Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1036-1045  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/jett-8(3)1  
A Combination of Waste Biomass Activated Carbon  
and Nylon Nanofiber for Removal of Triclosan from  
Aqueous Solutions  
1
1,2  
3
1,2  
Nor Khoriha Eliysa Mohd Khori , Salmiati *, Tony Hadibarata , Zulkifli Yusop  
1
Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai,  
Johor, Malaysia.  
2
Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi  
Malaysia, 81310 Skudai, Johor, Malaysia.  
Department of Environmental Engineering, Faculty of Engineering and Science, Curtin University, Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia  
3
Received: 25/03/2020  
Accepted: 26/06/2020  
Published: 20/09/2020  
Abstract  
Triclosan (TCS) is one of the biocide used as antibacterial and antifungal agent to kill and hinder the growth of bacteria and also it is  
used in many personal care and health care products. However, TCS can cause health and environmental problems such as environmental  
pollutions, acute toxicity, etc. The aim of this study is to investigate the removal of TCS from aqueous solution by combining the coconut  
pulp waste (Cocos nuciefera) activated carbon (AC) with nylon 6,6 membrane. To this end, first, the effects of physico-chemical  
characteristics of the membrane were studied. The nylon 6,6 membrane (14 wt.%] was prepared using electrospinning machine with injection  
rate at 0.4 mL/h, tip-to-collector distance at 15 cm, rotation speed at 1000 rpm, and applied voltage at 26 kV. The parameters studied for the  
membrane during the adsorption test were contact time, adsorbent dosage, agitation speed, initial TCS concentration, pH, and temperature of  
the TCS solution. The filtration test was done using flat sheet membrane test machine at pressure 1.0 bar. The characteristics of the membrane  
were analysed using the FESEM and FTIR tests. Based on the obtained results, the nylon 6,6 membrane can remove 90.2% of TCS within 5  
minutes; the removal rate increased to 100% in less than 5 minutes after the membrane was combined with AC. This study proved that the  
combination of AC and nylon 6,6 membrane is able to maximize the TCS removal from water.  
Keywords: Triclosan; Activated carbon; Coconut pulp waste; Nylon 6,6 membrane  
1
men with concentrations from 0.41 to 2.95 ng (mg creatinine)-1  
1
Introduction  
and it caused some adverse effects to the semen quality such as  
low sperm production and poor forward mobility. Moreover, TCS  
has a high bioaccumulation potential and it can enter the food web  
system [4]. TCS can also cause toxicity to some aquatic life  
species such as algae, planktons, fishes, and frogs [5-10].  
Therefore, several treatment methods have been implemented  
to remove TCS from the water, including those using cellulose  
acetate (CA) membrane [11], ammonia amendment and  
bioaugmentation in nitrifying activated sludge [12], dielectric  
barrier discharge plasma combined with activated carbon fibers  
Triclosan (TCS) (5-chloro-2-(2,4-dichlorophenoxy) phenol) is  
a chlorinated aromatic compound with the molecular formula  
Cl and molecular weight of 289.54 g/mol. This organic  
C
12  
H
7
3 2  
O
compound, in the form of white powders, has functional groups  
of both ethers and phenols. Triclosan is one of the antibacterial  
and antifungal agents that are normally used in medical and  
consumer products, such as surgical scrubs, toothpastes, hand  
wash soaps, mouthwash, shampoos, plastics, toys, textiles, and  
deodorants [1]. It has the ability to hinder the growth of  
microorganisms, and due to its presence in many consumer  
products, it has been detected in most of the sediments, biosolids,  
surface water, soil, and aquatic species [2].  
[13], structure-directing agent modified mesoporous MIL-53 (Al)  
[14], dissolved organic matter on soybean peroxidase-mediated  
[15], ozonation [16], and microalgal species [17]. However, these  
Though TCS is an antibacterial agent, it also poses a potential  
risk to the human health and the environment. Zhu et al. [3]  
reported that TCS was detected in 97% of urine samples of 471  
treatments involved complex procedures, high costs of treatments  
and maintenance, large volumes of chemicals, and long  
Corresponding author: Salmiati, (a) Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of  
Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia. (b) Centre for Environmental Sustainability and Water Security  
(
IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.  
Department of Environmental Engineering, Faculty of Engineering and Science, Curtin University, Malaysia, CDT 250, 98009 Miri  
3
Sarawak, Malaysia. Email: salmiati@utm.my.  
1
036  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1036-1045  
processing times [18].  
2
Materials and Methods  
In recent years, the adsorption process has been one of the  
popular methods applied to remove chemicals and dyes in water  
and wastewater treatments due to its advantages of having less  
processing procedures with less sludge being produced. Several  
adsorption studies to remove TCS were done using rice straw-  
derived activated carbon [19], charcoal-based activated carbon  
2
.1 Chemical  
In this study, the following chemicals were used: TCS and  
acetic acid that were supplied by Merck KGaA (Darmstadt,  
Germany), Tween 80 supplied by Sigma-Aldrich, ethanol 96%  
obtained from Qrecᵀᴹ (Malaysia), Nylon 6,6 (polyamide 6,6)  
pellets supplied by DSM Co. (Netherlands), and formic acid  
supplied by HmbG Chemicals (Barcelona, Spain). The coconut  
pulp waste activated carbon was prepared during the preliminary  
study [45]. The physical and chemical characteristics of TCS and  
nylon 6,6 are shown in Table 1.  
[20], conventional activated carbon [21], civilian protective gas  
mask activated carbon [22], magnetic carbon composites from  
hydrochar [23], and wastewater biosolids-derived biochar [24].  
High surface areas, micro-porous structures, and high degrees of  
surface reactivity cause activated carbons to become versatile  
adsorbents, particularly effective for the adsorption of organic and  
inorganic pollutants from aqueous solutions [25].  
Table 1: Physico-chemical characteristics of TCS and nylon 6,6  
TCS  
Nylon 6,6  
However, the preparation of commercial activated carbons is a  
costly activity, which has encouraged researchers to search for  
low-cost materials as alternatives [26]. There are many types of  
natural wastes used as low-cost adsorbents such as human hair,  
sheep wool, cane bagasse, and many more [27, 28]. Among all,  
agricultural wastes are one of the promising sources as they are  
inexpensive, easy to collect, and environmentally friendly [29].  
Furthermore, they have a high efficiency in trapping and  
removing chemicals and dyes from water due to possessing many  
functional groups such as alcohols, phenolic, amido, amino,  
carboxyl, carbonyl, and ester [30]. The agricultural wastes from  
coconut trees have become one of the promising materials to be  
used as adsorbents due to their abundance in nature, cheaper price,  
high porous structures, and high absorption capability. The  
coconut tree parts commonly used as adsorbents are the bunch  
Chemical  
structure  
Poly[imino(1,6-  
dioxohexamethylene)  
iminohexamethylene]  
White pellets  
5
-chloro-2-(2,4-  
IUPAC name  
dichlorophenoxy)phenol  
Appearance  
Physical state  
Molecular weight  
Chemical  
White solid  
Solid  
Solid  
262.3458 g mol  
-1  
289.54 g·mol¹  
C
12  
H
7
C
13  
O
2
12 22 2 2  
C H N O  
formula  
ethanol, methanol,  
diethyl ether, strongly  
basic solutions, and  
Soluble in acid, slightly  
soluble in boiling water  
Solubility  
slightly soluble in water  
(10mg/L at 20˚C)  
[29], frond [31], pulp waste [32], husk [33], coir [34], leaves [35],  
Melting point  
55-57 °C  
255-265 °C  
and shell [36].  
In addition, membrane is one of the technologies used for  
removal of various chemicals and pollutants from water. This  
advanced, well-known treatment technology has become one of  
the most preferred options for water and wastewater treatments in  
food industries, chemical industries, and pharmaceutical  
industries [37-39]. Such popularity of membrane treatment is  
because of many advantages such as no addition of chemicals  
required, no secondary pollutants produced, low energy  
consumption, easy to handle, low operating and maintenance  
costs, easy to scale-up, high porous structure, and high recovery  
and reusability [40, 41]. Most of the membranes are made from  
polymeric materials. Nylon 6,6 is one of the polyamide group that  
is excellent in mechanical strength, toughness, rigidity, and  
stability with self-lubricating properties and cost effectiveness in  
nature [42, 43]. It is also hydrophilic, thin enough, highly porous,  
highly permeant, acceptable in fouling resistant, and low  
complicated in structures [44]. These advantages have promoted  
nylon as a functional polymer for many biomedical and  
environmental applications [43].  
However, finding the best and the most affordable treatments  
for TCS (because of its long-term negative effects on the aquatic  
life, wild life, and human health) has remained a concern for  
researchers working in this field. Therefore, the aim of this  
research is to study the efficiency of combining both adsorption  
and filtration methods to remove TCS from water. The objectives  
of this study are to investigate the physico-chemical  
characteristics of nylon 6,6 membrane and to examine their effect  
on the TCS removal from water.  
A 500 mg/L of TCS stock solution was prepared in 500 mL  
volumetric flask by dissolving 250 mg TCS powder into 500 mL  
ethanol with 0.1% Tween 80. Tween 80 is a surfactant that can  
solubilize hydrophobic organic compound and increase the  
treatment process efficiency to remove hydrophobic particles in  
water and soil. As stated by Cheng et al. [46], Tween 80 has many  
advantages such as cheap, low toxicity to environment, low  
polarity, and also has high solubilization capacity. As followed by  
Behera et al. [20], the stock solution was stored in refrigerator at  
temperature ± 4 ˚C and was used within one month from its  
preparation date. The standard solutions for adsorption process  
were prepared by diluting stock solution with distilled water.  
2
.2 Preparation of the nylon 6,6 membrane  
Nylon 6,6 membrane was fabricated in an electrospinning  
machine (FNM Ltd., Iran). The preparation of one membrane  
sheet was done within three days. Firstly, 5 ml of acetic acid and  
5
1
ml of formic acid were poured in a 30 ml glass bottle. Then,  
.40 g of Nylon 6,6 pellets were weighed using analytical  
weighing scale. The Nylon 6,6 pellets were dissolved with acetic  
acid-formic acid solution using magnetic stirrer for 12 hours. This  
procedure was done in order to get a homogenous solution.  
For the electrospinning process, several parameters were set up  
for fabrication of Nylon 6,6 membrane. 5 ml syringe and 0.6 x 32  
mm needles supplied by Terumo® (Canada) were used in this  
process. Firstly, the collector drum was covered with aluminum  
net as a membrane base support. This step was carried out so that  
the membrane sheet can be removed easily. The Nylon 6,6  
solution prepared was sucked into the syringe and placed at the  
1
037  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1036-1045  
syringe pump holder. A high voltage was supplied by clipping a  
small crocodile clipper at the middle of the needle used. As  
performed by Jasni et al. [43], the jetting flow rate, supplied  
voltage, drum collector speed, and tip-to-collector distance were  
set to 0.4 mL/h, 26 kV, 1000 rpm, and 15 cm, respectively. Then,  
the membrane sheet produced was removed from the drum  
collector and was dried in a clean cupboard at room temperature  
for 24 hours. Then, it was stored in a clean container for further  
research.  
membrane pores to be filled and be in contact with water. The  
compaction test was done using 4000 mL distilled water with 1.5  
bar pressure for one hour or until a stable permeation rate was  
achieved. The volume of permeate water from the membrane test  
cell outlet was recorded every 5 minutes to check the permeation  
rate pattern. After the permeation volume became stable, the  
pressure was reduced to 1.0 bar.  
Then, the water flux test proceeded using distilled water. The  
volume of permeate water were recorded every 5 minutes. After  
that, the distilled water was removed and replaced with 4000 mL  
of 5 mg/L TCS solution for filtration process and TCS flux  
analysis. For TCS flux experiment, the volume of TCS solution  
permeated from the permeation cell was recorded every 5  
minutes. Besides that, the TCS samples were taken from  
permeation cell and feed tank for TCS removal analysis. The  
entire membrane filtration tests were done at room temperature.  
The flux value was calculated using Equation (1) as follows:  
2
.3 Adsorption studies  
The adsorption studies of TCS adsorption using Nylon 6,6  
membrane were conducted by means of 100 mL conical flask.  
Based on Jasni et al. [43], the batch studies were conducted in  
order to analyse the effect of various parameters on the uptake of  
TCS onto Nylon 6,6 membrane. As suggested by Muhamad et al.  
[47], for adsorption performance experiment, the membrane sheet  
was cut to smaller pieces (5 mm x 5 mm) before being weighed  
using analytical weighing scale. The adsorption tests were  
conducted using a conical flask and a shaker [43, 48]. The effects  
parameters analysed in this experiment were contact time,  
adsorbent dosage, agitation speed, initial TCS concentration,  
initial pH of TCS solution, and temperature.  
2
Flux, J (L/m h) = (V/t) / A  
(1)  
2
where V/t (L/h) is volume permeation rate and A (m ) is  
membrane area (A=0.002124 m ).  
2
The effects of contact time were studied from 10 minutes until  
hours. Next, the effects of membrane dosage were investigated  
2.5 Combination of activated carbon and nylon 6,6 membrane  
The coconut pulp waste activated carbon and nylon 6,6  
membrane were combined in order to maximize the TCS removal  
in water. All the optimum parameters conditions were obtained  
from the batch adsorption and membrane experiments. The  
combination test was done using flat sheet membrane test and a  
stand stirrer. A piece of fabric was installed at the inlet pipe in  
order to prevent the activated carbon from entrance to the  
membrane machine. The nylon 6,6 membrane was put in the  
permeation cell. After the compaction test, 4000 mL of the TCS  
solution with initial concentration at 5 mg/L was poured into the  
feed tank together with coconut pulp activated carbon. A stand  
stirrer was setup beside the feed tank with its stirrer pointed in the  
tank. Then, the TCS solution was stirred with activated carbon for  
20 minutes. After that, the inlet valve was opened and TCS  
solution was filtered with nylon 6,6 membrane. The concentration  
of TCS permeated from the membrane was collected and  
analysed.  
6
using 0.01 g, 0.05 g, 0.10 g, 0.15 g, and 0.20 g of nylon 6,6  
membrane. For agitation speed, the speeds of orbital shaker were  
tested from 50 rpm to 250 rpm with 50 rpm interval. Then, the  
effects of TCS initial concentration were analysed at 5 mg/L, 10  
mg/L, 30 mg/L, 50 mg/L, 70 mg/L, and 90 mg/L, and the effect  
of pH was investigated by varying the value from 3.0 to 9.0.  
Lastly, the effect of temperature was studied using incubator  
shaker at temperature 25 ˚C to 60 ˚C. A summary of design  
parameters for TCS adsorption using nylon 6,6 membrane is  
tabulated in Table 2. The remaining of the TCS concentration in  
water after adsorption treatment was determined using  
Ultraviolet-Visible  
NANOCOLOR® UV/Vis Macherey-Nagel) at maximum  
wavelength of 279 nm.  
(UV-Vis)  
Spectrophotometer  
(
Table 2: The design parameters for TCS adsorption using nylon  
6
,6 membrane  
Parameters Contact Membrane speed TCS conc.  
pH Temperature  
2.6 Characterizations of nylon 6,6 membrane  
time (hr) mass (g) (rpm)  
(mg/L)  
5.0  
5.0  
(˚C)  
25  
25  
In this research, the surface structure and morphology of the  
nylon 6,6 membrane were analysed using Field Emission  
Scanning Electron Microscopy (FESEM) (FESEM, JEOL 6335f-  
SEM, Japan) test. The test was done for the membrane before and  
after treatments of TCS solution. As recommended by Jasni et al.  
Contact time 0.17-6.00  
0.01  
0.01-0.15  
150  
150  
5.6  
5.6  
Adsorbent  
dosage  
Agitation  
TCS conc.  
pH  
4.00  
4.00  
4.00  
4.00  
4.00  
0.01  
0.01  
0.01  
0.01  
50-250  
150  
150  
5.0  
5.0-90.0  
5.0  
5.6  
5.6  
3.0-9.0  
5.6  
25  
25  
25  
[43], before conducting the FESEM test, the samples were coated  
Temperature  
150  
5.0  
25-60  
using a gold sputter of a Bio Rad Polaron Division SEM coating  
-
1
system machine at 10 Mbar in order to reduce charging. Then,  
they were inserted in FESEM instrument to analyse their surface  
structures and morphologies. The magnifications scales were  
used from 5000x to 10000x.  
2
.4 Filtration  
Filtration experiments were done using the flat sheet  
membrane test. The filtration test was done to analyse the water  
flux, TCS flux, and permeate concentration of TCS solution after  
filtering with nylon 6,6 membrane. The membrane sheet was cut  
to an oval shape with 57 mm diameter to fit in the permeation cell.  
Then, the cell was tightened with screws. Afterward, the distilled  
water was poured in the feed tank for further tests. Next, after  
setting the permeation cell and tightening all screws, the  
membrane compaction test was conducted to allow all the  
In addition, the functional groups existed on the membrane  
were analyzed using Fourier Transform Infrared Spectroscopy  
(FTIR) (Perkin-Elmer spectrum ONE). The FTIR test was  
recorded in the spectral range of 4000 to 400 cm¹ at resolution 4  
-
1
cm . For the nylon 6,6 membrane, the FTIR analysis was  
conducted using the Attenuated Total Reflectance (ATR)  
technique. ATR mode was used because the membrane was  
1
038  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1036-1045  
already in solid form and not in powder form. The ATR technique  
allows the solid or liquid samples to be examined directly without  
any preparation in advance.  
membrane.  
100  
95  
3
Results and Discussion  
3
3
.1 Characteristics of the nylon 6,6 membrane  
.1.1 Surface morphologies  
9
8
8
7
0
5
0
5
The FESEM test was done to analyze the surface morphologies  
2934  
3
298  
of the nylon 6,6 membrane. Figures 1 (a) and (b) show the  
FESEM images of this membrane before and after the TCS  
adsorption, respectively. As can be seen in Figure 1 (a), the  
morphology of nylon 6,6 fiber threads appear to be thin, smooth,  
free from beads, and continuous. These results show that, the  
optimum electrospinning parameters used during the production  
of nylon 6,6 membrane can produce a quality nanofiber. Based on  
Figure 1 (b), on the other hand, can be used to analyse the  
activated carbon after adsorption of TCS. The image shows that  
the nylon 6,6 nanofiber threads were filled up by a lot of particles  
until most of the nanofiber threads were covered. This showed  
that the nylon 6,6 membrane can adsorb and trap TCS particles in  
aqueous solutions.  
1
535  
1636  
4
000 3600 3200 2800 2400 2000 1600 1200 800  
400  
Wavenumber (cm¯ ¹)  
Figure 2: The FTIR spectra of the nylon 6,6 membrane  
3.2 Adsorption studies  
3.2.1 Contact time  
The contact time was measured to determine the maximum  
time taken for adsorbate removal and adsorption capacity of the  
adsorbent until it reaches the equilibrium condition. The effect of  
contact time was examined through applying 0.1 g nylon 6,6  
membrane to treating 50 ml of 5 mg/L TCS solution.  
In Figure 3, it shows the effect of contact time on TCS removal  
by the nylon 6,6 membrane. The graph shows that the TCS  
removal and adsorption capacity increased with an increase of  
contact time. The TCS removal increased from 40.2% to 86.3%  
th  
by the 4 hour before reaching its equilibrium conditions. Then,  
th  
the TCS removal started to slightly decrease during the 5 and the  
6
Figure 1: FESEM image of the nylon 6,6 membrane (a) before adsorption  
th  
(magnification x10000) and (b) after TCS adsorption (magnification  
hours from 85.3% to 83.3%. Meanwhile, the adsorption  
x5000)  
capacity also increased from 1.01 mg/g to 2.16 mg/g for 10  
minutes during 4 hours of contact time before it decreased from  
2.13 mg/g to 2.08 mg/g during the 5 to 6 hours of contact time.  
Therefore, the optimum time taken for TCS removal using nylon  
6,6 membrane to reach equilibrium was achieved with 4 hours of  
contact time.  
th  
th  
3
.1.2 Functional groups  
FTIR is one of the important methods to identify and determine  
the functional groups of adsorbent samples and it influences the  
occurrence of the adsorption process. Figure 2 shows the FTIR  
spectra of the nylon 6,6 membrane. According to the obtained  
results, the nylon 6,6 has a medium band at peak 3298cm that  
was attributed to the N-H stretch from amino groups [41].  
Following this, a C-H stretching vibration due to alkanes group  
-
1
-
1
-
was observed with a medium peak at 2934cm . At peaks 1636cm  
1
-1  
and 1535cm , two strong peaks were detected, and after  
-1  
500cm , all the peaks weakened in intensity. The strong peaks  
-1 -1  
1
formed at peaks range from 1500cm to 1700cm , due to amide  
-
1
I and II bands [42]. At peak 1636cm , C=O stretching from the  
carbonyl group can bind with the amino group to form intra  
molecular hydrogen bonding, causing the C=O stretching that  
-
1
-1  
normally forms at peak 1760cm to 1665cm to be shifted to  
1
636 cm [43]. Meanwhile, the amide II band at peak 1535cm-1  
-1  
appeared due to C-N stretching and N-H bonding.  
Xu et al. [40] stated that “the hydrogen bonding interactions  
might play an important role in the sorption processes, because  
hydrogen bonds could be formed between phenolic hydroxyl  
group of TCS acting as hydrogen-bonding donors and carbonyl  
groups of electrospun fibrous membranes”. This FTIR test  
showed that the nylon 6,6 membrane has a carbonyl group and it  
can produce hydrogen bonding with the hydroxyl group of TCS  
molecules [43]. Therefore, it can be proven that the chemisorption  
process happened during the TCS removal using nylon 6,6  
Figure 3: The effect of contact time on the TCS removal using nylon 6,6  
membrane  
According to the results, the higher and rapid adsorption rates  
at the initial period were due to the number of vacant sites  
available at the initial stage on the external surface of nanofibrous  
adsorbents [49]. On the other hand, the slow adsorption rate from  
2
hours to 4 hours of contact time was due to the availability of  
1
039  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1036-1045  
decreased membrane pores and the fact that TCS had to move into  
deeper sites [26,49]. The decrease in removal percentage after  
equilibrium might also be due to some adsorbate particles which  
started being released from the adsorbent surface into the solution  
adsorption capacity [53]. A similar trend for effect of membrane  
dosage was also reported by Li et al. [15] in their study into  
methylene blue dye removal using calcium algitate membrane.  
The study achieved the optimum dye removal of 96.0% using 20  
mg of membrane.  
[30]. The same pattern for adsorption capacity was also achieved  
in [50] for chitosan/PVA nanofibers to remove nickel and cobalt  
where it reached equilibrium at 120 min. Razzaz et al. [49] also  
3.2.3 Agitation  
reported the same trends for adsorption capacity of chitosan/TiO  
nanofibrous for Pb(II) and Cu(II) ions removal, reaching  
equilibrium at 30 min of contact time.  
2
Agitation was performed to ensure the maximum contact of  
fiber surface with the TCS in the solution [48]. The effect of  
agitation was investigated by varying the agitation speed of the  
shaker from 50 rpm to 250 rpm. Figure 5 shows the effect of  
agitation speed on TCS removal using the nylon 6,6 membrane.  
According to the graph, the optimum TCS removal and  
absorption capacity of 86.3% and 2.16 mg/g, respectively, were  
achieved at 150 rpm. A slower speed will reduce mobility and  
transfer force between TCS and the adsorbent, while a higher  
speed will lead to weakening of the bonding strength between the  
TCS and the membrane surface area. It results in low removal  
percentage and adsorption capacity using activated carbon.  
Therefore, the best agitation speed for TCS adsorption using the  
nylon 6,6 membrane was achieved at 150 rpm, and it was used for  
all the other parameters during this study.  
3
.2.2 Adsorbent dosage  
Adsorbent dosage is a parameter that affects the availability of  
the adsorption sites. The effect of adsorbent dosage was examined  
by varying the amount of nylon 6,6 membrane from 0.01 g to 0.20  
g. The experiments were conducted at room temperature to treat  
5
0 ml of 5 mg/L TCS solution, at 150 rpm. Figure 4 shows the  
effect of adsorbent dosage on TCS removal using the nylon 6,6  
membrane. As depicted by the graph, the removal of TCS  
increased from 56.9% to 86.3% with an increase of membrane  
mass from 0.01 g to 0.10 g. However, when the mass of the nylon  
6
,6 was added in the range of 0.15 g to 0.20 g, the TCS removal  
also decreased from 82.4% to 70.6%. On the other hand, the  
adsorption capacity of nylon 6,6 membrane was found to decrease  
by increasing the membrane mass. The adsorption capacity  
decreased from 14.22 mg/g to 0.88 mg/g when the membrane was  
increased from 0.01 g to 0.20 g. Thus, the optimum membrane  
dosage to remove 5 mg/L TCS solution was achieved with 0.10 g  
of the adsorbent.  
Figure 5: The effect of agitation speed on the TCS removal using nylon  
6
,6 membrane  
Figure 4: The effect of adsorbent dosage on the TCS removal using  
nylon 6,6 membrane  
The increase in removal percentage from 0.01 g to 0.10 g was  
due to the high surface area and the availability of binding sites  
for adsorption [51]. As for the decrease in the removal after the  
optimum dosage was given, it was attributed to the overlapping  
of adsorption sites due to crowded membranes that would reduce  
the active sites for adsorption [15]. Moreover, the decrease of  
adsorption capacity with an increase in the adsorbent dosage was  
due to the fact that the adsorbent sites available were not fully  
utilized at a higher adsorbent dosage. When the adsorbents  
increased, there were more sites available in number which finally  
reduced the amount of TCS adsorbed for each unit weight of  
membranes [52]. Additionally, at a high adsorbent dosage, the  
interfacial tension between two phases increased, which reduced  
the driving force for the mass transfer, hence reducing the  
Figure 6: The effect of initial TCS concentration on the TCS removal by  
using nylon 6,6 membrane  
3.2.4 Initial TCS concentration  
The effects of initial TCS concentrations were tested from 5  
mg/L to 90 mg/L, while the other parameters were kept constant.  
Figure 6 shows the effect of initial TCS concentration on its  
1
040  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1036-1045  
removal using nylon 6,6 membrane. From the graph plotted, when  
the initial concentration of TCS was increased from 5 mg/L to 50  
mg/L, the TCS removal also increased from 86.3% to 93.5%. This  
was due to the many active sites available for the adsorption  
process at low concentrations [54]. However, when the TCS  
concentration was increased to 70 mg/L and 90 mg/L, the removal  
percentage almost remained constant with a slight decrease to  
forces between the positively charge TCS and the negatively  
charge membrane. At pH values higher than 7.90, TCS particles  
will be deprotonated and become negatively charged. Thus, the  
electrostatic repulsion between the deprotonated TCS and  
nanofibers caused a reduction for both TCS removal and  
adsorption capacity [40]. Xu et al. [40] also reported a similar  
trend for the adsorption of TCS using electrospun fibrous  
membranes and achieved the best TCS removal at pH 6 compared  
to those fixed at pH 4, 8, and 10.  
9
3.5% and 93.4%, respectively. According to Feng et al. [55], this  
could be due to the decrease and the saturation of active sites on  
the adsorbent surfaces. While the membrane adsorption capacity  
increased with an increase in the TCS initial concentration. The  
nylon 6,6 membrane adsorption capacity increased from 2.16  
mg/g to 42.01 mg/g in 5 mg/L to 90 mg/L TCS concentrations.  
Increase of the concentration will increase the electrostatic  
interactions between the adsorbate and adsorbent, hence  
improving the adsorption capacity of the adsorbent [56].  
Literature consists of a number of studies reporting similar  
trends on the effect of the initial concentration using various  
nanofibers. Li et al. [15] reported that the adsorption capacity of  
calcium alginate membrane increased from 520 mg/g to 1680  
mg/g when methylene blue initial concentration was increased  
from 30 mg/L to 170 mg/L.  
3.2.6 Temperature  
The surrounding temperature influences the bonding strength  
between TCS particles and the surface of the membrane. The  
temperature was varied from 25 ˚C to 60 ˚C to treat 50 mL of the  
5 mg/L TCS solution. The experiments were conducted in an  
incubator shaker. Figure 8 shows the effect of temperature on the  
TCS removal using the nylon 6,6 membrane. The results show  
that the TCS removal and adsorption capacity decreased with an  
increase in temperature. The TCS removal and adsorption  
capacities both decreased from 86.3% to 55.9% and from 2.16  
mg/g to 1.40 mg/g, respectively, when the temperature was  
increased from 25 ˚C to 60 ˚C. The melting point of TCS is 57 ˚C;  
therefore, TCS solubility in water increases when the temperature  
increases, hence causing the adsorption process to recede [57].  
Furthermore, increasing the temperature weakens the electrostatic  
interactions between the adsorption surface and adsorbate  
particles and this will reduce the adsorption capacity and TCS  
removal [15]. The adsorption of TCS using the nylon 6,6  
membrane was an exothermic process since its removal rate and  
adsorption capacity lowered with the increase of temperature  
3
.2.5 The pH effect  
The effect of pH value was tested through fixing it at 3.0-9.0.  
The pH values selected were in range of TCS pkₐ value and  
isoelectric point of the nylon 6,6 membrane. Figure 7 shows the  
effect of pH on the TCS removal using the nylon 6,6 membrane.  
[53].  
Aluigi et al. [53] also reported a similar trend for the removal  
of methylene blue using keratin nanofibrous membrane where the  
adsorption capacity and the methylene blue removal both  
decreased from 175 mg/g to 128 mg/g and from 68% to 51%,  
respectively, when the temperature was increased from 20 ˚C to  
5
0 ˚C.  
Figure 7: The effect of pH on the TCS removal using nylon 6,6  
membrane  
As shown by the graph, the highest removal percentage and  
adsorption capacity of 86.3% and 2.16 mg/g, respectively, were  
achieved at pH 5.6. The other pH values resulted in lower TCS  
removal percentages and adsorption capacities. At a pH lower  
than TCS pkₐ= 7.90, the TCS molecules are available in a  
protonated form [40]. Based on Jasni et al. [43], the isoelectric  
point of the nylon 6,6 membrane is at pH 5, where the nylon 6,6  
membrane is in positive charge at pH 5 and below, but it turns to  
negative charge with pH values higher than 5. Therefore, the TCS  
removal and adsorption capacity were low at pH 5 and below due  
to the electrostatic repulsions between the positive charge of TCS  
and the positive charge of the nylon 6,6 membrane. On the  
contrary, for pH higher than 5, the nylon 6,6 membrane was  
turned to the negative charge nanofiber. As a result, it increases  
both TCS adsorption and adsorption capacity due to attraction  
Figure 8: The effect of temperature on the TCS removal using nylon 6,6  
membrane  
3.3 Filtration studies  
3.3.1 Compaction  
For the filtration method, the pre-compaction test was  
necessary before the compound filtration process can be done.  
This procedure was done in order to reduce the interference of  
compaction with other factors such as fouling, and the test was  
1
041  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1036-1045  
conducted until a steady flux was achieved [58]. The pre-  
compaction test was done in order to maximize the water contact  
in all membrane pores before the filtration test can be done. The  
time taken to achieve a steady flux can vary based on the types  
and material of membrane. Hussain and Al-Saleh [58] also stated  
that the steady flux for ultrafiltration membranes can be reached  
within minutes, but it will take more time for reverse osmosis  
membranes. For the compaction test, a volume of 4000 mL  
distilled water was used and poured into the feed tank. The test  
was conducted for 90 minutes while the pressure was set to 1.5  
bar.  
The water flux achieved during the pre-compaction test using  
the nylon 6,6 membrane is shown in Figure 9. Based on the  
2
2
results, the water flux decreased from 2028 L/m h to 1570 L/m h  
and reached a steady flux in 75 minutes. The compaction process  
caused the membrane structure porosity to be reduced and a flux  
reduction occurred [58]. After a steady flux was achieved, the  
compaction test was stopped and the pressure was reduced to 1.0  
bar before continuing further experiments.  
Figure 10: The results of distilled water flux, TCS solution flux, and  
percentage TCS removal obtained using nylon 6,6 membrane through  
filtration process  
3
.4 The effect of combined activated carbon and membrane on  
TCS removal  
The combination method was done in order to find the best  
setting for TCS removal from aqueous solutions. The experiments  
on the combination method using coconut pulp waste activated  
carbon and nylon 6,6 membrane were conducted using a flat sheet  
membrane test machine. The optimal parameters values obtained  
from previous experiments were used in this process where 4 L of  
5
mg/L TCS solution was poured into the feed tank with 8.0 g  
coconut pulp waste activated carbon and was stirred with a stand  
stirrer. After 20 minutes of the adsorption process, the TCS  
solution was filtered using the nylon 6,6 membrane by  
unfastening the inlet valve from the feed tank. The TCS solution  
pH at 5.6, room temperature, and inlet pressure 1.0 bar were set  
up for this test. Figure 11 shows the TCS removal after combining  
both the adsorption and filtration methods.  
Figure 9: The water flux during pre-compaction test  
3
.3.2 Water flux and TCS solution flux analysis  
After the compaction process, the pressure was decreased to  
1
.0 bar. Subsequently, the flux analysis using distilled water was  
conducted for 30 minutes at pressure 1.0 bar. Figure 10 shows the  
distilled water flux, TCS solution flux, and TCS removal within  
3
0 minutes. As can be observed in the figure, the distilled water  
flux is higher than the TCS solution flux. The water flux was  
2
recorded with 1655 L/m h during the first 5 minutes before it  
2
decreased to 1491 L/m h at 30 minutes. As for the TCS solution,  
2
2
the flux also decreased from 1209 L/m h to 1062 L/m h, from 5  
to 30 minutes. The reduction of flux when using TCS solution  
might be due to the presence of TCS particles trapped into the  
membrane pores, causing their porosity to be reduced for water  
permeation.  
The removal of TCS by filtration method decreased  
with the increase in time. The TCS removal decreased from  
Figure 11: The TCS removal through combining the adsorption method  
using coconut pulp waste activated carbon and filtration method using  
nylon 6,6 membrane  
9
0.2% to 17.7% from 5 minutes to 30 minutes. The same results  
were also reported by Muhamad et al. [47] in their experiment for  
the removal of BPA using PES-SiO membrane, where the BPA  
According to the obtained results, TCS was removed 100% in  
2
5
minutes of the filtration process where it already reached its  
removal decreased from 81% to 52% from 10 minutes to 170  
minutes during the filtration test. This occurred due to the  
reduction of adsorption sites available for TCS after its saturation  
equilibrium. During the adsorption process, most of the TCS  
particles in the solution were already removed. As such, the nylon  
6
,6 membrane only filtered the leftover of TCS particles that  
[47]. According to the obtained results, the TCS achieved its  
escaped during the adsorption process. According to Skouteris et  
al. [59] and Wang et al. [60], the activated carbon can be used as  
maximum removal within 5 minutes of the filtration process.  
1
042  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1036-1045  
a pre-treatment for membrane by removing the majority of  
dissolved organic matters and inorganic particles in the water,  
thereby reducing the membrane fouling. Therefore, it shows that  
this combination method can increase the TCS removal in  
aqueous solutions within a shorter time.  
Similar results were reported by Wang et al. [60], using the  
combination of coconut shell activated carbon and polyamide NF  
membrane to remove dimethyl phthalate, di-(2-ethylhexyl)  
phthalate and dioctyl phthalate where more than 99% of removal  
rate was achieved for all the three chemicals.  
paraben, and triclosan in rats. Environmental health perspectives.  
2
015 Jun 5;124(1):39-45.  
2
3
Montaseri H, Forbes PB. A review of monitoring methods for  
triclosan and its occurrence in aquatic environments. TrAC Trends in  
Analytical Chemistry. 2016 Dec 1;85:221-231.  
Zhu W, Zhang H, Tong C, Xie C, Fan G, Zhao S, Yu X, Tian Y,  
Zhang J. Environmental exposure to triclosan and semen quality.  
International journal of environmental research and public health.  
2016 Feb;13(2):224.  
Dhillon GS, Kaur S, Pulicharla R, Brar SK, Cledón M, Verma M,  
Surampalli RY. Triclosan: current status, occurrence, environmental  
risks and bioaccumulation potential. International journal of  
environmental research and public health, 2015 May 22;12(5):5657-  
4
4
Conclusion  
5
684.  
Based on this study, 90.2% of the TCS removal was achieved  
5
6
Shanmugam G, Ramasamy K, Selvaraj KK, Sampath S, Ramaswamy  
BR. Triclosan in fresh water fish gibelion catla from the Kaveri River,  
India, and its consumption risk assessment. Environmental Forensics.  
using the nylon 6,6 membrane through filtration method within 5  
minutes. Then, after combining both coconut pulp waste activated  
carbon and nylon 6,6 membrane, the TCS removal was increased  
up to 100% within less than 5 minutes. Therefore, this  
combination method can help to increase the TCS removal from  
the water and reduce the fouling probabilities. Based on the  
FESEM images, the results showed that the nylon 6,6 membrane  
had thin, smooth, beads-free, and continuous fibers. While the  
results of the FTIR test showed that the nylon 6,6 membrane had  
carbonyl group and it was able to produce hydrogen bonding with  
hydroxyl group of TCS molecules. Thus, it proved that the  
chemisorption process happened during the TCS removal using  
the nylon 6,6 membrane. As a conclusion, combining activated  
carbon and nylon 6,6 membrane is one of the promising methods  
that can help to increase the TCS removal from the aqueous  
solutions.  
2
014 Jul 3;15(3):207-212.  
Eriksson KM, Johansson CH, Fihlman V, Grehn A, Sanli K,  
Andersson MX, Blanck H, Arrhenius Å, Sircar T, Backhaus T. Long‐  
term effects of the antibacterial agent triclosan on marine periphyton  
communities. Environmental toxicology and chemistry. 2015  
Sep;34(9):2067-2077.  
Martins D, Monteiro MS, Soares AM, Quintaneiro C. Effects of 4-  
MBC and triclosan in embryos of the frog Pelophylax perezi.  
Chemosphere. 2017 Jul 1;178:325-332.  
7
8
Chen J, Meng T, Li Y, Gao K, Qin Z. Effects of triclosan on gonadal  
differentiation and development in the frog Pelophylax  
nigromaculatus. Journal of Environmental Sciences. 2018 Feb  
1
;64:157-165.  
9
1
Wang S, Poon K, Cai Z. Removal and metabolism of triclosan by  
three different microalgal species in aquatic environment. Journal of  
hazardous materials. 2018 Jan 15;342:643-650.  
Nag SK, Das Sarkar S, Manna SK. Triclosanan antibacterial  
compound in water, sediment and fish of River Gomti, India.  
International journal of environmental health research. 2018 Sep  
0
1
Aknowledgment  
The authors would like to acknowledge the Ministry of High  
Education of Malaysia for providing LRGS Grant on Water  
Security entitled Protection of Drinking Water: Source  
Abstraction and Treatment (203/PKT/6720006) and Universiti  
3
;28(5):461-470.  
1
Zhang G, Sun M, Liu Y, Liu H, Qu J, Li J. Ionic liquid assisted  
electrospun cellulose acetate fibers for aqueous removal of triclosan.  
Langmuir. 2015 Jan 26;31(5):1820-1827.  
Teknologi  
Malaysia  
(R.J130000.7809.4L810,  
12 Lee DG, Cho KC, Chu KH. 945201. Removal of triclosan in  
nitrifying activated sludge: Effects of ammonia amendment and  
bioaugmentation. Chemosphere. 2015;125:9-15.  
Q.J130000.2522.19H06 and Q.J130000.2422.04G06) as financial  
support of this project.  
1
3
Xin L, Sun Y, Feng J, Wang J, He D. Degradation of triclosan in  
aqueous solution by dielectric barrier discharge plasma combined  
with activated carbon fibers. Chemosphere. 2016 Feb 1;144:855-863.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
14 Dou R, Zhang J, Chen Y, Feng S. High efficiency removal of  
triclosan by structure-directing agent modified mesoporous MIL-53  
(Al). Environmental Science and Pollution Research. 2017 Mar  
(avoidance of guest authorship), dual submission, manipulation  
1
;24(9):8778-8789.  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
1
1
1
5
6
7
Li J, Zhang Y, Peng J, Wu X, Gao S, Mao L. The effect of dissolved  
organic matter on soybean peroxidase-mediated removal of triclosan  
in water. Chemosphere. 2017 Apr 1;172:399-407.  
Orhon KB, Orhon AK, Dilek FB, Yetis U. Triclosan removal from  
surface water by ozonation-Kinetics and by-products formation.  
Journal of environmental management. 2017 Dec 15;204:327-336.  
Wang F, Liu F, Chen W, Xu R, Wang W. Effects of triclosan (TCS)  
on hormonal balance and genes of hypothalamus-pituitary-gonad axis  
of juvenile male Yellow River carp (Cyprinus carpio). Chemosphere.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
2
017 Feb 1;193:695-701.  
Authors’ contribution  
1
1
8
9
Wang Y, Li P, Liu Y, Chen B, Li J, Wang X. Determination of  
triclocarban, triclosan and methyl-triclosan in environmental water  
by silicon dioxide/polystyrene composite microspheres solid-phase  
extraction combined with HPLC-ESI-MS. Journal of Geoscience  
and Environment Protection, 2013 Jan 1;1(02):13-17.  
Liu Y, Zhu X, Qian F, Zhang S, Chen J. Magnetic activated carbon  
prepared from rice straw-derived hydrochar for triclosan removal.  
RSC Advances. 2014;4(109):63620-63626.  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing  
References  
1
Teitelbaum SL, Li Q, Lambertini L, Belpoggi F, Manservisi F,  
Falcioni L, Bua L, Silva MJ, Ye X, Calafat AM, Chen J. Paired serum  
and urine concentrations of biomarkers of diethyl phthalate, methyl  
1
043  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1036-1045  
optimization, isotherm and kinetic studies. Desalination and Water  
Treatment. 2016 Apr 20;57(19):8839-8853.  
2
0
Behera SK, Oh SY, Park HS. Sorption of triclosan onto activated  
carbon, kaolinite and montmorillonite: effects of pH, ionic strength,  
and humic acid. Journal of hazardous materials. 2010 Mar  
36 Kaman SP, Tan IA, Lim LL. Palm oil mill effluent treatment using  
coconut shellbased activated carbon: Adsorption equilibrium and  
isotherm. InMATEC Web of Conferences 2017 (Vol. 87, p. 03009).  
EDP Sciences.  
1
9;179:684-691.  
2
2
1
2
Weiner B, Sꢀhnholz S, Kopinke FD. Hydrothermal Conversion of  
Triclosan- The Role of Activated Carbon as Sorbent and Reactant.  
Environmental science & technology. 2017 Jan 9;51(3):1649-1653.  
Sharipova AA, Aidarova SB, Bekturganova NE, Tleuova A,  
Schenderlein M, Lygina O, Lyubchik S, Miller R. Triclosan as model  
system for the adsorption on recycled adsorbent materials. Colloids  
and Surfaces A: Physicochemical and Engineering Aspects. 2016 Sep  
37 Salehi F. Current and future applications for nanofiltration  
technology in the food processing. Food and Bioproducts Processing.  
2014 Apr 1;92(2):161-177.  
38 Padaki M, Murali RS, Abdullah MS, Misdan N, Moslehyani A,  
Kassim MA, Hilal N, Ismail AF. Membrane technology enhancement  
in oilwater separation. A review. Desalination. 2015 Feb 2;357:197-  
207.  
2
0;505:193-196.  
39 Zheng X, Zhang Z, Yu D, Chen X, Cheng R, Min S, Wang J, Xiao Q,  
Wang J. Overview of membrane technology applications for  
industrial wastewater treatment in China to increase water supply.  
Resources, Conservation and Recycling. 2015 Dec 1;105:1-10.  
40 Xu, J., Niu, J., Zhang, X., Liu, J., Cao, G., & Kong, X. (2015).  
Sorption of triclosan on electrospun fibrous membranes: Effects of  
pH and dissolved organic matter. Emerging Contaminants, 1(1), 25-  
32.  
2
3
Zhu X, Liu Y, Luo G, Qian F, Zhang S, Chen J. Facile fabrication of  
magnetic carbon composites from hydrochar via simultaneous  
activation and magnetization for triclosan adsorption. Environmental  
science & technology. 2014 Apr 29;48(10):5840-5848.  
Tong Y, Mayer BK, McNamara PJ. Triclosan adsorption using  
wastewater biosolids-derived biochar. Environmental Science: Water  
Research & Technology. 2016;2(4):761-768.  
2
2
4
5
Pezoti O, Cazetta AL, Bedin KC, Souza LS, Martins AC, Silva TL,  
Júnior OO, Visentainer JV, Almeida VC. NaOH-activated carbon of  
high surface area produced from guava seeds as a high-efficiency  
adsorbent for amoxicillin removal: Kinetic, isotherm and  
thermodynamic studies. Chemical Engineering Journal. 2016 Mar  
41 Jasni MJ, Sathishkumar P, Sornambikai S, Yusoff AR, Ameen F,  
Buang NA, Kadir MR, Yusop Z. Fabrication, characterization and  
application of laccasenylon 6, 6/Fe 3+ composite nanofibrous  
membrane for 3, 3′-dimethoxybenzidine detoxification. Bioprocess  
and biosystems engineering. 2017 Feb 1;40(2):191-200.  
42 An T, Pant B, Kim SY, Park M, Park SJ, Kim HY. Mechanical and  
optical properties of electrospun nylon-6, 6 nanofiber reinforced  
cyclic butylene terephthalate composites. Journal of industrial and  
engineering chemistry. 2017 Nov 25;55:35-39.  
43 Jasni MJ, Arulkumar M, Sathishkumar P, Yusoff AR, Buang NA, Gu  
FL. Electrospun nylon 6, 6 membrane as a reusable nano-adsorbent  
for bisphenol A removal: Adsorption performance and mechanism.  
Journal of colloid and interface science. 2017 Dec 15;508:591-602.  
44 Bilad MR, Azizo AS, Wirzal MD, Jia LJ, Putra ZA, Nordin NA,  
Mavukkandy MO, Jasni MJ, Yusoff AR. Tackling membrane fouling  
in microalgae filtration using nylon 6, 6 nanofiber membrane. Journal  
of environmental management. 2018 Oct 1;223:23-28.  
45 Mohd Khori NK, Hadibarata T, Elshikh MS, Al‐Ghamdi AA, Yusop  
Z. Triclosan removal by adsorption using activated carbon derived  
from waste biomass: Isotherms and kinetic studies. Journal of the  
Chinese Chemical Society. 2018 Aug;65(8):951-959.  
46 Cheng M, Zeng G, Huang D, Yang C, Lai C, Zhang C, Liu Y.  
Advantages and challenges of Tween 80 surfactant-enhanced  
technologies for the remediation of soils contaminated with  
hydrophobic organic compounds. Chemical Engineering Journal,  
2017 Jan 7;314:98-113.  
1
5;288:778-788.  
2
2
6
7
Wirasnita R, Hadibarata T, Yusoff AR, Yusop Z. Removal of  
bisphenol A from aqueous solution by activated carbon derived from  
oil palm empty fruit bunch. Water, Air, & Soil Pollution. 2014 Oct  
1
;225(10):2148.  
Ghanbarnejad P, Goli A, Bayat B, Barzkar H, Amirreza T, Bagheri  
M, Alaee S. Evaluation of formaldehyde adsorption by human hair  
and sheep wool in industrial wastewater with high concentration.  
Journal of Environmental Treatment Techniques. 2014 Mar  
9
;2(1):12-17.  
2
2
8
9
AssefaAragaw T. Proximate analysis of cane bagasse and  
synthesizing activated carbon: emphasis on material balance. Journal  
of Environmental Treatment Techniques. 2016 Oct 6;4(4):102-110.  
Rahmat NA, Ali AA, Hussain N, Muhamad MS, Kristanti RA,  
Hadibarata T. Removal of Remazol Brilliant Blue R from aqueous  
solution by adsorption using pineapple leaf powder and lime peel  
powder. Water, Air, & Soil Pollution. 2016 Apr 1;227(4):105.  
Lazim ZM, Hadibarata T, Puteh MH, Yusop Z, Wirasnita R, Nor NM.  
Utilization of durian peel as potential adsorbent for bisphenol a  
removal in aquoeus solution. Jurnal Teknologi. 2015 May 9;74(11):  
3
3
3
0
1
2
1
09-115.  
Njoku VO, Islam MA, Asif M, Hameed BH. Preparation of  
mesoporous activated carbon from coconut frond for the adsorption  
of carbofuran insecticide. Journal of analytical and applied pyrolysis.  
47 Muhamad MS, Salim MR, Lau WJ, Hadibarata T, Yusop Z. Removal  
of bisphenol A by adsorption mechanism using PESSiO2 composite  
membranes. Environmental technology. 2016 Aug 2;37(15):1959-  
1969.  
48 Habiba U, Afifi AM, Salleh A, Ang BC. Chitosan/(polyvinyl  
alcohol)/zeolite electrospun composite nanofibrous membrane for  
adsorption of Cr6+, Fe3+ and Ni2+. Journal of hazardous materials.  
2017 Jan 15;322:182-194.  
2
014 Nov 1;110:172-180.  
Kamari A, Yusoff SN, Abdullah F, Putra WP. Biosorptive removal  
of Cu (II), Ni (II) and Pb (II) ions from aqueous solutions using  
coconut dregs residue: Adsorption and characterisation studies.  
Journal of Environmental Chemical Engineering. 2014 Dec  
1
;2(4):1912-1919.  
49 Razzaz A, Ghorban S, Hosayni L, Irani M, Aliabadi M. Chitosan  
nanofibers functionalized by TiO2 nanoparticles for the removal of  
heavy metal ions. Journal of the Taiwan Institute of Chemical  
Engineers. 2016 Jan 1;58:333-343.  
50 Esmaeili A, Beni AA. A novel fixed-bed reactor design incorporating  
an electrospun PVA/chitosan nanofiber membrane. Journal of  
hazardous materials. 2014 Sep 15;280:788-796.  
3
3
Dabwan AH, Yuki N, Asri NA, Katsumata H, Suzuki T, Kaneco S.  
Removal of methylene blue, rhodamine B and ammonium ion from  
aqueous solution by adsorption onto sintering porous materials  
prepared from coconut husk waste. Open Journal of Inorganic Non-  
metallic Materials. 2015 Feb 2;5(02):21.  
3
3
4
5
Hettiarachchi E, Perera R, Chandani Perera AD, Kottegoda N.  
Activated coconut coir for removal of sodium and magnesium ions  
from saline water. Desalination and water treatment. 2016 Oct  
51 Muhamad MH, Abdullah SR, Hasan HA, Rahim RA, Bakar SN,  
Ismail N, Halmi MI. Adsorption Isotherm and Kinetic Studies of  
Pentachlorophenol Removal from Aqueous Solution onto Coconut  
Shell-based Granular Activated Carbon. Journal of Environmental  
Science and Technology. 2018 Jan 1;11(2):68-78.  
7
;57(47):22341-22352.  
Jawad AH, Rashid RA, Mahmuod RM, Ishak MA, Kasim NN, Ismail  
K. Adsorption of methylene blue onto coconut (Cocos nucifera) leaf:  
1
044  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1036-1045  
5
2
Maneechakr P, Karnjanakom S. Adsorption behaviour of Fe (II) and  
Cr (VI) on activated carbon: Surface chemistry, isotherm, kinetic and  
thermodynamic studies. The Journal of Chemical Thermodynamics.  
2
017 Mar 1;106:104-112.  
5
5
3
4
Aluigi A, Rombaldoni F, Tonetti C, Jannoke L. Study of Methylene  
Blue adsorption on keratin nanofibrous membranes. Journal of  
hazardous materials. 2014 Mar 15;268:156-165.  
Abu-Saied MA, Wycisk R, Abbassy MM, El-Naim GA, El-  
Demerdash F, Youssef ME, Bassuony H, Pintauro PN. Sulfated  
chitosan/PVA absorbent membrane for removal of copper and nickel  
ions from aqueous solutionsfabrication and sorption studies.  
Carbohydrate polymers. 2017 Jun 1;165:149-158.  
5
5
5
6
Feng Q, Wu D, Zhao Y, Wei A, Wei Q, Fong H. Electrospun  
AOPAN/RC blend nanofiber membrane for efficient removal of  
heavy metal ions from water. Journal of hazardous materials. 2018  
Feb 15;344:819-828.  
Alipour D, Keshtkar AR, Moosavian MA. Adsorption of thorium  
(
IV) from simulated radioactive solutions using a novel electrospun  
PVA/TiO2/ZnO nanofiber adsorbent functionalized with mercapto  
groups: Study in single and multi-component systems. Applied  
Surface Science. 2016 Mar 15;366:19-29.  
5
7
Xu R, Si Y, Wu X, Li F, Zhang B. Triclosan removal by laccase  
immobilized on mesoporous nanofibers: strong adsorption and  
efficient degradation. Chemical Engineering Journal. 2014 Nov  
1
;255:63-70.  
5
5
8
9
Hussain YA, Al-Saleh MH. A viscoelastic-based model for TFC  
membranes flux reduction during compaction. Desalination. 2014 Jul  
1
;344:362-370.  
Skouteris G, Saroj D, Melidis P, Hai FI, Ouki S. The effect of  
activated carbon addition on membrane bioreactor processes for  
wastewater treatment and reclamationa critical review. Bioresource  
technology. 2015 Jun 1;185:399-410.  
6
0
Wang L, Wan Q, Wu J, Guo M, Mao S, Lin J. Removal of Phthalate  
Esters by Combination of Activated Carbon with Nanofiltration.  
InSustainable Development of Water Resources and Hydraulic  
Engineering in China 2019 (pp. 269-273). Springer, Cham.  
1
045