Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 925-935  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
A Critical Review on the Various Pretreatment  
Technologies of Lignocellulosic Materials  
1
2
Amirreza Talaiekhozani , Shahabaldin Rezania  
2
Department of Civil Engineering, Jami Institute of Technology, Isfahan, Iran  
1
Department of Environment and Energy, Sejong University, Seoul 05006, South Korea  
Received: 12/01/2020  
Accepted: 11/06/2020  
Published: 20/09/2020  
Abstract  
Nowadays, finding new sources of renewable energy is an absolutely essential need for human. Production of biofuel is a  
suitable way to find such a renewable energy source. Pretreatment is considered as an important step for biofuel production.  
The aim of this study was to collect recent achievements in pretreatment techniques to have a comprehensive and precious  
source about this topic. In this study many pretreatment techniques: microwaves, biological, alkaline, ionic liquid, organic  
solvent, acidic, mechanical, pyrolysis, steam, wet oxidation, ammonia fiber explosion and liquid hot techniques have been  
introduced. Although several new techniques have been developed to pretreatment of lignocellulosic biomasses, many  
obstacles are still needed to be overcome to use these techniques for industrial application.  
Keywords: Lignocellulosic biomass, Pretreatment, Biofuel production, Energy production  
1
Introduction  
Energy demand is increased every day by developing  
biofuels production such as biohydrogen, biogas, and  
bioalcohols is necessary. Lignocellulosic biomasses are  
inexpensive and abundance; therefore, these types of  
biomasses are attractive to be used as row materials for  
biofuel production (6). Raw lignocellulosic biomass  
cannot easily used for biofuel production due to  
existence of some recalcitrant compounds and very  
complex structure (7). Consequently, pretreatment is so  
important to have a fast and efficient conversion of  
lignocellulosic biomasses to final products. Several  
futures have been introduced for an ideal pretreatment  
technique such as feasible and effective with high solids  
loadings, lower energy demand and moderate cost,  
preserving solubilized carbohydrates, avoiding formation  
of inhibitors to the subsequent fermentation step,  
industries (1). Nowadays, fossil fuels are considered as  
main source of energy worldwide (2). Since fossil fuels  
are not renewable, many studies have been carried out to  
find alternative energy sources (3). Therefore,  
lignocellulosic biomass conversion to biological fuels  
has attracted a huge amount of scientist’s attention (4).  
Pretreatment process is the first stage for biomass  
conversion to biofuel. Many studies reported the  
importance of pretreatment step on biofuel production  
processes (5). The well-known technique for biomass  
pretreatment is thermochemical technique. This  
techniques is faced whit several economic,  
environmental, and technical difficulties. That is why  
finding more appropriate pretreatment techniques for  
9
25  
 
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 925-935  
producing highly digestible feedstock, and little or no  
biomass size reduction (8). Although many pretreatment  
techniques have been developed by scientists, there is no  
technique that to have all the above mentioned futures.  
Various developed techniques for pretreatment of  
lignocellulosic biomass have been categorized in Figure  
cultivation of this plant is faced with several difficulties  
(24). Based on the above mentioned explanations, it is  
necessary to find an alternative way to produce biofuels.  
Lignocellulosic biomasses including cereal straws which  
are widely cultivated worldwide may consider as a  
suitable feedstock for biofuel production. Cereal straws  
are usually burned by farmers which produces a large  
amount of air pollutants (25). Several inexpensive  
lignocellulosics agricultural waste are accessible such as  
wheat straw, rice straw, softwood, switch grass, salix,  
willow, timber species, rice hull, and sugarcane baggase  
as a feedstock for biofuel production. In some countries  
that have a wide agricultural activities the agricultural  
wastes have a good potential to produce biofuels.  
Different biofuel production yields can be obtained using  
various crops. The cost of biofuel production depends on  
the cost of agricultural wastes, transportation method of  
agricultural wastes from farms to factories, and  
processing technology. Also, government policies about  
biofuel production can be considered as an influential  
factor on biofuel cost. The cost of biofuel production and  
market price are other factors which are effective on final  
biofuel cost. Seasonal availability of agricultural wastes  
depend on the type of it; for example cotton stalk is  
available between January and March whereas maize  
stalk is available from August and December.  
Information about seasonal availability of agricultural  
wastes is very important to guarantee the feedstock  
availability all over the year for the biofuel factory. The  
most important part of plant cell wall is composed of  
lignocellulos. Lignocellulos is a natural and complex  
composite including lignin, hemicellulose, and  
biopolymers cellulose (26, 27). Some other materials  
such as ash can be found herewith lignocellulosic  
biomass. Lignocellulosic biomass is a heterogeneous  
composite of lignin and carbohydrate polymers which  
contains up to 75% of carbohydrates (based on dry  
weight) (24). Lignocellulosic biomass contains complex  
sugars; therefore, it is not readily converted to biofuel.  
Also, it is contains several polysaccharides including  
hemi-cellulose and cellulose which require to be  
converted to the monosaccharide. Lignin, hemicellulose,  
and Cellulose are strictly associated with each other so  
this association can almost stop the access to the  
hydrolytic agents. The lignin should be eliminated or  
modified to access the hydrolytic agents using different  
chemical or biological techniques (28). Cellulose which  
is also known as cellobios is considered as a polymer of  
glucose. The cellulose structure aid to have a tightly  
packed polymer chains, resistant to depolymerization,  
and highly crystalline structure (29). Another  
carbohydrate component which is found in the  
lignocellulosic biomass is hemicellulose. This compound  
is composed of 5 and 6 carbon sugars that has an  
amorphous, branched, and random structure. Both the  
hemicellulose and cellulose are polymers of sugars;  
therefore, they are considered as a potential source of  
fermentable sugars. Both the hemicellulose and cellulose  
can be simply processed into other various products (30-  
1
. There also some reports about generation of inhibitory  
substances within the process of pretreatment (9).  
Pretreating several particular biomasses causes  
production of toxic compounds (9). The most important  
toxic compounds generated during pretreatment  
processes of lignin are aromatic compounds, ketones,  
aldehydes, organic acids, and furans (10). Pretreatment is  
an influential technique on other steps of biofuel  
production. Pentose and hexoses can be converted to  
inhibitory  
substances  
such  
as  
furfural  
and  
hydroxymethylfurfural within pretreatment processes.  
The amount of produced sugar and biofuel and be  
significantly decreased when toxic compounds are  
presented in the environment.  
2
Effecting parameters  
2
.1 Delignification  
Elimination of lignin from lignocellolusic biomasses  
(such as woody tissue) using different natural enzymatic  
or chemical methods is known as delignification.  
Nowadays, many methods have been introduced to  
produce energy in various forms such as pyrolytic biooil,  
biodiesel, and biogas (5, 11-14). Bioethanol production is  
the most important way to produce energy from  
ligninocellulosic biomass compared to other energy  
sources such as biogas, pyrolytic oil, and biodiesel (10).  
Abundance and low cost of lignocellulosic biomass is the  
main reason for selection of this type of biomass to  
produce different energy sources like bioethanol.  
Lignocellulosic biomass has low amount of oil and that’s  
why this type of biomass is not suitable for production of  
biodiesel. Biogas are usually utilized for generation of  
thermal or electricity energy and it is not used as a  
vehicle fuel. Biodiesel is another important technology of  
energy conversion. Trans-esterification process of animal  
fats and vegetable oils is a way to generate biodiesel.  
Biodiesel is mostly achieved from specific type of plants  
such as rubber seed (15), coconut (10), mahua (16),  
tobacco seed (17), castor (18), Eruca sativa (19),  
pongamia (20), and jojoba (21, 22). Also usage of some  
other plants like palm oil, sunflower, flax,, pongamia,  
jatropha, and mustard have been reported to produce  
biodiesel (10). Lignocellulosic biomass do not has oils  
that are necessary for biodiesel generation. Although  
some crops such as mustard has oils they are used for  
animal feed. Fresh oil of vegetable has a viscosity  
2
between 28 and 40 mm /s. Direct usage of vegetable oil  
as diesel engine fuel is not suitable and can make  
problems for the diesel engines including deposits  
formation and injector coking arising from poor  
atomization due to its high viscosity (23). A study  
showed that the present economics of ethanol produced  
based on molasses could not be appropriate for  
commercial blending of ethanol in petrol. This study also  
demonstrated that nearly 736.5 million ton of sugarcane  
is require if Indian government aim to have 10%  
blending of biodiesel and diesel fuel. It means that Indian  
government need to have 10.5 million hectare for  
sugarcane cultivation (24). Sugarcane require a large  
3
3). Although, many difficulties have been introduced  
for biofuel production, existence of lignin is the most  
important one. Lignin is a very stable biopolymer built  
from three cross-linked phenylpropane units of p-  
coumaryl alcohol, coniferyl alcohol and sinapyl alcohol  
(34) which are bonded together with over two-thirds  
3
being ether bonds (COC) and the rest CC bonds (34).  
amount of water to grow (2000030000 m /ha); therefore,  
9
26  
 
 
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 925-935  
Conventional hydrotermal techniques  
High pressure microwave pretreatment  
pretreatment at atmospheric pressure  
Wet oxidation  
Microwave assisted technique  
Steam explosion  
Ammonia fiber explosion  
Liquid hot water  
Biological technique  
Acetic acid  
Acid technique  
Phosphoric acid  
Sulfuric acid  
Pretreatment  
Techniques  
Alkaline technique  
Sodium hydroxide  
chloride, bromide, and thiocyanate ion  
1
-butyl-3-methylimidazolium  
Ionic liquid technique  
1-butyl-3-methylimidazolium chloride  
1
-ethyl-3-methyl imidazolium diethyl  
1
-ethyl-3-methylimidazolium-acetate  
1
,4-butanediol  
Glycerine  
Organic solvent  
Mechanical technique  
Figure 1: Categorization of pretreatment techniques (35)  
Lignin is hydrolyzed using cleavage of the ether  
bonds that are catalyzed by water molecules and  
hydrogen or hydroxyl ions (36). Ash content of  
lignocellulosic biomasses is usually composed of  
minerals such as sodium, magnesium, calcium,  
aluminum, and silicon. Extractives are other negligible  
compounds found in the lignocellulosic biomass that  
include minerals, salts, phytosterols, phenolics, fatty  
acids, resins, and fats. Delignification using biological  
techniques has three main steps: (a) first step is  
lignocelluloses as recalcitrant structure to reactive  
cellulosic intermediates; (b) enzymatic hydrolysis in  
which cellulose hydrolyze using reactive intermediates to  
fermentable sugars such as xylose and glucose; and (c)  
fermentation process that can produce biofuel or some  
bio-based compounds like succinic acid or lactic acid  
(37-40). The delignification of ligninocellulosic biomass  
is illustrated in Figure 2. Ligninocellulosic biomass can  
be biologically or chemically degradable after removal of  
recalcitrant compounds from the biomass (41). There are  
several explanations for the importance of delignification  
lignocellulose  
pretreatment  
that  
can  
convert  
9
27  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 925-935  
which are introduced by many researchers (9, 42). An  
ideal delignification must have following futures: very  
limited production of sugar; very limited amount of  
3
Types of pretreatments  
A costly step in lignocellulosic biomass conversion is  
pretreatment. This step can be done by chemical,  
physical or hybrid techniques which are generally energy  
intensive. The most important techniques for  
pretreatment are presented in the next sections.  
residual lignin; producing  
a very high degradable  
cellulose, very low amount of required energy, low  
required cost; and ability to recover nearly all  
carbohydrate. The delignification process is the most  
important and difficult steps in biofuel production. It was  
reported that delignification has an intensive effect on all  
next steps in the biofuel production (9). Although lignin  
should be eliminated using pretreatment techniques for  
enhancement of biofuel production, recent studies show  
that lignin may be used in construction industry, dust  
particle controls, cleaning metallic surfaces, chemical  
3
.1 Microwave assisted technique  
Using microwaves is another way for pretreating of  
lignocellulosic  
biomass.  
Microwaves  
is  
an  
electromagnetic wave with wavelength between radio  
waves and infrared radiation. Microwave radiation for  
pretreatment of lignocellulos in comparison with  
hydrothermal technique has many advantages such as  
lower the reaction activation energy, enable more rapid  
product formation, and reduce the reaction time  
remarkably (47). Such advantages make microwave  
technique as a promising technique for pretreatment of  
lignocellulosic biomass. The conventional pretreatment  
techniques such as autohydrolysis, steam explosion, and  
diluted acid pretreatment must be done at high pressure  
and temperature. These pretreatment techniques are able  
to break complex chemical bonds of lignin-carbohydrate,  
lignin, and hemicellulose. In this condition cellulose can  
be exposed to cellulase attacking. Usually,  
lignocellulosic biomasses should be heated between 160  
and 250˚C. The heat can be provided using indirect heat  
conduction or injection of high pressure steam. When the  
conventional pretreatment techniques are utilized, the  
row lignocellulosic biomasses should be crushed to small  
pieces due to saving energy. Hemicellulose is converted  
to furfural and even to humic acids during the  
pretreatment process which is adverse to fermentable  
sugars recovery and conversion. Microwave technique is  
able to heat lignocellulosic biomasses quickly and  
uniformly. When microwave technique is applied for  
pretreatment of lignocellulosic biomass, the above  
mentioned difficulties can be avoided. Pretreatment  
using microwave was firstly introduced by Ooshima et al.  
coatings, agro farmland improvements, and  
industry (10).  
paint  
2
.2 Enzymatic hydrolysis  
Using an optimized enzymatic treatment process  
such as utilization of accessory enzyme including laccase  
and xylanases may decrease the concentrations of the  
enzymes required. It can also improve the cost-  
effectiveness of biofuels generation. The lignocellulosics  
materials digestibility using enzymes depends on the  
level of crystallization, lignification, and acetylation  
processes (43). An extensive delignification is needed for  
achieving  
a
suitable digestibility regardless of  
crystallinity and acetyl content. Delignification and  
deacetylation cause enzymatic hydrolysis and  
crystallinity not to stop. This does affect initial  
hydrolysis rates but does not significantly affect sugar  
yields (43). Studies showed that the size of  
ligninocellulosic biomass (except large chunks) has not  
an significant influence on enzymatic digestibility of  
bagasse (10), switch grass (43), corn stover (44). It has  
been reported that the effectiveness of the absorbed  
enzymes and enzyme adsorption are influential factors  
on enzymatic hydrolysis rate (45). The effectiveness of  
the enzyme can be enhanced after lignin removal since  
non-reproductive adsorption site is eliminated using  
raising access to cellulose and hemicellulose  
(1984). After that a remarkable progress on using  
microwave pretreatment techniques such as designing  
particular microwave vessels for loading biomass and  
new microwave reactors has been observed (7). Usage of  
high boiling solvent and microwave technique was also  
used by (48). They showed that the yield of levoglucosan  
from fast pyrolysis of corncobs could 189 times increase  
when corncobs were pretreated by microwave at 150 W  
for 18 min and glycerol as high boiling solvent.  
Additionally, the results demonstrated that the alkali and  
alkaline earth metals and ash could be effectively  
removed from corncobs using microwave and glycerol  
(holocellulose). The covalent linkages and physical  
binding between lignin and hemicellulosic grass cell  
walls affects enzymatic hydrolysis (46). Therefore,  
enzymatic hydrolysis of wheat straw for biofuel  
generation is bottle-necked by the limitation of their  
efficacy and the cost of enzymes (13).  
(48).  
Enzimatic →  
hydrolysis to  
hexoses  
Conversion to  
biofuel  
Celloluse  
Hemicelloluse  
Lignin  
Enzymatic →  
hydrolysis to  
pentoses  
Recalciterant  
Conversion to  
biofuel  
part  
Lignocellulosics  
biomass  
fractionation  
Biodegradable  
Energy/Fuel/Ch  
emicals  
part  
Figure 2: Fractionation of lignocellulosic biomasses (35)  
9
28  
 
 
 
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 925-935  
Salt ions have more movement in electric field  
compared with pure water; therefore, the heat of salt  
solution can increase faster to the expecting temperature.  
Studies on the pretreatment using salt solution and  
microwave radiation demonstrated that solution  
containing salts can be heated sooner than that without  
salt ions (49). (50) applied calcium chloride under  
microwave radiation for pretreatment of corn stover.  
They could find that residence time and temperature  
were the most effective parameters on the corn stover  
enzymatic digestibility. The optimal temperature and  
residence time with solid-to-liquid ratio (w/v) at 10%  
were 162˚C and 12 min, respectively. They reported that  
under optimum condition enzymatic hydrolysis ratio was  
by two groups of scientists (55, 56). They demonstrated  
that ratio of hydrolysis of polysaccharides to soluble  
sugars was enhanced by 5.23% compared to that with  
conventional heating. Ferric sulfate was used for  
pretreatment of bamboo using microwave as source of  
heating (57). The results illustrated that the ratio of  
cellulose enzymatic hydrolysis was raised from 52.72%  
to 72.15% by pretreatment using microwave.  
3.2 Alkaline technique  
The removal of some recalcitrant compounds  
including various uronic, acetyl groups, lignin, and acid  
substitution from lignocellulosic biomasses is an  
essential duty of a pretreatment technique. The cellulose  
9
0.66%. Although higher amount of calcium chloride  
and  
hemicelluloses  
solubilization  
in  
alkaline  
can decrease the required temperature for pretreatment of  
corn stover, it was difficult to separate it from solution  
after finishing the process (50). Pretreatment of  
lignocellulosic biomasses can be efficiently pretreated by  
pretreatment technique is not effective as much as other  
pretreatment techniques such as hydrothermal or acid. In  
the other hand this technique needs lower operation  
temperature but it require a longer residence time  
(between hours and days). Generally, sodium hydroxide  
have been employed as a basic catalysts (58). In an  
alkaline pretreatment sodium hydroxide solution was  
used to improve generation of biogas from residues of  
herbal-extraction process (59). They demonstrated that  
72.1% of raw materials weight was reduced during the  
biogas generation. Sodium hydroxide solution was used  
for pretreatment of microcrystalline cellulose (60). They  
reported that the performance of pretreatment can be  
increased at higher alkalinity and temperature. Their  
results showed that the samples could be completely  
converted to glucose. The theoretical investigations  
revealed that the maximum yield of ethanol was around  
59% for the samples pretreated by sodium hydroxide.  
The method of Box and Behnken Design was applied to  
study the influence of substrate concentration, resident  
time, and alkali concentration and on the hydrolysis of  
polysaccharides to soluble sugars of rice straw and hulls  
(61). The outcome demonstrated that the best  
pretreatment conditions were substrate concentration 30  
g/L, heating time of 22.50 min, and alkali concentration  
2.75% (61). Orthogonal design was used by (62) to find  
the optimum condition of wheat straw for bioethanol  
production. The highest yield of bioethanol production  
was achieved with heating time of 15 min, 10 Kg sodium  
acid (51). Microwave can be used as  
a suitable  
alternative for increasing temperature in acid  
pretreatment technique. Using microwave radiation not  
only could decrease the resident time but also could  
increase the performance of pretreatment.  
Unlike lignocellulosic biomass pretreatment at  
atmospheric pressure microwave, high pressure  
microwave should be done in closed reactors. The range  
of temperature in this type of reactors is between 150 and  
2
50 ̊C . In high pressure microwave technique, higher  
temperatures can reduce the resident time and increase  
performance for pretreatment. Using the microwave  
pretreatment under high-pressure require a more complex  
reactor. A dynamic microwave pretreatment reactor was  
employed by (52). This dynamic pretreatment reactor  
could use theoretically for continuous pretreating of  
lignocellulosic  
biomasses.  
Since  
lignocellulosic  
biomasses are insoluble in water, they cannot be easily  
pumped into the pipes. Lignocellulosic biomasses should  
be crushed to small particles and then suspended into a  
large volume of a liquid such as water. Next it can be  
transferred using pipes. It was reported that a ration of  
liquidsolid as much as 50:1 is suitable for transferring  
lignocellulosic biomasses using pipes. Application of  
such  
a big liquidsolid ration can increase the  
3
consumption of energy by a microwave reactor which it  
reduce the economic viability of pretreatment (52). A  
continues microwave reactor was designed for biomass  
pretreatment in a pilot scale and its power of microwave  
was linearly varied from 0 and 6 kW (53). Their highest  
capacity of pretreatment using this microwave reactor  
was 5 kg/h. They used a transport belt to transfer the  
biomass toward the microwave reactor which was a good  
idea for solid materials including corn stover. The ratio  
of liquid to slid and also the require energy to transfer  
corn stover was reduced using the transport belt. This  
microwave reactor needed high boiling organic solvent  
since it should be run at atmospheric pressure. Using  
high boiling organic solvent increased the cost of this  
type of reactor.  
hydroxide/m , and 80 g biomass/kg.  
3.3 Ionic liquid technique  
Nowadays, using ionic liquids with microwave  
radiation for pretreatment of lignocellulosic biomass has  
been attracted attention of a large number if scientists.  
Ionic liquids showed a very high solubility of biomass  
which made it perfect for lignocellulosic biomass  
pretreatment. Dissolution of cellulose using ionic liquids  
was investigated by (63). This ionic liquid was composed  
of many cations and anions such as 1-butyl-3-  
methylimidazolium, chloride ion, bromide and  
thiocyanate (63) reported that nearly 25% of cellulose  
was able to dissolve in 1-butyl-3-methylimidazolium  
when it was heated. A ionic liquid containing 1-ethyl-3-  
The effect of using various heating sources for  
pretreatment of switchgrass was investigated by (54). At  
methylimidazolium-acetate,  
imidazolium diethyl,  
1-ethyl-3-methyl  
1-butyl-3-methylimidazolium  
the same temperature (190  
̊
chloride, and 1-allyl-3-methyli midazolium-chloride  
have been intensively investigated due to their notable  
cellulose dissolution ability (64). The pretreatment of  
lignocellulosic biomass using ionic liquids is and  
expensive technique. Also, it needs a large amount of  
energy to recycle pure ionic liquids. Furthermore,  
pretreatment of switchgrass using microwave could  
achieved an enzymatic hydrolysis ratio of 58.5% that  
was 53% greater than that by conventional heating  
source. An acerbic organic solvent was applied as  
absorbing medium of the microwave to pretreat softwood  
9
29  
 
 
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 925-935  
viscosity of ionic liquids is gradually increased that  
makes it challenging to handle.  
can be used for increasing the temperature. The highest  
yield of surge reduction was achieved as much as 48.3 g  
for each 100 g pretreated hyacinth in an environment  
containing 1% sulfuric acid environment. In this  
condition 96% of surge was converted (51). Starch-free  
wheat fibers was pretreated in a low concentration of  
sulfuric acid (71). They found that using microwave as  
heating source is more effective than steam for the acid  
pretreatment. The effects of temperature on the structure  
of lignocellulosic biomasses with a 0.2 M sulfuric acid  
was studied (72). They showed that the increasing of  
temperature had positive effects on the destruction of  
biomass structure during acid pretreatment. The pH of  
water somewhat depends on temperature; for example:  
3
.4 Organic solvent technique  
Since lignocellulosic biomasses have a high boiling  
point at atmospheric pressure, many high boiling organic  
solvents such as glycerine and 1,4-butanediol are usually  
applied for biomass pretreatment. Usage of high boiling  
organic solvents at high temperature can break the bonds  
between biomass and lignin and they finally are  
dissolved into the organic solvent to be recovered as a  
by-product. The residual materials can be easily  
degraded after removal of lignin. During this process  
organic solvent can be recycled which is considered as  
an advantage of organic solvent technique. Moretti et al.  
pure water has a pH of 6.99 at 25 ̊C . The pH of pure  
water at 150, 200 and 250 C would be decreased to .5.52,  
(2014) used different organic solvents (phosphoric acid,  
̊
glycerol, and water) for pretreatment of bagasse. They  
could found that this technique is more effective to  
hydrolyze sugarcane bagasse when glycerol was used as  
solvent (65). They also found that when glycerol was  
used as their solvent for pretreatment, the yield of sugars  
reduction was 12 times higher than water and phosphoric  
acid. The experiments showed that 5.4% and 11.3% of  
xylan and lignin, respectively were degraded during  
pretreatment of sugarcane bagasse using glycerol which  
might be the reason of high reducing sugars in this  
technique (65). It was reported that simultaneous usage  
of glycerine can be used for pretreatment of rice straw  
5.16 and 4.88 (73). This phenomenon is due to presence  
of weak acids in the water. Therefore, conventional  
hydrothermal pretreatment techniques or microwave  
pretreatment can be partially categorized as acid  
pretreatment techniques (7).  
The degradation of hemicellulose can be increased  
when acid is used for pretreatment of lignocellulosic  
biomasses. It is reported that up to 100% of  
hemicellulose can be eliminated when acid technique is  
used (74). Plant cell wall contains two important  
compounds: hemicellulose and lignin. These compounds  
have been linked by three main co-valent bonds for  
formation of lignincarbohydrate complexes (75).  
Lignincarbohydrate complexes are considered as  
recalcitrant compounds in lignocellulosic biomass. The  
degradation of hemicellulose causes rearrangement of  
lignin molecular structure. In this case cellulose is  
exposed by cellulase enzyme; therefore, the rate and  
proportion of cellulose degradation will be enhanced (76).  
Present of sulfur oxide shows some particular advantages  
as hydroysis catalyst over sulfuric acid. Sulfur dioxide  
can be added either with the steam or ahead of reactor. It  
is better distribute sulfur dioxide through the biomass to  
have a uniform reaction and decrease the cost. It was  
reported that hemicellulose and cellulose hydrolysis in  
many types of lignocellulosic biomasses such as corn  
cobs, wheat straw, sugarcane bagasse, aspen poplar chips  
and pine sawmill residues in present of sulfur dioxide  
can be done at temperatures 150 ˚C and 190 ˚C,  
respectively.  
(7). The reduction of sugars in this way was 2 times  
higher than the control. It was reported that temperature  
was an effective parameters on pretreatment performance  
at more than 160˚C while it is not effective under lower  
than 100˚C. Three different solvents was applied by (66):  
alkaline glycerol, aqueous glycerol, and water as solvent  
for pretreatment of rice husk and corn straw. They  
reported that using glycerol as the high boiling solvent  
could partially remove lignin from rice husk while  
alkaline glycerol was not able to remove lignin. They  
also reported that using either glycerol or alkaline  
glycerol as organic solvent is effective for removal of  
lignin from corn straw (66). Excitingly, the maximum  
yields of hydrolysis of polysaccharides to soluble  
sugars were achieved for both rice husk and corn straw  
pretreated using alkaline glycerol. Analysis of corn straw  
structure showed that pretreatment cause a dramatic  
change on its structure. These results illustrated that the  
type of organic solvent should be selected based on  
application of biomass (66).  
3.7 Biological techniques  
Biological pretreatment techniques are considered as  
one of the important techniques because it uses natural  
microorganisms or their enzymes (77-79). Biological  
techniques have many advantages such as no obligation  
to recycle the chemical compounds after pretreatment,  
low downstream processing costs, no or minimum  
inhibitor formation, simple operating conditions and  
equipment and low energy consumption (80, 81).  
Therefore, biological pretreatment is an inexpensive, safe,  
and environmental friendly technique for pretreatment of  
biomass. Value added products may be produced during  
biological pretreatment of lignocellulosic biomasses  
which make it an economic technique. Biological  
pretreatment of lignocellulosic biomasses is able to  
convert lignin into different simpler compounds which  
can be utilized as the starting materials for production of  
syringaldehyde, benzoic acid, cinnamic acid, vanillic  
acid, vanillin, and phenolic acids (82). Also, biological  
pretreatment of microalgae can produce carbohydrates,  
3
.5 Acid technique  
The degradation speed of lignocellulose pretreatment  
such as liquid hot water, hydrothermal and un-catalyzed  
steam explosion can be increased using catalysts (67, 68).  
Different bases and acids have been applied for  
lignocellulose pretreatment (69). Some acids including  
phosphoric acid, acetic acid, and sulfuric acid have been  
commonly utilized as catalysts (8). Additionally,  
legnocellulosic biomasses at high-temperature processing  
were able to release various acids such as acetic acid that  
might be used as the catalyst for autohydrolysis (70).  
Pretreatment of lignocellulosic biomasses at acidic  
condition could convert hemicelluloses into soluble sugar;  
therefore, the cellulose could be simply degraded due to  
changing in the structure of biomass. Increasing of  
temperature can enhance the speed of hemicelluloses  
conversion in dilute acid pretreatment. Several methods  
such as burning natural gases or microwave techniques  
9
30  
 
 
 
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 925-935  
proteins, and, lipid derived compounds. These compound  
can be applied to produce livestock feed, fine chemicals  
for pharmaceuticals, and food supplements (83). The  
combination of biological pretreatment and bio-refinery  
can enhance the sustainability during generation of  
biofuels. This combination showed an environmental  
friendly and cost-effective way to produce biofuel (84).  
Although the technique of biological pretreatment has  
potential of implementation on large scale, it has not yet  
been used for commercial purposes due to some reasons  
such as low downstream yields, loss of carbohydrates,  
and long pretreatment time (85). Several studies have  
been carried out on biological pretreatment of  
lignocellulosic biomass and microalgae which shows a  
promising results compared to the results achieved from  
using biomass without pretreatment (86, 87). Although  
the number of studies on biological pretreatment of  
lignocellulos is very higher than microalgae, utilization  
of this technique is more effective for microalgae. Zabed  
et al. reported that microalgal composition and structure  
are more appropriate for biological pretreatment;  
therefore, this technique is more effective for microalgae  
and (a) required energy for milling (99, 100). There are  
many kinds of milling processes including hammer  
milling, disk milling, ball milling, and vibratory milling  
used to increase enzymatic hydrolysis (101). The reports  
shows that vibratory ball milling is a more effective  
technique compared to ball milling technique to decrease  
cellulose crystallinity of aspen and spruce chips (10).  
Also, disk milling that is able to produce fibers is more  
effectively increases hydrolysis of cellulose compared to  
hammer milling which produces finer bundles (100).  
3.9 Pyrolysis  
Lignocellulosic biomass can be pretreated using  
pyrolysis technique. Cellulose can be decomposed into  
residual char and several gaseous products at temperature  
more than 300 ̊C . it should be noted that the rate of  
cellulose decomposition at temperatures less than 300C  
̊
is very low. It was reported that hydrolysis of  
lignocellulosic biomass pretreated by pyrolysis technique  
using a 1 N sulfuric acid can convert 8085% of  
cellulose into reducing sugars with more than 50%  
glucose (102).  
(88). Lignocellulos have high quantity of lignin in their  
cell walls while microalgae have protein, lipid, and  
starch, without any lignin (89). Sometimes lignocellulos  
is pretreated for removal of lignin to enhance cellulose  
digestibility (90). In addition, rupturing the cell walls and  
the macromolecules hydrolysis can be the main reason  
for pretreatment of microalgae (91, 92). The reasons for  
pretreatment of lignocellulosic biomasses can be changed  
depending on the types of biofuels and the biological  
pretreatment method that is applied. For instance, biogas  
generation using an anaerobic reactor goals to hydrolyze  
3.10 Steam pretreatment  
In steam pretreatment technique, Lignocellulosic  
biomass can be pretreated with high pressure saturated  
steam (0.7 to 4.8 MPa) at temperatures from 160 to  
240 ̊C . Several reports showed that pretreatment using  
steam is able to hydrolyze the hemicelluloses and modify  
the lignin. It can also enhance the surface area and reduce  
the degree of polymerization and the cellulose  
crystallinity (103). Corn stover pretreatment using steam  
with and without sulfur dioxide was studied by (74).  
There are some reports to show that existence few  
amount of xylanases can have a great effect on xylose  
production. These reports demonstrated that the glucose  
yield rose from 69% to 94% (9, 74). Similar results have  
been also reported by other scientists (9, 104, 105).  
Approximately, the overall yield of glucose and xylose  
during pretreating corn stover with steam at 190 ˚C for 5  
min along with sulfur dioxide were 90% of and 80%,  
respectively (106). The extended delignification, with  
increasing temperature, strongly affects the strength  
properties (107). It is possible to produce ethanol from  
lignocellulosic biomass by steam pretreatment,  
enzymatic hydrolysis and fermentation. An important  
factor to have a cost-effective production of ethanol is  
the sugar yields, from both cellulose and hemicellulose  
(74). One of the advantages of using steam pretreatment  
is that it can rapidly increase the temperature without  
excessive dilution of the resulting sugars (8). The rapid  
increases of pressure aids in defibrillating the cellulose  
bundles which improves the cellulose availability for  
fermentation and enzymatic hydrolysis (108). Stem  
pretreatment has two main steps: auto-hydrolysis and  
depressurization. Within auto-hydrolysis step, high  
temperature is used which can improve the acetic acid  
formation from acetyl groups connected with  
hemicellulose. This step leads to hemicellulose  
hydrolysis. The acetic acid formed further catalyzes the  
hydrolysis of the hemicelluloses. In depressurization step  
the size of biomass particle are reduce which increase the  
cellulose enzymatic accessibility. It was reported that  
steam pretreatment is an efficient technique for corn  
stover biomass (109). Steam pretreatment is able to  
efficiently breakdown the lignocellulosic structure,  
defibration, depolymerization of the lignin components,  
the macromolecules without expecting  
delignification process for lignocellulosic biomass (93,  
4). There is no enough technical information for using  
a separate  
9
biological pretreatment of lignocellulosic biomass in  
large scale; therefore, more studies should be done to  
collect these technical information.  
3
.8 Mechanical techniques  
Several kind of techniques are introduced to reduce  
the size of lignocellulosic biomass including milling,  
grinding, shredding, and chipping for increasing its  
digestibility (95). Mechanical pretreatment technique can  
enhance the specific surface area and reduce the degree  
of cellulose crystallinity and polymerization (96). The  
size of materials in various mechanical techniques is  
different. Chipping can produce materials with size of  
between 10 and 30 mm. grinding and milling have a  
better performance and they can produce materials with  
size of between 10 and 30 mm. Two factors are  
important in mechanical comminution: first, biomass  
characteristics; second final particle size. These can  
determine how much energy would be needed for the  
above mentioned comminution. The needed energy for  
ligniocellulosic biomasses such as hardwoods is higher  
than agricultural wastes (97). Although some reports  
shows that the biofuel production can be enhanced when  
the lignocellulosic biomass was milled (98), it is not  
cost-effective due to its high energy consumption on  
large scale. Many researches have also investigated that  
milling after chemical pretreatment can decrease (e) the  
generation of fermentation inhibitors, (d) liquid to solid  
ratio, (c) energy needed for mixing of pretreatment  
slurries, (b) cost of separation of solid liquid because the  
pretreated lignocellulosic biomass is simply separated,  
9
31  
 
 
 
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 925-935  
and hydrolysis of hemicellulosic fraction (110). The  
main benefits of using steam pretreatment are: (a) this  
technique no need to hazardous chemicals, (b) steam  
pretreatment has a low negative environment impacts,  
and (c) it shows a high energy efficiency (111). In the  
other hand, steam pretreatment technique has two  
disadvantages: incomplete disruption of lignin and  
production of some toxic chemicals within the process. It  
seems that among physical pretreatment techniques for  
straw pretreatment, steam technique is the best chose  
since it partly hydrolyzes hemicellulose and enhance the  
enzymatic digestibility of cellulose remaining in biomass  
residues (112).  
resident time, the amount of pressure, water loading,  
temperature, and ammonia loading (119). This technique  
has many advantages including: (a) no toxic compounds  
are produced during the process, enhanced enzyme  
production (e.g., cellulase), and high surface area (40,  
120). Additionally, this technique has an important  
disadvantage. It is not able to remove high amount of  
hemicelluloses that can increase the accessibility of  
enzyme and the yield of final sugar (40).  
4
Conclusion and future recommendation  
Although several different techniques such as  
microwaves, biological, alkaline, ionic liquid, organic  
solvent, acid, mechanical, pyrolysis, steam, wet  
oxidation, ammonia fiber explosion and liquid hot water  
have been developed for the biomass pretreatment, many  
obstacles are still needed to be overcome to use these  
techniques for industrial application. The surface area is  
the most important effective parameter on pretreatment  
process. It was demonstrated that single pretreatment  
technique is not able to obtain a very high performance  
for the biofuel production. Therefore, the studies must be  
focused on combined pretreatment techniques. Also,  
study on the energy consumption of pretreatment  
techniques and the feasibility of using such techniques is  
another necessary topic that should be intensively  
investigated. Certain corps can be efficiently pretreated  
using some particular pretreatment techniques due to  
their added advantage over others. Although lignin  
should be eliminated using pretreatment techniques for  
enhancement of biofuel production, recent studies show  
that lignin may be used in construction industry, dust  
particle controls, cleaning metallic surfaces, chemical  
coatings, agro farmland improvements, and paint  
industry.  
3
.11 Liquid hot water  
This technique applied hot water at high pressure to  
maintain its liquid form for degradation enhancement of  
the lignocellulosic matrix. Liquid hot water technique  
uses at temperature between 160 ˚C and 240 ˚C. Also,  
resident time in this technique is between few minutes  
and an hour. It was reported that 88% to 98% of xylose  
recovery can be obtained using liquid hot water without  
needing acid or chemical catalyst which make it an  
environmental friendly and cost-effective techniques for  
pretreatment of lignocellulosic biomasses (8). The  
disadvantage of this technique is high energy and water  
consumption.  
3
.12 Wet oxidation  
Wet oxidation is  
a technique in which the  
lignocellulosic materials are treated with water and air or  
oxygen at temperatures more than 120 ˚C (113). The  
toxic furaldehydes and phenol aldehydes formation is  
reduced when alkali and wet oxidation is combined with  
each other (114). Since lignin and hemicellulose are  
solubilized, baggase cellulose content increases within  
wet oxidation technique (115). A main difficulty in the  
fermentation of dilute acid hydrolyzates is the inability of  
the fermentative microorganism to withstand inhibitory  
compounds formed during pretreatment, and usually a  
detoxification step is needed to improve hydrolyzate  
fermentability (116). Similar results could also be  
obtained for fermentation of the rice hulls and wheat  
straw dilute acid hydrolyzates (117). The inhibitor  
problem can reduce when alkaline peroxide pretreatment  
was used for rice hulls. It was reported that combination  
of wet oxidation and base readily oxidizes lignin for  
wheat straw can facilitate the enzymatic hydrolysis of  
Ethical issue  
Authors are aware of, and comply with, best practice  
in publication ethics specifically with regard to  
authorship (avoidance of guest authorship), dual  
submission, manipulation of figures, competing interests  
and compliance with policies on research ethics. Authors  
adhere to publication requirements that submitted work  
is original and has not been published elsewhere in any  
language.  
Competing interests  
The authors declare that there is no conflict of  
interest that would prejudice the impartiality of this  
scientific work.  
polysaccharides  
(114).  
Furfural  
and  
hydroxymethylfurfural were not generated within the wet  
oxidation technique. Carboxylic acids and dissolved  
hemicellulose can be directly used as nutrient source by  
fungal growth. It has been demonstrated that rice hull  
hemicellulose is able to be hydrolyzed using a single  
preparation of xylanase (viscostar) after a pretreatment  
alkaline peroxide (118).  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
References  
1
.
Ali Umar Ahmad, Suraya Ismail, Inuwa Mukhtar Ahmad,  
Ibrahim Mohammed Adamu, Aminu Hassan Jakada,  
Ibrahim Sambo Farouq, et al. Pollutant Emissions,  
Renewable Energy Consumption and Economic Growth:  
An Empirical Review from 2015-2019. J Environ Treat  
Tech. 2020;8(1):323-35.  
3
.14 Ammonia fiber explosion  
The pretreatment of ammonia fiber explosion  
technique is approximately analogous to the steam  
explosion technique. In ammonia fiber explosion  
technique, lignocellulosic biomass is contacted to liquid  
ammonia at pressure from 250 to 300 psi and  
temperature between 60 and 100 ˚C during a period of  
time and then the pressure is quickly decreased. Several  
operational parameters such as number of treatments,  
2
3
.
.
Mohajan HK. Greenhouse Gas Emissions of China. J  
Environ Treat Tech. 2013;1(4):190-202.  
Alaee S. Air Pollution and Infertility. J Environ Treat Tech.  
2
018;6(4):72-3.  
9
32  
 
 
 
 
 
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 925-935  
4
.
Siti FS, Mohd FG, Mohd FBZ, Abdul Halim S, Tuan Ab  
Rashid TA. Modelling and Optimization of Biomass Supply  
Chain for Bioenergy Production. J Environ Treat Tech.  
25. Gupta PK, Sahai S, Singh N, Dixit C, Singh D, Sharma C,  
et al. Residue burning in ricewheat cropping system:  
Causes and implications. Curr Sci. 2004:1713-7.  
26. Ding S-Y, Himmel ME. The maize primary cell wall  
microfibril: a new model derived from direct visualization.  
J Agric Food Chem. 2006;54(3):597-606.  
27. Zhang YHP, Lynd LR. A functionally based model for  
hydrolysis of cellulose by fungal cellulase. Biotechnol  
Bioeng. 2006;94(5):888-98.  
28. Freer S, Detroy R. Biological delignification of 14C-labeled  
lignocelluloses by basidiomycetes: degradation and  
solubilization of the lignin and cellulose components.  
Mycologia. 1982;74(6):943-51.  
29. Mosier NS, Hendrickson R, Brewer M, Ho N, Sedlak M,  
Dreshel R, et al. Industrial scale-up of pH-controlled liquid  
hot water pretreatment of corn fiber for fuel ethanol  
production. Appl Biochem Biotechnol. 2005;125(2):77-97.  
30. Hinman ND, Wright JD, Hogland W, Wyman CE. Xylose  
fermentation. Appl Biochem Biotechnol. 1989;20(1):391-  
401.  
2
020;7(4):689-95.  
5
6
7
8
.
.
.
.
Srinivasan S. Positive externalities of domestic biogas  
initiatives: Implications for financing. Renew Sust Energ  
Rev. 2008;12(5):1476-84.  
Choi S, Song CW, Shin JH, Lee SY. Biorefineries for the  
production of top building block chemicals and their  
derivatives. Metab Eng. 2015;28:223-39.  
Li H, Qu Y, Yang Y, Chang S, Xu J. Microwave irradiation  
A green and efficient way to pretreat biomass. Bioresour  
Technol. 2016;199:34-41.  
Mosier N, Wyman C, Dale B, Elander R, Lee YY,  
Holtzapple M, et al. Features of promising technologies for  
pretreatment of lignocellulosic biomass. Bioresour Technol.  
2
005;96(6):673-86.  
9
1
.
Galbe M, Zacchi G. Pretreatment: the key to efficient  
utilization of lignocellulosic materials. Biomass Bioenergy.  
2
012;46:70-8.  
0. Singh R, Shukla A, Tiwari S, Srivastava M. A review on  
delignification of lignocellulosic biomass for enhancement  
of ethanol production potential. Renew Sust Energ Rev.  
31. Ho NW, Chen Z, Brainard AP. Genetically engineered  
Saccharomycesyeast capable of effective cofermentation of  
glucose and xylose. Appl Environ Microbiol.  
1998;64(5):1852-9.  
2
014;32:713-28.  
1
1
1. Bridgwater AV. Review of fast pyrolysis of biomass and  
product upgrading. Biomass Bioenergy. 2012;38:68-94.  
2. Diya’uddeen BH, Abdul Aziz AR, Daud WMAW,  
Chakrabarti MH. Performance evaluation of biodiesel from  
used domestic waste oils: A review. Process Saf Environ  
Prot. 2012;90(3):164-79.  
3. Ruiz JA, Juárez MC, Morales MP, Muñoz P, Mendívil MA.  
Biomass gasification for electricity generation: Review of  
current technology barriers. Renew Sust Energ Rev.  
32. Taherzadeh MJ, Niklasson C, Lidén G. Conversion of  
dilute-acid hydrolyzates of spruce and birch to ethanol by  
fed-batch fermentation. Bioresour Technol. 1999;69(1):59-  
66.  
33. Sreenath HK, Jeffries TW. Production of ethanol from  
wood hydrolyzate by yeasts. Bioresour Technol.  
2000;72(3):253-60.  
1
1
34. Amen-Chen C, Pakdel H, Roy C. Production of monomeric  
phenols by thermochemical conversion of biomass:  
review. Bioresour Technol. 2001;79(3):277-99.  
a
2
013;18:174-83.  
4. Wilkinson N, Wickramathilaka M, Hendry D, Miller A,  
Espanani R, Jacoby W. Rate determination of supercritical  
35. Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F,  
Hashemi B, et al. Different pretreatment technologies of  
lignocellulosic biomass for bioethanol production: An  
overview. Energy. 2020:117457.  
36. Bobleter O. Hydrothermal degradation of polymers derived  
from plants. Prog Polym Sci. 1994;19(5):797-841.  
37. Ragauskas AJ, Williams CK, Davison BH, Britovsek G,  
Cairney J, Eckert CA, et al. The path forward for biofuels  
and biomaterials. Science. 2006;311(5760):484-9.  
water gasification of primary sewage sludge as  
replacement for anaerobic digestion. Bioresour Technol.  
012;124:269-75.  
5. Melvin Jose DF, Edwin Raj R, Durga Prasad B, Robert  
Kennedy Z, Mohammed Ibrahim A. multi-variant  
a
2
1
A
approach to optimize process parameters for biodiesel  
extraction from rubber seed oil. Appl Energy.  
2
011;88(6):2056-63.  
38. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch  
MR, Lee Y. Coordinated development of leading biomass  
1
1
6. Saravanan N, Nagarajan G, Puhan S. Experimental  
investigation on a DI diesel engine fuelled with Madhuca  
Indica ester and diesel blend. Biomass Bioenergy.  
pretreatment  
technologies.  
Bioresour  
Technol.  
2005;96(18):1959-66.  
2
010;34(6):838-43.  
39. Zhang Y-HP, Himmel ME, Mielenz JR. Outlook for  
cellulase improvement: screening and selection strategies.  
Biotechnol Adv. 2006;24(5):452-81.  
40. Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander RT,  
Laser M, et al. Fractionating recalcitrant lignocellulose at  
7. Usta N, Aydoğan B, Çon AH, Uğuzdoğan E, Özkal SG.  
Properties and quality verification of biodiesel produced  
from tobacco seed oil. Energy Convers Manage.  
2
011;52(5):2031-9.  
1
1
8. Chakrabarti MH, Ahmad R. Transesterification studies on  
castor oil as a first step towards its use in biodiesel  
production. Pak J Bot. 2008;40(3):1153-7.  
9. Chakrabarti MH, Ahmad R. Investigating possibility of  
using least desirable edible oil of Eruca sativa L., in  
biodiesel production. Pakistan Journal of Botany.  
modest  
2007;97(2):214-23.  
41. Estevez MM, Linjordet R, Morken J. Effects of steam  
explosion and co-digestion in the methane production from  
Salix by mesophilic batch assays. Bioresour Technol.  
2012;104:749-56.  
reaction  
conditions.  
Biotechnol  
Bioeng.  
2
009;41(1):481-7.  
42. Galbe M, Zacchi G. Pretreatment of lignocellulosic  
materials for efficient bioethanol production. Biofuels:  
Springer; 2007. p. 41-65.  
43. Chang VS, Holtzapple MT, editors. Fundamental factors  
affecting biomass enzymatic reactivity. Twenty-first  
symposium on biotechnology for fuels and chemicals; 2000:  
Springer.  
44. Kaar WE, Holtzapple MT. Using lime pretreatment to  
facilitate the enzymic hydrolysis of corn stover. Biomass  
Bioenergy. 2000;18(3):189-99.  
2
0. Kumar A, Sharma S. Potential non-edible oil resources as  
biodiesel feedstock: An Indian perspective. Renew Sust  
Energ Rev. 2011;15(4):1791-800.  
1. Jain S, Sharma MP. Prospects of biodiesel from Jatropha in  
India: A review. Renew Sust Energ Rev. 2010;14(2):763-71.  
2. Juan JC, Kartika DA, Wu TY, Hin T-YY. Biodiesel  
production from jatropha oil by catalytic and non-catalytic  
2
2
approaches:  
2
An  
overview.  
Bioresour  
Technol.  
011;102(2):452-60.  
2
2
3. Knothe G. Biodiesel and renewable diesel: A comparison.  
Prog Energy Combust Sci. 2010;36(3):364-73.  
4. Raju S, Parappurathu S, Chand R, Joshi P, Kumar P,  
Msangi S. Biofuels in India: potential, policy and emerging  
paradigms. 2012.  
45. Lee YH, Fan L. Kinetic studies of enzymatic hydrolysis of  
insoluble cellulose: analysis of the initial rates. Biotechnol  
Bioeng. 1982;24(11):2383-406.  
46. Bidlack J, editor Molecular structure and component  
integration of secondary cell walls in plants. Proceedings of  
the Oklahoma Academy of Science; 1992.  
9
33  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 925-935  
4
4
7. Motevali A, Minaei S, Banakar A, Ghobadian B,  
Khoshtaghaza MH. Comparison of energy parameters in  
various dryers. Energy Convers Manage. 2014;87:711-25.  
8. Zheng A, Zhao Z, Huang Z, Zhao K, Wei G, Jiang L, et al.  
Overcoming biomass recalcitrance for enhancing sugar  
production from fast pyrolysis of biomass by microwave  
pretreatment in glycerol. Green Chem. 2015;17(2):1167-75.  
9. ROZZI NL, Singh R. THE EFFECT of SELECTED  
SALTS ON the MICROWAVE HEATING of STARCH  
SOLUTIONS 1. J Food Process Preserv. 2000;24(4):265-73.  
0. Li H, Xu J. Optimization of microwave-assisted calcium  
chloride pretreatment of corn stover. Bioresour Technol.  
66. de la Hoz A, Diaz-Ortiz A, Moreno A. Microwaves in  
organic synthesis. Thermal and non-thermal microwave  
effects. Chem Soc Rev. 2005;34(2):164-78.  
67. Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA,  
Teixeira JA. Hydrothermal processing, as an alternative for  
upgrading agriculture residues and marine biomass  
according to the biorefinery concept: A review. Renew Sust  
Energ Rev. 2013;21:35-51.  
68. Jacquet N, Maniet G, Vanderghem C, Delvigne F, Richel A.  
Application of Steam Explosion as Pretreatment on  
Lignocellulosic Material: A Review. Ind Eng Chem Res.  
2015;54(10):2593-8.  
4
5
5
2
013;127:112-8.  
69. Pedersen M, Meyer AS. Lignocellulose pretreatment  
1. Cheng X-Y, Liu C-Z. Enhanced biogas production from  
herbal-extraction process residues by microwave-assisted  
severity relating pH to biomatrix opening. New  
Biotechnology. 2010;27(6):739-50.  
alkaline pretreatment.  
010;85(1):127-31.  
2. Li H-Q, Jiang W, Jia J-X, Xu J. pH pre-corrected liquid hot  
water pretreatment on corn stover with high hemicellulose  
recovery and low inhibitors formation. Bioresour Technol.  
J
Chem Technol Biotechnol.  
70. Garrote G, Falqué E, Domínguez H, Parajó JC.  
Autohydrolysis of agricultural residues: Study of reaction  
byproducts. Bioresour Technol. 2007;98(10):1951-7.  
71. Palmarola-Adrados B, Galbe M, Zacchi G, editors.  
Combined Steam Pretreatment and Enzymatic Hydrolysis  
of Starch-Free Wheat Fibers. Proceedings of the Twenty-  
Fifth Symposium on Biotechnology for Fuels and  
Chemicals Held May 47, 2003, in Breckenridge, CO; 2004  
2004//; Totowa, NJ: Humana Press.  
2
5
5
2
014;153:292-9.  
3. Peng H, Chen H, Qu Y, Li H, Xu J. Bioconversion of  
different sizes of microcrystalline cellulose pretreated by  
microwave irradiation with/without NaOH. Appl Energy.  
2
014;117:142-8.  
72. Li J, Yang Y, Chen H, Jiang F, Ling J, Liu M, et al.  
Comparison of saccharification process by acid and  
microwave-assisted acid pretreated swine manure.  
Bioprocess Biosystems Eng. 2009;32(5):649-54.  
5
5
4. Hu Z, Wen Z. Enhancing enzymatic digestibility of  
switchgrass by microwave-assisted alkali pretreatment.  
Biochem Eng J. 2008;38(3):369-78.  
5. Liu J, Takada R, Karita S, Watanabe T, Honda Y,  
Watanabe T. Microwave-assisted pretreatment of  
recalcitrant softwood in aqueous glycerol. Bioresour  
Technol. 2010;101(23):9355-60.  
6. Mitani T, Oyadomari M, Suzuki H, Yano K, Shinohara N,  
Tsumiya T, et al. A feasibility study on a continuous-flow-  
type microwave pretreatment system for bioethanol  
production from woody biomass. Journal of the Japan  
Institute of Energy. 2011;90(9):881-5.  
73. Marshall WL, Franck E. Ion product of water substance, 0–  
1000 C, 110,000 bars New International Formulation and  
its background. J Phys Chem Ref Data. 1981;10(2):295-304.  
74. Öhgren K, Bura R, Saddler J, Zacchi G. Effect of  
hemicellulose and lignin removal on enzymatic hydrolysis  
of steam pretreated corn stover. Bioresour Technol.  
2007;98(13):2503-10.  
75. Balakshin M, Capanema E, Gracz H, Chang H-m, Jameel H.  
Quantification of lignincarbohydrate linkages with high-  
resolution NMR spectroscopy. Planta. 2011;233(6):1097-  
110.  
76. Kumar R, Wyman CE. Physical and chemical features of  
pretreated biomass that influence macro‐/micro‐  
accessibility and biological processing. Aqueous  
pretreatment of plant biomass for biological and chemical  
conversion to fuels and chemicals. 2013:281-310.  
5
5
5
7. Li Z, Jiang Z, Yu Y, Cai Z. Effective of microwave-KOH  
pretreatment on enzymatic hydrolysis of bamboo. Journal of  
Sustainable Bioenergy Systems, Volume 2, 2012; pp 104-  
1
07. 2012;2:104-7.  
8. Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H.  
Understanding of alkaline pretreatment parameters for corn  
stover enzymatic saccharification. Biotechnology for  
biofuels. 2013;6(1):8.  
9. Chen W-H, Lin B-J. Effect of microwave double absorption  
on hydrogen generation from methanol steam reforming. Int  
J Hydrogen Energy. 2010;35(5):1987-97.  
0. Pang F, Xue S, Yu S, Zhang C, Li B, Kang Y. Effects of  
microwave power and microwave irradiation time on  
pretreatment efficiency and characteristics of corn stover  
using combination of steam explosion and microwave  
irradiation (SEMI) pretreatment. Bioresour Technol.  
77. Saha BC, Qureshi N, Kennedy GJ, Cotta MA. Biological  
pretreatment of corn stover with white-rot fungus for  
5
6
improved  
enzymatic  
hydrolysis.  
Int  
Biodeterior  
Biodegradation. 2016;109:29-35.  
78. Vasco-Correa J, Ge X, Li Y. Chapter 24 - Biological  
Pretreatment of Lignocellulosic Biomass. In: Mussatto SI,  
editor. Biomass Fractionation Technologies for  
a
Lignocellulosic Feedstock Based Biorefinery. Amsterdam:  
Elsevier; 2016. p. 561-85.  
2
012;118:111-9.  
79. da Silva Machado A, Ferraz A. Biological pretreatment of  
sugarcane bagasse with basidiomycetes producing varied  
6
6
1. Singh A, Tuteja S, Singh N, Bishnoi NR. Enhanced  
saccharification of rice straw and hull by microwavealkali  
pretreatment and lignocellulolytic enzyme production.  
Bioresour Technol. 2011;102(2):1773-82.  
2. Xu J, Chen H, Kádár Z, Thomsen AB, Schmidt JE, Peng H.  
Optimization of microwave pretreatment on wheat straw for  
ethanol production. Biomass Bioenergy. 2011;35(9):3859-  
patterns  
of  
biodegradation.  
Bioresour  
Technol.  
2017;225:17-22.  
80. Sindhu R, Binod P, Pandey A. Biological pretreatment of  
lignocellulosic biomass  An overview. Bioresour Technol.  
2016;199:76-82.  
81. Millati R, Syamsiah S, Niklasson C, Cahyanto MN,  
Ludquist K, Taherzadeh MJ. Biological pretreatment of  
lignocelluloses with white-rot fungi and its applications: a  
review. BioResources. 2011;6(4):5224-59.  
6
4.  
6
6
6
3. Swatloski RP, Spear SK, Holbrey JD, Rogers RD.  
Dissolution of cellose with ionic liquids. J Am Chem Soc.  
2
002;124(18):4974-5.  
82. Arora R, Sharma NK, Kumar S. Chapter 8 - Valorization of  
By-Products Following the Biorefinery Concept:  
Commercial Aspects of By-Products of Lignocellulosic  
Biomass. In: Chandel AK, Luciano Silveira MH, editors.  
Advances in Sugarcane Biorefinery: Elsevier; 2018. p. 163-  
78.  
83. Singh J, Gu S. Commercialization potential of microalgae  
for biofuels production. Renew Sust Energ Rev.  
2010;14(9):2596-610.  
4. Zavrel M, Bross D, Funke M, Büchs J, Spiess AC. High-  
throughput screening for ionic liquids dissolving (ligno-)  
cellulose. Bioresour Technol. 2009;100(9):2580-7.  
5. Moretti MMdS, Bocchini-Martins DA, Nunes CdCC,  
Villena MA, Perrone OM, Silva Rd, et al. Pretreatment of  
sugarcane bagasse with microwaves irradiation and its  
effects on the structure and on enzymatic hydrolysis. Appl  
Energy. 2014;122:189-95.  
8
4. Ahmad E, Pant KK. Chapter 14 - Lignin Conversion: A  
Key to the Concept of Lignocellulosic Biomass-Based  
9
34  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 925-935  
Integrated Biorefinery. In: Bhaskar T, Pandey A, Mohan  
SV, Lee D-J, Khanal SK, editors. Waste Biorefinery:  
Elsevier; 2018. p. 409-44.  
leading pretreatment technologies. Bioresour Technol.  
2009;100(18):4203-13.  
105.Kumar R, Wyman CE. Effects of cellulase and xylanase  
enzymes on the deconstruction of solids from pretreatment  
of poplar by leading technologies. Biotechnol Progr.  
2009;25(2):302-14.  
8
5. Zabed H, Sultana S, Sahu JN, Qi X. An Overview on the  
Application of Ligninolytic Microorganisms and Enzymes  
for Pretreatment of Lignocellulosic Biomass. In: Sarangi  
PK, Nanda S, Mohanty P, editors. Recent Advancements in  
Biofuels and Bioenergy Utilization. Singapore: Springer  
Singapore; 2018. p. 53-72.  
106.Öhgren K, Galbe M, Zacchi G. Optimization of steam  
pretreatment of SO2-impregnated corn stover for fuel  
ethanol  
production.  
Appl  
Biochem  
Biotechnol.  
8
8
6. Carrillo-Reyes J, Barragán-Trinidad M, Buitrón G.  
Biological pretreatments of microalgal biomass for gaseous  
biofuel production and the potential use of rumen  
microorganisms: A review. Algal Research. 2016;18:341-  
2005;124(1):1055-67.  
107.Palonen H, Tjerneld F, Zacchi G, Tenkanen M. Adsorption  
of Trichoderma reesei CBH I and EG II and their catalytic  
domains on steam pretreated softwood and isolated lignin. J  
Biotechnol. 2004;107(1):65-72.  
5
1.  
7. Zhao X, Luo K, Zhang Y, Zheng Z, Cai Y, Wen B, et al.  
Improving the methane yield of maize straw: Focus on the  
effects of pretreatment with fungi and their secreted  
enzymes combined with sodium hydroxide. Bioresour  
Technol. 2018;250:204-13.  
108.Tanahashi  
M.  
Characterization  
and  
degradation  
mechanisms of wood components by steam explosion and  
utilization of exploded wood. 1990.  
109.Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ.  
Pretreatment technologies for an efficient bioethanol  
8
8
8. Zabed HM, Akter S, Yun J, Zhang G, Awad FN, Qi X, et al.  
Recent advances in biological pretreatment of microalgae  
and lignocellulosic biomass for biofuel production. Renew  
Sust Energ Rev. 2019;105:105-28.  
9. Ganesh Saratale R, Kumar G, Banu R, Xia A, Periyasamy S,  
Dattatraya Saratale G. A critical review on anaerobic  
digestion of microalgae and macroalgae and co-digestion of  
biomass for enhanced methane generation. Bioresour  
Technol. 2018;262:319-32.  
0. Vasco-Correa J, Ge X, Li Y. Fungal pretreatment of non-  
sterile miscanthus for enhanced enzymatic hydrolysis.  
Bioresour Technol. 2016;203:118-23.  
1. Hernández D, Riaño B, Coca M, García-González MC.  
Saccharification of carbohydrates in microalgal biomass by  
production process based on enzymatic hydrolysis: A  
review. Bioresour Technol. 2010;101(13):4851-61.  
110.Moniruzzaman M. Effect of steam explosion on the  
physicochemical properties and enzymatic saccharification  
of rice straw. Appl Biochem Biotechnol. 1996;59(3):283-97.  
111.Martín C, Galbe M, Nilvebrant N-O, Jönsson LJ.  
Comparison of the Fermentability of Enzymatic  
Hydrolyzates of Sugarcane Bagasse Pretreated by Steam  
Explosion Using Different Impregnating Agents. In:  
Finkelstein M, McMillan JD, Davison BH, editors.  
Biotechnology for Fuels and Chemicals: The TwentyThird  
Symposium. Totowa, NJ: Humana Press; 2002. p. 699-716.  
112.Tabka MG, Herpoël-Gimbert I, Monod F, Asther M,  
Sigoillot JC. Enzymatic saccharification of wheat straw for  
bioethanol production by a combined cellulase xylanase and  
feruloyl esterase treatment. Enzyme Microb Technol.  
2006;39(4):897-902.  
9
9
physical, chemical and enzymatic pre-treatments as  
previous step for bioethanol production. Chem Eng J.  
015;262:939-45.  
a
2
9
9
9
2. Harun R, Danquah MK. Enzymatic hydrolysis of  
microalgal biomass for bioethanol production. Chem Eng J.  
113.McGinnis GD, Wilson WW, Mullen CE. Biomass  
pretreatment with water and high-pressure oxygen. The  
wet-oxidation process. Industrial & Engineering Chemistry  
Product Research and Development. 1983;22(2):352-7.  
114.Bjerre AB, Olesen AB, Fernqvist T, Plöger A, Schmidt AS.  
Pretreatment of wheat straw using combined wet oxidation  
and alkaline hydrolysis resulting in convertible cellulose  
and hemicellulose. Biotechnol Bioeng. 1996;49(5):568-77.  
115.Klinke HB, Ahring BK, Schmidt AS, Thomsen AB.  
Characterization of degradation products from alkaline wet  
oxidation of wheat straw. Bioresour Technol.  
2002;82(1):15-26.  
116.Saha BC. Lignocellulose Biodegradation and Applications  
in Biotechnology. Lignocellulose Biodegradation. ACS  
Symposium Series. 889: American Chemical Society; 2004.  
p. 2-34.  
117.Saha BC. Dilute acid pretreatment, enzymatic  
saccharification and fermentation of wheat straw to ethanol.  
Process Biochem. 2005;v. 40(no. 12):pp. 3693-700-2005  
v.40 no.12.  
2
011;168(3):1079-84.  
3. Passos F, Uggetti E, Carrère H, Ferrer I. Pretreatment of  
microalgae to improve biogas production:  
Bioresour Technol. 2014;172:403-12.  
A review.  
4. Barua VB, Goud VV, Kalamdhad AS. Microbial  
pretreatment of water hyacinth for enhanced hydrolysis  
followed by biogas production. Renew Energy.  
2
018;126:21-9.  
9
9
9
9
9
5. Palmowski L, Müller J. Influence of the size reduction of  
organic waste on their anaerobic digestion. Water Sci  
Technol. 2000;41(3):155-62.  
6. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for  
ethanol production:  
002;83(1):1-11.  
a
review. Bioresour Technol.  
2
7. Cadoche L, López GD. Assessment of size reduction as a  
preliminary step in the production of ethanol from  
lignocellulosic wastes. Biological Wastes. 1989;30(2):153-7.  
8. Delgenes J. Pretreatments for the enhancement of anaerobic  
digestion of solid wastes. Biomethanization of the organic  
fraction of municipal solid wastes. 2003.  
9. Zhu JY, Pan X, Zalesny RS. Pretreatment of woody  
biomass for biofuel production: energy efficiency,  
technologies, and recalcitrance. Appl Microbiol Biotechnol.  
118.Saha BC, Bothast RJ. Pretreatment and enzymatic  
saccharification of corn fiber. Appl Biochem Biotechnol.  
1999;76(2):65-77.  
119.Holtzapple MT, Jun J-H, Ashok G, Patibandla SL, Dale BE.  
The ammonia freeze explosion (AFEX) process. Appl  
Biochem Biotechnol. 1991;28(1):59-74.  
2
010;87(3):847-57.  
1
1
00.Zhu J, Wang G, Pan X, Gleisner R. Specific surface to  
evaluate the efficiencies of milling and pretreatment of  
wood for enzymatic saccharification. Chem Eng Sci.  
120.Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE.  
Optimization of the ammonia fiber explosion (AFEX)  
treatment parameters for enzymatic hydrolysis of corn  
stover. Bioresour Technol. 2005;96(18):2014-8.  
2
009;64(3):474-85.  
01.Taherzadeh M, Karimi K. Pretreatment of lignocellulosic  
wastes to improve ethanol and biogas production: a review.  
Int J Mol Sci. 2008;9(9):1621-51.  
1
1
1
02.Fang L, Gharpuray M, Lee Y. Cellulose hydrolysis  
biotechnology monographs. Springer, Berlin; 1987.  
03.Ramos LP. The chemistry involved in the steam treatment  
of lignocellulosic materials. Quim Nova. 2003;26(6):863-71.  
04.Kumar R, Wyman CE. Effect of xylanase supplementation  
of cellulase on digestion of corn stover solids prepared by  
9
35