝑞) = 1,  

 
for all 𝑥, 𝑦 ∈ 𝑋. Since 𝑠(𝑞 − 1) < 0 we obtain 
𝑙𝑖𝑚𝑛→∞𝑡𝜃𝑛

𝑠(𝑞−1)||𝑥||𝑞||𝑦||𝑞 = 0. So there is some 𝑛2 > 0 such 
that  𝑡𝜃𝑛𝑠(𝑞−1)||𝑥||𝑞||𝑦||𝑞 < 𝑡, for all 𝑛 ≥ 𝑛2 and 𝑡 > 0. Hence: 
 
𝑙𝑖𝑚𝑡→∞𝑁(𝑛

−𝑠𝑓((𝑛𝑠𝑥)𝑦) − 𝑥𝑓(𝑦) − 𝑛−𝑠𝑓(𝑛𝑠𝑥)𝑦, 𝑡) ≥
𝑙𝑖𝑚𝑡→∞𝑁(𝑛

−𝑠𝑓((𝑛𝑠𝑥)𝑦) − 𝑥𝑓(𝑦) −
𝑛−𝑠𝑓(𝑛𝑠𝑥)𝑦, 𝑡𝜃𝑛𝑠(𝑞−1)||𝑥||𝑞||𝑦||𝑞).  
 
So 
 
𝑁 − 𝑙𝑖𝑚𝑛→∞𝑛

−𝑠𝑓((𝑛𝑠𝑥)𝑦) = 𝑁 − 𝑙𝑖𝑚𝑛→∞(𝑥𝑓(𝑦) +
𝑛−𝑠𝑓(𝑛𝑠𝑥)𝑦)                                                                (4.4) 

 
By putting 𝑛0 = 𝑚𝑖𝑛{𝑛1, 𝑛2} and applying (4.3) and (4.4 we get  
  
𝐷(𝑥𝑦) = 𝑁 − 𝑙𝑖𝑚𝑛→∞𝑛

−𝑠𝑓(𝑛𝑠(𝑥𝑦)) = 𝑁 −
𝑙𝑖𝑚𝑛→∞𝑛

−𝑠𝑓((𝑛𝑠𝑥)𝑦)                                           (4.5) 
 
𝑥𝑓(𝑦) + 𝑁 − 𝑙𝑖𝑚𝑛→∞𝑛

−𝑠𝑓(𝑛𝑠𝑥)𝑦 = 𝑥𝑓(𝑦) + 𝐷(𝑥)𝑦, for all 
𝑥, 𝑦 ∈ 𝑋. Then by (4.5) and the additivity of 𝐷, we have 
𝑥𝑓(𝑛𝑠𝑦) + 𝑛𝑠𝐷(𝑥)𝑦 = 𝑥𝑓(𝑛𝑠𝑦) + 𝐷(𝑥)𝑛𝑠𝑦 = 𝐷(𝑥(𝑛𝑠𝑦)) =
𝐷((𝑛𝑠𝑥)𝑦) = 𝑛𝑠𝑥𝑓(𝑦) + 𝐷(𝑛𝑠𝑥)𝑦 = 𝑛𝑠𝑥𝑓(𝑦) + 𝑛𝑠𝐷(𝑥)𝑦. 
Therefore 𝑥𝑓(𝑦) = 𝑥𝑛−𝑠𝑓(𝑛𝑠𝑦) for all 𝑥, 𝑦 ∈ 𝑋. By letting 𝑛 
tend to infinity we see that 𝑥𝑓(𝑦) = 𝑥𝐷(𝑦) for all 𝑥, 𝑦 ∈ 𝑋. 
Combining this formula with equation (4.5) we get 𝐷(𝑥𝑦) =
𝑥𝐷(𝑦) + 𝐷(𝑥)𝑦 for all 𝑥, 𝑦 ∈ 𝑋. The proof of uniqueness 
property of 𝐷 is similar to the proof of Theorem 3.2.  
Corollary 4.4 Theorem 4.3 satisfies for fuzzy approximately 

Jordan derivation.  
 
 
Proof. As same as the proof of Theorem 4.3 we have  
 𝐷(𝑥) = 𝑁 − 𝑙𝑖𝑚𝑛→∞𝑛

−𝑠𝑓(𝑛𝑠𝑥). (4.6) 
 A quite similar argument to the proof of Theorem 4.3 shows that 

𝐷(𝑥2) = 𝑁 − 𝑙𝑖𝑚𝑛→∞𝑛
−2𝑠𝑓(𝑛2𝑠𝑥). By Definition (4.2) we 

have  
 𝑙𝑖𝑚𝑡→∞𝑁(𝑛

−2𝑠𝑓(𝑛2𝑠𝑥2) − 2𝑛−𝑠𝑥𝑓(𝑛𝑠𝑥), 𝑡𝜃𝑛−2𝑠||𝑛𝑠𝑥||2𝑞) =
1,  

  for all 𝑥 ∈ 𝑋. 
Since 2𝑠(𝑞 − 1) < 0 we obtain 𝑙𝑖𝑚𝑛→∞𝑡𝜃𝑛

2𝑠(𝑞−1)||𝑥||2𝑞 = 0. 
So there is some 𝑛0 > 0 such that  
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 𝑡𝜃𝑛2𝑠(𝑞−1)||𝑥||2𝑞 < 𝑡,  
  for all 𝑛 ≥ 𝑛0 and 𝑡 > 0. Hence  
 𝑙𝑖𝑚𝑡→∞𝑁(𝑛

−2𝑠𝑓(𝑛2𝑠𝑥2) − 2𝑛−𝑠𝑥𝑓(𝑛𝑠𝑥), 𝑡) ≥
𝑙𝑖𝑚𝑡→∞𝑁(𝑛

−2𝑠𝑓(𝑛2𝑠𝑥2) −
2𝑛𝑠𝑥𝑓(𝑛𝑠𝑥), 𝑡𝜃𝑛2𝑠(𝑞−1)||𝑥||2𝑞),  

  for all 𝑥 ∈ 𝑋. So 
 
 𝑁 − 𝑙𝑖𝑚𝑛→∞𝑛

−2𝑠𝑓(𝑛2𝑠𝑥) = 𝑁 − 𝑙𝑖𝑚𝑛→∞2𝑛
𝑠𝑥𝑓(𝑛𝑠𝑥).

 (4.7) 
 
Now by using (4.6) and (4.7) we get 
 
 𝐷(𝑥2) = 𝑁 − 𝑙𝑖𝑚𝑛→∞𝑛

−2𝑠𝑓(𝑛2𝑠𝑥2) = 𝑁 −
𝑙𝑖𝑚𝑛→∞2𝑛

−𝑠𝑥𝑓(𝑛𝑠𝑥) = 2𝑥𝐷(𝑥),  
  for every 𝑥 ∈ 𝑋.  
 
 
Theorem 4.5  Let (𝑋, 𝑁) be a fuzzy Banach algebra, 𝜃 ≥ 0 and 

𝑞 ≥ 0, 𝑞 ≠ 1. Suppose that 𝑓: 𝑋 → 𝑋 is a function such that  
 𝑙𝑖𝑚𝑡→∞𝑁(𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦), 𝑡𝜃(||𝑥||

𝑞 + ||𝑦||𝑞)) = 1,  
  uniformly on 𝑋 × 𝑋 and  
 𝑙𝑖𝑚𝑡→∞𝑁(𝑓(𝑥𝑦) − 𝑥𝑓(𝑦) − 𝑓(𝑥)𝑦, 𝑡𝜃||𝑥||

𝑞||𝑦||𝑞) = 1,
 (4.8) 

  uniformly on 𝑋 × 𝑋. 
Then we have  
 𝑥{𝑓(𝑟𝑎) − 𝑟𝑓(𝑎)} = 0,  
  for every 𝑎, 𝑥 ∈ 𝑋 and 𝑟 ∈ ℚ − {0}. 
 
 
 
Proof. Pick 𝑎, 𝑥 ∈ 𝑋 and 𝑟 ∈ ℚ − {0} arbitrarily. By Theorem 4.3 

there exists a unique ring derivation 𝐷 such that: 
 

𝑙𝑖𝑚𝑡→∞𝑁(𝐷(𝑥) − 𝑓(𝑥),
2𝜃𝑡||𝑥||𝑞

|1−2𝑞−1|
) = 1,                                 (4.9) 

 
 where 𝑥 ∈ 𝑋. Recall that 𝐷 is additive, and so it is easy to see 

that 𝐷(𝑟𝑏) = 𝑟𝐷(𝑏) for every 𝑏 ∈ 𝑋. Fix 𝑛 ∈ ℕ arbitrarily 
and we get  

  
 𝑁(𝐷((𝑛−1𝑥)(𝑟𝑎)) − 𝑟𝑛−1𝑥𝑓(𝑎) − 𝑓(𝑛−1𝑥)𝑟𝑎, 𝑡/2) ≥

 (4.10) 
 𝑚𝑖𝑛{𝑁(𝐷((𝑛−1𝑥)(𝑟𝑎)) − 𝑟𝑓(𝑛−1𝑥𝑎), 𝑡/4),𝑁(𝑟𝑓(𝑛−1𝑥𝑎) −

𝑟𝑛−1𝑥𝑓(𝑎) − 𝑟𝑓(𝑛−1𝑥)𝑎, 𝑡/4)}.  
 
By (4.9) we have  

 𝑙𝑖𝑚𝑛→∞𝑁(𝐷((𝑛
−1𝑥)(𝑟𝑎)) − 𝑟𝑓(𝑛−1𝑥𝑎),

2𝑟𝑡𝜃||𝑛−1𝑥𝑎||𝑞

|1−2𝑞−1|
) = 1.  

 

Since 𝑙𝑖𝑚𝑛→∞
2𝑟𝑡𝜃||𝑥𝑎||𝑞

|1−2𝑞−1|
= 0, there is some 𝑛1 > 0 such that 

2𝑡𝜃𝑛−𝑞||𝑥𝑎||𝑞

|1−2𝑞−1|
< 𝑡/4 for all 𝑛 ≥ 𝑛1 and 𝑡 > 0. Hence 

 
 𝑁(𝐷((𝑛−1𝑥)(𝑟𝑎)) − 𝑟𝑓(𝑛−1𝑥𝑎), 𝑡/4) ≥

𝑁(𝐷((𝑛−1𝑥)(𝑟𝑎)) − 𝑟𝑓(𝑛−1𝑥𝑎),
2𝑟𝑡𝜃𝑛−𝑞||𝑥𝑎||𝑞

|1−2𝑞−1|
).

 (4.11) 
 
Also by (4.8) we get  
 𝑙𝑖𝑚𝑛→∞𝑁(𝑟𝑓(𝑛

−1𝑥𝑎) − 𝑟𝑛−1𝑥𝑓(𝑎) −
𝑟𝑓(𝑛−1𝑥)𝑎, 𝑟𝑡𝜃||𝑛−1𝑥||𝑞||𝑎||𝑞) = 1.  

 
Since 𝑙𝑖𝑚𝑛→∞𝑡𝜃𝑟𝑛

−𝑞||𝑥||𝑞||𝑎||𝑞 = 0, there is some 𝑛2 > 0 such 
that  

 𝑡𝜃𝑟𝑛−𝑞||𝑥||𝑞||𝑎||𝑞 < 𝑡/4  

  for all 𝑛 ≥ 𝑛2 and 𝑡 > 0. Hence  
  
 𝑁(𝑟𝑓(𝑛−1𝑥𝑎) − 𝑟𝑛−1𝑥𝑓(𝑎) − 𝑟𝑓(𝑛−1𝑥)𝑎, 𝑡/4) ≥

 (4.12) 
 𝑁(𝑟𝑓(𝑛−1𝑥𝑎) − 𝑟𝑛−1𝑥𝑓(𝑎) −

𝑟𝑓(𝑛−1𝑥)𝑎, 𝑡𝜃𝑟𝑛−𝑞||𝑥||𝑞||𝑎||𝑞).  
 
By using (4.9) and (4.8) for given 𝜀 > 0 we can find some 𝑡1, 𝑡2 >

0 such that 
 
  

𝑁 (𝐷((𝑛−1𝑥)(𝑟𝑎)) − 𝑟𝑓(𝑛−1𝑥𝑎),
2𝑟𝑡𝜃𝑛−𝑞||𝑥𝑎||𝑞

|1−2𝑞−1|
) ≥ 1 − 𝜀, (4.13) 

 
and 
𝑁(𝑟𝑓(𝑛−1𝑥𝑎) − 𝑟𝑛−1𝑥𝑓(𝑎) −

𝑟𝑓(𝑛−1𝑥)𝑎, 𝑡𝜃𝑟𝑛−𝑞||𝑥||𝑞||𝑎||𝑞) ≥ 1 − 𝜀,  
 
 for all 𝑡 ≥ 𝑡0. So by combining (4.10), (4.11), (4.12) and (4.13) 

we get 
 
 𝑁(𝐷((𝑛−1𝑥)(𝑟𝑎)) − 𝑟𝑛−1𝑥𝑓(𝑎) − 𝑓(𝑛−1𝑥)𝑟𝑎, 𝑡/2) ≥ 1 −

𝜀. (4.14) 
 
By applying (4.8) we have 
 
 𝑙𝑖𝑚𝑛→∞𝑁(𝑛

−1𝑥𝑓(𝑟𝑎) + 𝑓(𝑛−1𝑥)𝑟𝑎 −
𝑓((𝑛−1𝑥)(𝑟𝑎)), 𝑡𝜃𝑛−𝑞𝑟𝑞||𝑥||𝑞||𝑎||𝑞) = 1.  

 Since 𝑙𝑖𝑚𝑛→∞𝑡𝜃𝑛
−𝑞𝑟𝑞||𝑥||𝑞||𝑎||𝑞 = 0, there exists 𝑛0 > 0 

such that  
 𝑡𝜃𝑛−𝑞𝑟𝑞||𝑥||𝑞||𝑎||𝑞 < 𝑡/2  
  for every 𝑛 ≥ 𝑛0 and 𝑡 > 0. So 
 
  
 𝑁(𝑛−1𝑥𝑓(𝑟𝑎) + 𝑓(𝑛−1𝑥)𝑟𝑎 − 𝑓((𝑛−1𝑥)(𝑟𝑎)), 𝑡/2) ≥

 (4.15) 
 𝑁(𝑛−1𝑥𝑓(𝑟𝑎) + 𝑓(𝑛−1𝑥)𝑟𝑎 −

𝑓((𝑛−1𝑥)(𝑟𝑎)), 𝑡𝜃𝑛−𝑞𝑟𝑞||𝑥||𝑞||𝑎||𝑞), 
 
  for all 𝑡 ≥ 𝑡0. 
Given 𝜀 > 0, we can find some 𝑡0 > 0 such that 
 
 𝑁(𝑛−1𝑥𝑓(𝑟𝑎) + 𝑓(𝑛−1𝑥)𝑟𝑎 −

𝑓((𝑛−1𝑥)(𝑟𝑎)), 𝑡𝜃𝑛−𝑞𝑟𝑞||𝑥||𝑞||𝑎||𝑞) ≥ 1 − 𝜀,
 (4.16) 

  for all 𝑡 ≥ 𝑡0. So  
 𝑁(𝑛−1𝑥𝑓(𝑟𝑎) + 𝑓(𝑛−1𝑥)𝑟𝑎 − 𝑓((𝑛−1𝑥)(𝑟𝑎)), 𝑡/2) ≥ 1 −

𝜀. (4.17) 
 
Also we have: 
 
  
 𝑁(𝑓((𝑛−1𝑥)(𝑟𝑎)) − 𝑟𝑛−1𝑥𝑓(𝑎) − 𝑓(𝑛−1𝑥)𝑟𝑎, 𝑡/2) ≥

 (4.18) 
 𝑚𝑖𝑛{𝑁(𝑓((𝑛−1𝑥)(𝑟𝑎)) − 𝐷((𝑛−1𝑥)(𝑟𝑎)), 𝑡/

4), 𝑁(𝐷((𝑛−1𝑥)(𝑟𝑎)) − 𝑟𝑛−1𝑥𝑓(𝑎) − 𝑓(𝑛−1𝑥)𝑟𝑎, 𝑡/4)}. 
 
 
By (4.9) we have 
 

 𝑙𝑖𝑚𝑛→∞𝑁(𝑓((𝑛
−1𝑥)(𝑟𝑎)) − 𝐷((𝑛−1𝑥)(𝑟𝑎)),

2𝑡𝜃𝑟𝑞𝑛−𝑞||𝑥𝑎||𝑞

|1−2𝑞−1|
) =

1.  
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Since 𝑙𝑖𝑚𝑛→∞
2𝑡𝜃𝑛−𝑞𝑟𝑞||𝑎𝑥||𝑞

|1−2𝑞−1|
= 0, there is some 𝑛0 > 0 such 

that 
2𝑡𝜃𝑛−𝑞𝑟𝑞||𝑎𝑥||𝑞

|1−2𝑞−1|
< 𝑡/4, for all 𝑛 ≥ 𝑛0 and 𝑡 > 0. Hence 

 𝑁(𝑓((𝑛−1𝑥)(𝑟𝑎)) − 𝐷((𝑛−1𝑥)(𝑟𝑎)), 𝑡/4) ≥

𝑁(𝑓((𝑛−1𝑥)(𝑟𝑎)) − 𝐷((𝑛−1𝑥)(𝑟𝑎)),
2𝑡𝜃𝑛−𝑞𝑟𝑞||𝑎𝑥||𝑞

|1−2𝑞−1|
).  

By (4.9) for given 𝜀 > 0, we can find some 𝑡0 > 0 such that 
 

𝑁 (𝑓((𝑛−1𝑥)(𝑟𝑎)) − 𝐷((𝑛−1𝑥)(𝑟𝑎)),
2𝑡𝜃𝑛−𝑞𝑟𝑞||𝑎𝑥||𝑞

|1−2𝑞−1|
) ≥ 1 −

𝜀,                                                                                                (4.19) 

for all 𝑡 ≥ 𝑡0. Now by combining (4.14), (4.19) and (4.18) we get 
 
𝑁 (𝑓((𝑛−1𝑥)(𝑟𝑎)) − 𝑟𝑛−1𝑥𝑓(𝑎) − 𝑓(𝑛−1𝑥)𝑟𝑎,

𝑡

2
) ≥ 1 −

𝜀.                                                                                                (4.20) 
 
On the other hand, we have 
  
𝑁(𝑛−1𝑥(𝑓(𝑟𝑎) − 𝑟𝑓(𝑎)), 𝑡) ≥                               (4.21) 
 
 𝑚𝑖𝑛{𝑁(𝑛−1𝑥𝑓(𝑟𝑎) + 𝑓(𝑛−1𝑥)𝑟𝑎 − 𝑓((𝑛−1𝑥)(𝑟𝑎)), 𝑡/

2), 𝑁(𝑓((𝑛−1𝑥)(𝑟𝑎)) − 𝑟𝑛−1𝑥𝑓(𝑎) − 𝑓(𝑛−1𝑥)𝑟𝑎, 𝑡/2)}.  
 

So by combining (4.21), (4.20) and (4.17) we have 
𝑁(𝑛−1𝑥(𝑓(𝑟𝑎) − 𝑟𝑓(𝑎)), 𝑡) ≥ 1 − 𝜀. Hence 𝑁(𝑥(𝑓(𝑟𝑎) −
𝑟𝑓(𝑎)), 𝑛𝑡) ≥ 1 − 𝜀. Now by using item (N2) of Definition 2.1 
we get 𝑥(𝑓(𝑟𝑎) − 𝑟𝑓(𝑎)) = 0. In the following Theorem we 
consider the conditions for super stability of approximately ring 
derivations. Theorem 4.6 Let (𝑋, 𝑁) be a fuzzy Banach algebra 
without order, 𝜃 ≥ 0 and 𝑞 ≥ 0, 𝑞 ≠ 1. Suppose that 𝑓: 𝑋 → 𝑋 is 
a function such that  

 
𝑙𝑖𝑚𝑡→∞𝑁(𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦), 𝑡𝜃(||𝑥||

𝑞 + ||𝑦||𝑞)) = 1,  
 
uniformly on 𝑋 × 𝑋 and  
 
𝑙𝑖𝑚𝑡→∞𝑁(𝑓(𝑥𝑦) − 𝑥𝑓(𝑦) − 𝑓(𝑥)𝑦, 𝑡𝜃||𝑥||

𝑞||𝑦||𝑞) = 1,
 (4.22) 

uniformly on 𝑋 × 𝑋. Then 𝑓 is a ring derivation. Proof. Let 𝐷 be 
a unique ring derivation as in Theorem 4.3. Fix 𝑛 ∈ ℕ arbitrarily, 
and put 𝑠 =

1−𝑞

|1−𝑞|
. It follows from Theorem 4.5 that 𝑓(𝑛−𝑠𝑎) =

𝑛−𝑠𝑓(𝑎) is true for every 𝑎 ∈ 𝑋. Since if 𝑓(𝑛−𝑠𝑎0) ≠ 𝑛
−𝑠𝑓(𝑎0) 

for some 𝑎0 ∈ 𝑋, then it would follow from Theorem 4.5 that 
 
 𝑥{𝑓(𝑛−𝑠𝑎0) − 𝑛

−𝑠𝑓(𝑎0)} = 0  
 

 for all 𝑥 ∈ 𝑋, which would be contradiction because 𝑋 is 
assumed to be without order. We get from  

 

𝑙𝑖𝑚𝑡→∞𝑁(𝐷(𝑥) − 𝑓(𝑥),
2𝜃𝑡||𝑥||𝑞

|1−2𝑞−1|
) = 1,  

 
 that  
 
𝑙𝑖𝑚𝑡→∞𝑁 (𝑛

𝑠𝐷(𝑛−𝑠𝑥) − 𝑛𝑠𝑓(𝑛−𝑠𝑥),
2𝜃𝑡𝑛𝑠||𝑛−𝑠𝑥||𝑞

|1−2𝑞−1|
) = 1,   (4.23) 

 

for every 𝑥 ∈ 𝑋. Since 𝑙𝑖𝑚𝑛→∞
2𝜃𝑡𝑛𝑠(1−𝑞)||𝑥||𝑞

|1−2𝑞−1|
= 0, there is some 

𝑛0 > 0 such that 
2𝜃𝑡𝑛𝑠(1−𝑞)||𝑥||𝑞

|1−2𝑞−1|
< 𝑡 for every 𝑛 ≥ 𝑛0. So 

 

𝑁(𝑛𝑠𝐷(𝑛−𝑠𝑥) − 𝑛𝑠𝑓(𝑛−𝑠𝑥), 𝑡) ≥ 𝑁(𝑛𝑠𝐷(𝑛−𝑠𝑥) −

𝑛𝑠𝑓(𝑛−𝑠𝑥),
2𝜃𝑡𝑛𝑠||𝑛−𝑠𝑥||𝑞

|1−2𝑞−1|
).  

By using (4.23) for given 𝜀 > 0, we can find some 𝑡0 > 0 
such that  

 

 𝑁(𝑛𝑠𝐷(𝑛−𝑠𝑥) − 𝑛𝑠𝑓(𝑛−𝑠𝑥),
2𝜃𝑡𝑛𝑠||𝑛−𝑠𝑥||𝑞

|1−2𝑞−1|
) ≥ 1 − 𝜀,  

  for all 𝑡 ≥ 𝑡0. Hence 
 
 𝑁(𝐷(𝑥) − 𝑓(𝑥), 𝑡) = 1,  
 

for all 𝑡 > 0. So by using item (N2) of Definition 2.1, we have 
𝐷(𝑥) = 𝑓(𝑥) for every 𝑥 ∈ 𝑋, which shows that 𝑓 is a ring 
derivation.  
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