Journal of Environmental Treatment Techniques
2020, Volume 8, Issue 2, Pages: 925-935
4
4
7. Motevali A, Minaei S, Banakar A, Ghobadian B,
Khoshtaghaza MH. Comparison of energy parameters in
various dryers. Energy Convers Manage. 2014;87:711-25.
8. Zheng A, Zhao Z, Huang Z, Zhao K, Wei G, Jiang L, et al.
Overcoming biomass recalcitrance for enhancing sugar
production from fast pyrolysis of biomass by microwave
pretreatment in glycerol. Green Chem. 2015;17(2):1167-75.
9. ROZZI NL, Singh R. THE EFFECT of SELECTED
SALTS ON the MICROWAVE HEATING of STARCH
SOLUTIONS 1. J Food Process Preserv. 2000;24(4):265-73.
0. Li H, Xu J. Optimization of microwave-assisted calcium
chloride pretreatment of corn stover. Bioresour Technol.
66. de la Hoz A, Diaz-Ortiz A, Moreno A. Microwaves in
organic synthesis. Thermal and non-thermal microwave
effects. Chem Soc Rev. 2005;34(2):164-78.
67. Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA,
Teixeira JA. Hydrothermal processing, as an alternative for
upgrading agriculture residues and marine biomass
according to the biorefinery concept: A review. Renew Sust
Energ Rev. 2013;21:35-51.
68. Jacquet N, Maniet G, Vanderghem C, Delvigne F, Richel A.
Application of Steam Explosion as Pretreatment on
Lignocellulosic Material: A Review. Ind Eng Chem Res.
2015;54(10):2593-8.
4
5
5
2
013;127:112-8.
69. Pedersen M, Meyer AS. Lignocellulose pretreatment
1. Cheng X-Y, Liu C-Z. Enhanced biogas production from
herbal-extraction process residues by microwave-assisted
severity – relating pH to biomatrix opening. New
Biotechnology. 2010;27(6):739-50.
alkaline pretreatment.
010;85(1):127-31.
2. Li H-Q, Jiang W, Jia J-X, Xu J. pH pre-corrected liquid hot
water pretreatment on corn stover with high hemicellulose
recovery and low inhibitors formation. Bioresour Technol.
J
Chem Technol Biotechnol.
70. Garrote G, Falqué E, Domínguez H, Parajó JC.
Autohydrolysis of agricultural residues: Study of reaction
byproducts. Bioresour Technol. 2007;98(10):1951-7.
71. Palmarola-Adrados B, Galbe M, Zacchi G, editors.
Combined Steam Pretreatment and Enzymatic Hydrolysis
of Starch-Free Wheat Fibers. Proceedings of the Twenty-
Fifth Symposium on Biotechnology for Fuels and
Chemicals Held May 4–7, 2003, in Breckenridge, CO; 2004
2004//; Totowa, NJ: Humana Press.
2
5
5
2
014;153:292-9.
3. Peng H, Chen H, Qu Y, Li H, Xu J. Bioconversion of
different sizes of microcrystalline cellulose pretreated by
microwave irradiation with/without NaOH. Appl Energy.
2
014;117:142-8.
72. Li J, Yang Y, Chen H, Jiang F, Ling J, Liu M, et al.
Comparison of saccharification process by acid and
microwave-assisted acid pretreated swine manure.
Bioprocess Biosystems Eng. 2009;32(5):649-54.
5
5
4. Hu Z, Wen Z. Enhancing enzymatic digestibility of
switchgrass by microwave-assisted alkali pretreatment.
Biochem Eng J. 2008;38(3):369-78.
5. Liu J, Takada R, Karita S, Watanabe T, Honda Y,
Watanabe T. Microwave-assisted pretreatment of
recalcitrant softwood in aqueous glycerol. Bioresour
Technol. 2010;101(23):9355-60.
6. Mitani T, Oyadomari M, Suzuki H, Yano K, Shinohara N,
Tsumiya T, et al. A feasibility study on a continuous-flow-
type microwave pretreatment system for bioethanol
production from woody biomass. Journal of the Japan
Institute of Energy. 2011;90(9):881-5.
73. Marshall WL, Franck E. Ion product of water substance, 0–
1000 C, 1–10,000 bars New International Formulation and
its background. J Phys Chem Ref Data. 1981;10(2):295-304.
74. Öhgren K, Bura R, Saddler J, Zacchi G. Effect of
hemicellulose and lignin removal on enzymatic hydrolysis
of steam pretreated corn stover. Bioresour Technol.
2007;98(13):2503-10.
75. Balakshin M, Capanema E, Gracz H, Chang H-m, Jameel H.
Quantification of lignin–carbohydrate linkages with high-
resolution NMR spectroscopy. Planta. 2011;233(6):1097-
110.
76. Kumar R, Wyman CE. Physical and chemical features of
pretreated biomass that influence macro‐/micro‐
accessibility and biological processing. Aqueous
pretreatment of plant biomass for biological and chemical
conversion to fuels and chemicals. 2013:281-310.
5
5
5
7. Li Z, Jiang Z, Yu Y, Cai Z. Effective of microwave-KOH
pretreatment on enzymatic hydrolysis of bamboo. Journal of
Sustainable Bioenergy Systems, Volume 2, 2012; pp 104-
1
07. 2012;2:104-7.
8. Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H.
Understanding of alkaline pretreatment parameters for corn
stover enzymatic saccharification. Biotechnology for
biofuels. 2013;6(1):8.
9. Chen W-H, Lin B-J. Effect of microwave double absorption
on hydrogen generation from methanol steam reforming. Int
J Hydrogen Energy. 2010;35(5):1987-97.
0. Pang F, Xue S, Yu S, Zhang C, Li B, Kang Y. Effects of
microwave power and microwave irradiation time on
pretreatment efficiency and characteristics of corn stover
using combination of steam explosion and microwave
irradiation (SE–MI) pretreatment. Bioresour Technol.
77. Saha BC, Qureshi N, Kennedy GJ, Cotta MA. Biological
pretreatment of corn stover with white-rot fungus for
5
6
improved
enzymatic
hydrolysis.
Int
Biodeterior
Biodegradation. 2016;109:29-35.
78. Vasco-Correa J, Ge X, Li Y. Chapter 24 - Biological
Pretreatment of Lignocellulosic Biomass. In: Mussatto SI,
editor. Biomass Fractionation Technologies for
a
Lignocellulosic Feedstock Based Biorefinery. Amsterdam:
Elsevier; 2016. p. 561-85.
2
012;118:111-9.
79. da Silva Machado A, Ferraz A. Biological pretreatment of
sugarcane bagasse with basidiomycetes producing varied
6
6
1. Singh A, Tuteja S, Singh N, Bishnoi NR. Enhanced
saccharification of rice straw and hull by microwave–alkali
pretreatment and lignocellulolytic enzyme production.
Bioresour Technol. 2011;102(2):1773-82.
2. Xu J, Chen H, Kádár Z, Thomsen AB, Schmidt JE, Peng H.
Optimization of microwave pretreatment on wheat straw for
ethanol production. Biomass Bioenergy. 2011;35(9):3859-
patterns
of
biodegradation.
Bioresour
Technol.
2017;225:17-22.
80. Sindhu R, Binod P, Pandey A. Biological pretreatment of
lignocellulosic biomass – An overview. Bioresour Technol.
2016;199:76-82.
81. Millati R, Syamsiah S, Niklasson C, Cahyanto MN,
Ludquist K, Taherzadeh MJ. Biological pretreatment of
lignocelluloses with white-rot fungi and its applications: a
review. BioResources. 2011;6(4):5224-59.
6
4.
6
6
6
3. Swatloski RP, Spear SK, Holbrey JD, Rogers RD.
Dissolution of cellose with ionic liquids. J Am Chem Soc.
2
002;124(18):4974-5.
82. Arora R, Sharma NK, Kumar S. Chapter 8 - Valorization of
By-Products Following the Biorefinery Concept:
Commercial Aspects of By-Products of Lignocellulosic
Biomass. In: Chandel AK, Luciano Silveira MH, editors.
Advances in Sugarcane Biorefinery: Elsevier; 2018. p. 163-
78.
83. Singh J, Gu S. Commercialization potential of microalgae
for biofuels production. Renew Sust Energ Rev.
2010;14(9):2596-610.
4. Zavrel M, Bross D, Funke M, Büchs J, Spiess AC. High-
throughput screening for ionic liquids dissolving (ligno-)
cellulose. Bioresour Technol. 2009;100(9):2580-7.
5. Moretti MMdS, Bocchini-Martins DA, Nunes CdCC,
Villena MA, Perrone OM, Silva Rd, et al. Pretreatment of
sugarcane bagasse with microwaves irradiation and its
effects on the structure and on enzymatic hydrolysis. Appl
Energy. 2014;122:189-95.
8
4. Ahmad E, Pant KK. Chapter 14 - Lignin Conversion: A
Key to the Concept of Lignocellulosic Biomass-Based
9
34