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Abstract 
Precise prediction of the water quality time series may provide directions for early warning of water pollution and help policymakers to 

manage water resources more effectively. This prediction may reveal the proclivity of the characteristic water quality according to the most 

recent water quality, shifting, and transformation rule of the pollutant in the watershed. The predictive capability of traditional models is 

constrained due to variability, complexity, uncertainty, inaccuracy, non-stationary, and the non-linear interactions of the water quality 

parameters. Since the middle of the 20th century, Artificial Intelligence (AI) approaches have been found efficient in bridging gaps, 

simulating, complementing deficiencies, and improving the precision of the predictive models in terms of multiple evaluation measures for 

better planning, design, deployment, and handling of multiple engineering systems. This article discusses the state-of-the-art implementation 

of AI in water quality prediction, the type of AI approaches, the techniques adopted include the knowledge-based system as well as literature 

and their potential future implementation in water quality modelling and prediction. The study also discusses and presents several possibilities 

for future research. 
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1 Introduction1 
Chemical, physical, and biological properties found in water 

are generally referred to as the quality of water (1). Accurate 

evaluation of water quality using the Water Quality Management 

program is important if decision-makers are to understand, 

interpret, and use these data to support resource management 

practices (2,3). Modelling of water quality parameters is an 

essential part of every water systems analysis. In order to properly 

manage the watershed, it is necessary to predict the quality of 

surface water so that appropriate measurements can be taken to 

avoid pollution from the permissible concentrations. Ideal 

management of water resources is based on accurate and reliable 

estimates of future changes (1,4–6). 

QUAL2E, Water Quality Analysis Simulation, and the U.S. 

Army Corps of Engineers Hydrological Engineering Center-5Q 

are several models commonly applied to water quality 

management (7). These models, however, are not only time 

consuming and expensive, but also lack user-friendliness and 

effective knowledge transfer in model interpretation. Therefore, 

more models, which do not suffer from these problems, are 

needed to be developed (8,9). Several scientists noted that the 

prediction of water quality is impacted by various variables that 

                                                           
Corresponding author: Azmi Aris, (a) Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of 

Engineering, Universiti Teknologi Malaysia, Johor, Malaysia and (b) Centre for Environmental Sustainability and Water Security (IPASA), 

Universiti Teknologi Malaysia, Johor Bahru, Malaysia. Email: azmi.aris@utm.my. 

have parameter-wide nonlinear relationships with each other. 

Conventional data processing cannot address this significant 

limitation (10–12). Nonlinear Artificial Intelligence (AI) models, 

on the other hand, play a significant role in simulating complex 

and nonlinear processes (13). This situation creates a big gap 

between model designers and professionals. Selecting a suitable 

numerical model is a challenging task for novice application 

users. The forecast precision of traditional models is restricted 

due to the uncertainty, unpredictability, obscurity, and inaccuracy 

of water quality information. Progress in AI technology has made 

it possible over the past decade to apply the developments in 

computational modelling systems to bridge the gap, as mentioned 

above (8).  

AI methods are currently capable of mimicking this behaviour 

(14), complementing the defect, and improving the precision of 

forecast models in terms of multiple assessment measures for 

better planning, design, operation, and management of distinct 

engineering systems (15, 16). The significant contributions of the 

present review article are 1) to categorise AI methods 

comprehensively and 2) to discuss their advanced application to 

water quality modelling and prediction.  
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2 Artificial Intelligence-Based Model for River 

Water Quality Simulation 
The 1956 Dartmouth Conference was held at a time when AI 

earned its name, purpose, and first accomplishments; it was 

widely recognised as the birth of AI. Across various fields, the AI 

field is currently playing an important role, focusing on machines 

with a human-like mind (17). By incorporating descriptive 

understanding, procedural knowledge, and reasoning, AI methods 

enable researchers to simulate human knowledge in clearly 

defined domains. In addition, advances in AI techniques have 

enabled the creation of intelligent management systems through 

the use of shells under established platforms such as MathLab, 

Visual Basic, and C++. (8, 18).  

Recently, AI has achieved significant progress in multiple 

programs such as autonomous driving, big data, information 

processing, smart search, image understanding, automatic 

software development, robotics, and human-computer games, 

which will have a significant effect on human society. Some of 

the most important AI-based algorithms include artificial neural 

networks (ANNs), support vector machine (SVM), random forest 

(RF), genetic algorithm (GA), enhanced regression tree (ERT), 

simulated annealing (SA), imperialist competitive algorithm 

(ICA), and decision tree (DT). AI methods are also associated 

with experimental design (e.g., response surface methodology, 

and standardised design) to improve the precision of the optimal 

solution prediction (19). Advances in data science and data 

mining techniques such as neural networks (NNs), supporting 

vector machines (SVMs), and k-nearest neighbours (k-NN) have 

helped to solve some complicated high-dimensional issues in 

river water quality prediction (Figure 1).  

Over the past two decades, river water pollutants have been 

considered as one of the global issues that need the full attention 

of environmental scientists. River water quality, however, is one 

of the main characteristics to which environmental scholars need 

to pay full attention. In all developing countries, water quality is 

a growing concern. Water abstraction mechanisms of domestic 

use, farming, mining, energy generation, and forestry practices 

may lead to a decline of water quality and quantity, which affects 

not only aquatic ecosystems but also the allocation of safe water 

for human consumptives (20). Thus, the assessment of surface 

water quality is important in the management of water resources 

and is very important in monitoring the concentration of 

pollutants in rivers. Monitoring water quality is costly because 

pollution control and efficient water resource management 

require large quantities of data (21). Therefore, AI can be 

recommended as an alternative technique with high prediction 

accuracy for predicting the river water quality. AI benefits from 

traditional techniques since they take account of the non-linear 

relationship between influential variables and reduce the 

complexity required to obtain experimental equations (20). 

The overall concept behind AI techniques is to explore hidden 

interactions in large quantities of information and to create 

models that represent physical procedures governing the system 

being studied. A model derived from data reflects a correlation 

between variables of input and output. Such a model can be 

extremely precise because it conveys all kinds of interactions 

expressed in the information, including fundamental physics and 

chemistry (9). Some studies (6, 11, 22-27) that explored river 

water quality modelling issues using AI methods have revealed 

encouraging outcomes in recent decades (Table 1).  

Several researchers have attempted to predict water quality 

parameters using AI-based models such as ANN, SVM, and k-

NN. In these studies, ANN has been frequently found a stronger 

predictive model compared to conventional modelling 

techniques. In the case of 47 sources (2007-2019) reviewed, 

ANN, SVM, and k-NN have been used in 38, 10, and 1 source, 

respectively. ANN has been widely used between 2007 and 2015, 

but from 2015 to 2019, ANFIS and SVM have surpassed ANN, 

as more recent approaches of AI. Some studies made a 

comparison between the models.   

The study found that different parameters are needed to be 

used in water quality assessments using various techniques. 

Different output parameters predictions have been studied, but the 

ten most important parameters are DO, BOD, TSS, Total 

Nitrogen, temperature, COD, turbidity, Total Phosphate, NH3, 

and WQI. The monthly water quality data have been used most in 

many of these studies to simulate water quality parameters [4, 5, 

10, 11, 16-28], which was followed by daily water quality data (3, 

25, 35-40). 

 

3 Artificial Neural Network Modelling in River 

Water Quality Monitoring 
The theory of artificial neurons was first launched in 1943, 

with the implementation of the back-propagation practice (BP) 

algorithm for feedforward ANNs in 1986 (23). ANN is a recent 

method with a versatile mathematical structure that can identify 

complicated non-linear interactions between input and output 

information compared to other traditional modelling approaches 

(1, 25).  

ANNs are common instruments applicable to modeling 

extremely complex relations, processes, and phenomena. ANNs 

have been also widely used to predict water quality variables to 

address contaminant source uncertainty and nonlinearity of water 

quality data. Nevertheless, the issue with the initial weight 

parameter and the unbalanced training data set makes it hard to 

determine the optimal outcomes and hinders ANN modeling 

efficiency (25). ANN consists of very basic processors called 

neurons that are strongly interconnected and act together to solve 

a problem (41). A neuron is an information processing unit, 

essential for the functioning of the NN; it comprises weight and 

activation.  

From 2007 to 2019, eight types of ANN were applied by 

different researchers to the prediction of river water quality, 

namely Back Propagation NN (BPNN), Wavelet NN, Generalized 

Regression NN (GRNN), Radial Basic NN (RBNN), Feed 

Forward NN (FFNN), Multi-layer Perceptron NN (MLPNN), 

Multi-layer Feed Forward NN (MLFFNN) and Adaptive 

Network-Based Fuzzy Inference System (ANFIS). Among them, 

five most widely-used models MLPNN (10), RBNN (6), FNNN 

(5), ANFIS (5), and MLFFNN (4).
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Figure 1: Classification Tree of AI Techniques Applied in Literature to River Water Quality 

 

Several indicators often used to evaluate the ANN model's 

performance are as follow: Coefficient of correlation (R) between 

the values observed and the expected values, the mean square 

error (which can be used to calculate how well the network output 

corresponds to the expected output), mean absolute error (MAE), 

root mean square error (RMSE); Coefficient of efficiency (CE), 

Mean absolute prediction error (MAPE) (which usually expresses 

accuracy as a percentage), interquartile range (IQR) (which refers 

to difference between the 25th and 75th percentile and is used to 

calculate the entire bias error between the means of the ensemble 

and the values observed), Nash-Sutcliffe coefficient (NSC), and 

Determination coefficient (DC) (Table. 2). 

The fundamental MLPNN model has three layers: (i) input 

layer, (ii) hidden layer, and (iii) output layer. The input layer 

supplies the input data set, the hidden layer processes the features, 

and finally, the output layer shows the expected results. As can be 

seen in Table 2, MLPNN is widely used to predict the DO 

parameters. (15, 28, 31, 32). Moreover, MLPNN is used to predict 

BOD, COD, EC, TDS, turbidity, and WQI. In predicting the DO 

parameters, different inputs are used. However, Olyaie et al. in 

2017 and Ay and Kişi in 2017 both used pH, EC, temperature, 

and flow as input parameters (15,31). The difference is that Olyaie 

et al. used daily data of seven years, while Ay and Kişi used 

monthly data of 15 years. Regarding the performance, Olyaie et 

al. obtained R2 = 0.955 and root mean square error (RMSE) = 

0.594, while Ay and Kişi obtained R2 = 0.98 and RMSE = 0.52. 

The time scale of the data does not seem to have any impact on 

outcomes. 

Radial basis function neural network (RBFNN) is a type of 

NN applicable to general purposes and to various problems. The 

RBFNN model is more advantageous than other types of NN that 

have a grouping phase during training, where the hidden node's 

central location is calculated (36). RBFNN was developed as one 

of the most common three-layer neural feedforward networks 

(42) to determine parameters of water quality. This model has a 

simplified architecture of two weight layers with basic function 

parameters in the first layer, while the second layer contains linear 

combinations of those basic functions for the processing of the 

output and also contains parameters for water quality (1). Some 

researchers have predicted DO, COD, TDS, NH3-N, Turbidity, 

and WQI using RBFNN. Cobaner et al. in 2009 used GRNN, 

MLP, and RBNN to forecast SS. Their results confirmed that 

RBNN performed slightly better than the others (37). In addition, 

Ahmed (2017) compared some models regarding the DO 

prediction, which again showed the superiority of the RBNN's 

performance over the rivals (33).  

FFNN propagates the data linearly from input to output; in many 

practical applications, they are the most popular and widely-used 

models (43). FFNN is used to predict DO, BOD, TN, and 

temperature. Four scientists implemented monthly data in FFNN 

to predict DO using different input parameters (11, 13, 33, 43). 

Ahmed in 2017 predicted DO using BOD and COD parameters 

as input, and obtained R = 0.936 and RMSE = 0.709. Ranković et 

al. in 2010 used FFNN to check its capability to predict DO. They 

added more variables of water quality. Their findings showed that 

pH and the water temperature are the most powerful variables in 

DO prediction. In (44), ANFIS was used to learn neural network 

algorithms and fuzzy logic was used to construct a non-linear 

mapping between inputs and outputs. Ahmed et al. (2017) and 

Khaled et al. (2018) conducted a study into BOD prediction using 

ANFIS, and they suggested that the ANFIS technique could be 

successfully applied to building models for predicting the river 

water quality (34, 55). Elkiran et al. (2018) attempted to predict 

DO at Yamuna River using ANFIS, FFN, and MLR. They found 

that even both FFNN and ANFIS were found capable of handling 

nonlinear interactions, the ANFIS model performed better than 

FFNN (13). The most predicted parameters for ANN are done, 

DO, BOD, COD and WQI, respectively 13, 5, 5, and 4 studies. 

And so far, for certain output parameters from certain inputs, each 

NN type has achieved good results. 

 

Artificial Intellegency (AI) 

Technique

Single Approach

Artificial Neural Network (ANN)

Support Vector Machine 

k-nearest neighbors 

Hybrid Approach

WAVELET-ANFIS

WAVELET-ANN

ANN-ARIMA
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Table 1: Artificial Intelligence-Based Models Applied to Water Quality Prediction 

Type of 

Approach 
Methods Output Parameter River Authors 

Artificial 

Neural 

Network 

(ANN) 

Back Propagation 

neural networks 

COD, DO, NH3, 
Sediment 

Dahan River, Taiwan; Jishan 

Lake, China; River Suktel, 

India; Yuqiao reservoir in 

Tianjin 

Zhao et al. (2007); Xu and 

Liu (2013); Chang et al. 

(2015); Ghose and 

Samantaray (2018) 

Wavelet Neural 

Network 

DO Jishan Lake, China Xu and Liu (2013) 

Generalized 

Regression NN 

COD Cark Creek, Turkey Ay and Kisi (2014) 

Radial Basic 

Neural Networks 

COD, DO, NH3, 

TDS, Turbidity, 

Suspended 

sediment 

Surma River, Bangladesh; 

Yangtze River, China; Johor 

River, Malaysia; Cark Creek, 

Turkey; Kopili River, India 

Ahmed (2017); Basis et al. 

(2014); Najah et al. (2013); 

Ay and Kisi (2014); Kumar et 

al. (2016) 

Feed Forward 

Neural Network 

BOD, DO, Total 

Nitrogen, 

Temperature, 

WQI 

Gomti river, India; Melen River, 

Turkey; Surma River, 

Bangladesh; 59 rivers in Japan; 

Kinta River, Malaysia; Yamuna 

River 

Singh et al. (2009); Dogan et 

al. (2009); Ahmed (2017); He 

et al. (2011); Gazzaz et al. 

(2012); Elkiran et al. (2018) 

Multi-layer 

Perceptron Neural 

Networks 

WQI, DO, BOD, 

COD, TDS, 

Turbidity, 

Electrical 

conductivity 

Johor River, Malaysia; Heihe 

River, China; Cark Creek, 

Turkey; Langat River, Malaysia; 

Aji-Chay River, Iran 

Najah et al. (2011; 2013); 

Gazzaz et al. (2012); Wen et 

al. (2013); Ay and Kişi (2014, 

2017); Raheli et al. (2017); 

Keshtegar and Heddam 

(2018); Zhang et al. (2019); 

Barzegar et al. (2016) 

Multi-layer Feed 

Forward Neural 

Networks 

BOD, DO, pH 

Temperature, 

Turbidity, TN, 

TP, Boron  

Melen River, Turkey; Nakdong 

River, South Korean; Buyuk 

Menderes River, Turkey 

Dogan et al. (2009); Kim and 

Seo (2015); Ömer Faruk 

(2010) 

 Adaptive Network-

Based Fuzzy 

Inference System 

(ANFIS) 

BOD5 

 

Yangtze River, China; Beas 

River, Hong Kong; Surma 

River, Bangladesh; Aji-Chay 

River, Iran; Ouizert Reservoir, 

Algeria; Yamuna River 

Deng et al. (2015); Barzegar 

et al. (2016); Ahmed and 

Shah (2017); Khaled et al. 

(2018); Elkiran et al. (2018) 

Support Vector Machine (SVM) DO, BOD, COD, 

CODMn, NH3–N, 

BOD5 

Johor River, Malaysia; Weihe 

River, China; Sefidrood River, 

Iran; Yamuna River, India; 

Changle River, China; Kopili 

River, India; Wen-Rui Tang 

River, China; Small Prespa 

Lake, Macedonia, Greece; Pond 

at Dongying city, China 

Najah et al. (2011); Wang et 

al. (2011); Noori et al. (2012); 

Liu and Lu (2014); Kisi and 

Parmar (2016); Kumar et al. 

(2016); Ji et al. (2017); Li et 

al. (2018); Fijani et al. (2019)  

k-nearest neighbors TDS, EC Lighvan Chay River, Iran Sattari et al. (2016) 

ANN-ARIMA DO, temperature, 

NH3-N, Boron 

Yangtze River, China; Buyuk 

Menderes River, Turkey 

Ömer Faruk, (2010); Basis et 

al. (2014) 

 

Wavelet-ANFIS TDS, EC, 

Turbidity 

Johor River, Malaysia; Aji-Chay 

River, Iran 

Najah et al. (2012); Barzegar 

et al. (2016) 

Wavelet-ANN EC Aji-Chay River, Iran Barzegar et al. (2016) 
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Table 2: ANN Application to DO Prediction 

Methods Input Parameter 
Output 

Parameter 
Evaluation Criteria 

Time Scale 

Data 
Authors 

FFNN pH, total  

alkalinity, total hardness, total 

solids, COD, DO, BOD, NH4-N, 

NO3-N, Cl, PO4, K, and Na  

BOD and 

DO 

R2, RMSE, and bias 

computed  

Monthly  

(10 years) 

Singh et al. 

(2009) 

FFNN pH, T, chloride, total phosphate, 

nitrites, nitrates, ammonia, iron, 

manganese, and EC 

DO R, MAE, and MSE 

 

Monthly  

(1 year) 

Ranković et 

al. (2010)  

FFNN and 

ANFIS 

DO, BOD, pH, and T DO RMSE, MSE, and 

DC 

Daily  

(1999-2012) 

Elkiran et 

al. (2018) 

FFNN and 

RBFNN 

BOD and COD DO R, MSE, and 

coefficient of 

efficiency (E) 

Monthly 

(2010-2012) 

Ahmed 

(2017) 

 

MLFFNN T, boron, and DO temperature, 

boron, and 

DO 

R. RMSE, MAPE, 

and NSC 

Monthly  

(8 years) 

Ömer 

Faruk, 

(2010) 

MLFFNN pH, DO, turbidity, TN, and TP pH, DO, 

turbidity, 

TN, and TP 

R2, RMSE, and IQR Daily  

(2009-2012) 

Kim and 

Seo (2015) 

MLPNN pH, EC, Cl-, Ca2+, total alkalinity, 

total hardness, NO3-N, and NH4-

N 

DO 

 

R, RMSE, and MSE Monthly  

(6 years) 

Wen et al. 

(2013) 

MLPNN COD, PO4, TS, K, Na, Cl, EC, 

pH, and NH4-N 

 

BOD and 

DO 

R, RMSE, %RMSE, 

and Willmott’s 

index of agreement 

Monthly 

(2001-2010) 

Raheli et al. 

(2017) 

MLPNN pH, EC, T, and river discharge 

(Q) 

DO 

 

 RMSE, Nashe 

Sutcliffe efficiency 

coefficient (NSC), 

MARE and, R 

Daily  

(July 2007-

Jan 2014) 

Olyaie et al. 

(2017) 

MLPNN pH, EC, T, river discharge (Q), 

and DO 

DO RMSE, MAE, and 

R2 

Monthly 

(1996-2010) 

Ay and Kişi 

(2017) 

RBFNN DO and NH3-N DO and 

NH3-N 

R, MAP, and RMSE Weekly  

(2005-2014) 

Basis et al. 

(2014) 

4 Support Vector Machine Approach in River 

Water Quality Monitoring 
SVM has raised expectations in recent years since it has been 

successful in the context of classification problems, regression, 

and prediction; for example in machine learning concepts and 

methods, statistics, statistical analysis, and convex optimization 

(57). Several previously-conducted studies have confirmed the 

high potential and outstanding performance of SVM. This level 

of effectiveness is largely due to the concept of structural risk 

minimization (SRM) in SVM, which is more generalized and 

superior to the theory of empirical risk minimization (ERM), 

when applied to neural networks (24).  

The results of this study are in line with those of the study 

conducted by Chen (2010) who claimed that the concept of SRM 

in SVM, which is focused on the theory of statistical learning, 

may successfully resolve the Neural Network deficiency (58). 

SVMs are able to produce reliable and stable classification tests 

even if the input data are neither monotonous nor linearly 

separable. They can quickly determine more relevant information.  

A key feature of SVM is that during the training process, it 

automatically defines and integrates support vectors and avoids 

the control of non-supporting vectors over the configuration; this 

means that the model can handle noisy conditions well (59). SVM 

has the ability to track events in the past with some primary actual 

training vectors incorporated in the models as support vectors to 

improve future predictions through learning from past experience. 

On the other hand, SVMs have some disadvantages. Because of 

the inherent complexity of mapping non-linear input spaces to 

high-dimensional character-spaces and the extrapolation of 

models, it is not easy to understand and interpret the behavior of 

nonlinear SVM models. Moreover, the model is entirely 

dependent on records when data inconsistencies occur (57). In 

several studies, SVM has been successfully applied to water 

quality prediction in case of BOD (56, 60),  DO (40, 53), COD 

(30), Total Phosphate, and Total Nitrogen (53).  

 

5 Hybrid Approach to River Water Quality 

Monitoring  
Due to the robustness and accuracy of wavelet-AI models, 

their application to hydrology has gradually increased in recent 

years. The success of this model is attributable to the efficiency 

of multi-resolution processing wavelet transformations, the 

identification of noise and edge effects via a signal, and the high 

capability of AI in dealing with optimization and prediction 

problems (4). Some researchers have investigated a number of 

hybrid models in terms of water quality prediction. Their results 

have shown that high-vanishing wavelets could help improve the 

robustness and efficiency of hybridized wavelet-AI models. The 
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performance of these hybrid models was compared to wavelet 

models. Najah et al. (2012) used the integrated wavelet-ANFIS 

model to predict monthly water TDS, EC, and turbidity. They 

found the greatest accuracy level obtained by making the fifth 

cross-validation length of data records. Additionally, they 

confirmed the superiority of the wavelet-ANFIS model compared 

to ANFIS model in terms of prediction accuracy (16). It can be 

inferred that wavelets with long vanishing times can be useful for 

improving the quality and reliability of wavelet-AI hybrid 

models. The wavelet-ANFIS  model has been also found more 

successful than the ANN wavelet model in terms of EC prediction 

(12).  

 

6 Evaluation and Assessment 
     After ANNs and (chronologically) fuzzy theory, the largest 

development in hydrological parameters is SVM. In most 

literature reviews, conventional predictive regression models 

have been found ineffective compared to AI-based models such 

as ANN, ANFIS, and SVM. Although ANN is vulnerable to the 

hidden nodes number, the SVM is responsive to the selection of 

mapping kernels, which means the optimization of these variables 

will achieve comparable results with both models. In the latest 

studies conducted in this field, ANN has been the most popular 

technique. 

 

7 Recommendation for Future Research 
Another promising strategy in AI development is the hybrid 

combination of two or more of the above techniques to create a 

further flexible modelling scheme for water quality. Moreover, 

progress in AI is made in two fields in parallel: fundamental tool 

capabilities and actual implementations in solving water quality 

issues. Research is presently ongoing to develop better AI 

instruments that can provide better representational knowledge 

systems, alternative analysis methods, and alternate processes to 

address uncertain or insufficient information. The use of database 

management systems, visual displays, and knowledge 

improvement modules can improve the precision of existing 

modelling systems worldwide. In this context, with simulation 

systems evolving, the criteria for better AI software will be 

increased, which in turn may lead to better AI technology 

implementation strategies. Most notably, simulation systems must 

step out from the laboratory and onto real practice. Continued 

research will develop AI technology and its implementation in the 

simulation of water quality. 

 

8 Conclusion 
Current models applied to water quality prediction are not 

user-friendly enough and mostly their implementation is 

subjected to substantial restrictions. Selecting a suitable 

numerical model is a challenging task for novice application 

users. The incorporation of current heuristic understanding of 

model manipulation and the intellectual manipulation of 

calibration parameters are therefore instrumental. The latest 

developments in AI technology provide a way of filling the gap 

between the designer and the model professional. This article 

examined the state-of-the-art models proposed for water quality 

prediction and the progress made in integrating AI into these 

models. The ANN method can contribute distinctly to the 

embedded model.This approach can help novice users to assess 

whether digital models produced by function modelling are actual 

phenomena. Several plans for the future are investigated and 

submitted for further advancement and their potential. More 

progress in function modeling in this direction is expected to be 

promising with the ever-increasing potential of AI technologies. 
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