Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1144-1150  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Adsorption Studies on the Removal of Hexavalent  
Chromium (Cr (VI)) from Aqueous Solution using  
Black Gram Husk  
Sunil Rajoriya*, Ahlaam Haquiqi, Bhawna Chauhan, Girish Tyagi*, Avdesh Singh Pundir*,  
Ajay Kumar Jain, Divya Agarwal  
Chemical Engineering Department, Meerut Institute of Engineering and Technology Meerut-250005  
Received: 17/06/2020  
Accepted: 09/07/2020  
Published: 20/09/2020  
Abstract  
In the current work, black gram husk (BGH) as an effective adsorbent was used to remove the hexavalent chromium (Cr (VI)) from  
aqueous solution in the batch mode. The characterization of adsorbent was done by Fourier transform infrared spectroscopy (FT-IR) to  
identify the functional groups present on the surface of BGH. The study was done with synthetic wastewater having a Cr (VI)  
concentration of 100 mg/L. Batch experiments were conducted to study the effects of various process parameters such as solution pH (1  
7), adsorbent dosage (0.5  1.5 g/100 mL), initial Cr (VI) concentration (100  200 mg/L), and contact time (0  30 min) on the  
efficiency of the adsorption process. The maximum % removal of Cr (VI) was 65.23% at the optimized set of process parameters i.e.  
solution pH of 3, adsorbent dosage of 1 g/100 mL, contact time of 15 min. Freundlich and Langmuir adsorption isotherms were applied  
2
to investigate adsorption data, The observed experimental data fitted well to Langmuir isotherm (R = 0. 9804 and qmax = 9.19 mg/g).  
The reusability study showed that BGH material is recyclable up to only one cycle with 45.19% Cr (VI) removal efficiency. The obtained  
experimental results revealed that BGH as an efficient adsorbent may be used for the Cr (VI) removal from aqueous solutions.  
Keywords: Black gram husk (BGH); Cr (VI); Adsorption; Reusability; Isotherms  
Introduction1  
cost, incomplete metal removal, large quantity of toxic sludge,  
1
high energy requirement (16). However, Adsorption process  
has been found to be suitable process to remove toxic metals  
from wastewater using low cost adsorbents due to its high  
efficiency, simple to operate, low cost, reusability of adsorbent  
In recent years, the polluted water containing heavy metals  
has led to serious issues due to the random discharge of heavy  
metals in to the water bodies (1). Among the heavy metals,  
chromium has the harmful effects on the aquatic environment  
(
17). In the recent years, many authors have utilized the various  
(
2). Chromium occurs in two stable oxidation states i.e.  
trivalent chromium (Cr(III)) and hexavalent chromium  
Cr(VI)) in aqueous solution. Cr (VI) compounds are 500 times  
adsorbents towards the removal of chromium from wastewater  
such as modified groundnut hull (2), paper mill sludge (3), tea  
waste (5), neem leaves (18), husk of Bengal gram (19),  
modified corn stalks (20), fertilizer industry waste material  
(
more toxic as compared to Cr(III) because of its high water  
solubility, carcinogenic, mutagenic properties (3). According  
to the World Health Organization (WHO), the maximum  
acceptable limit of hexavalent chromium concentration is 0.05  
mg/L in wastewater (4). United States Environmental  
Protection Agency (US EPA) has recommended the acceptable  
level of Cr(VI) is 0.05 mg/L for potable water and is 0.1 mg/L  
for inland surface waters (5). If hexavalent chromium is present  
in water beyond the acceptable limit which causes skin  
irritation resulting in ulcer formation, liver damage and  
pulmonary congestion (6). Hence, it is necessary for industries  
to decrease the Cr(VI) concentration from their wastewaters to  
acceptable limit before discharging it into the aquatic  
environment. There have been various processes implemented  
to remove the chromium from industrial wastewater including  
ion exchange (7,8), electro-dialysis (9), chemical coagulation  
(
21), distillery sludge (22), coconut husk and palm pressed  
fibers (23).  
To the best of our knowledge, none study has been reported  
in literature on the utilization of the husk of black gram for the  
removal of chromium from industrial wastewater. Therefore, in  
the present work, the possible use of the black gram husk for  
the removal of chromium (VI) has been investigated for the  
efficient removal of chromium (VI). The characterization of the  
BGH adsorbent was done by Fourier transform infrared  
spectroscopy (FTIR) analysis. Proximate analysis of the BGH  
was also carried out. The influence of the different process  
parameters like solution pH, adsorbent dosage, initial  
chromium (VI) concentration and contact time was studied.  
Reusability of the prepared adsorbent was also investigated in  
order to check the efficiency of BGH. Besides, the adsorption  
isotherms were also illustrated in the current work.  
(
10), nanoparticles (11), membrane filtration (12),  
electrochemical technologies (13), and adsorption (14, 15).  
These processes have many disadvantages such as high capital  
*
Corresponding authors: (a) Sunil Rajoriya, Chemical Engineering Department, Meerut Institute of Engineering and Technology  
Meerut-250005, E-mail: sunilrajoriya@gmail.com. (b) Girish Tyagi, Chemical Engineering Department, Meerut Institute of Engineering  
and Technology Meerut-250005, E-mail: girish.tyagi@miet.ac.in. (c) Avdesh Singh Pundir, Chemical Engineering Department, Meerut  
Institute of Engineering and Technology Meerut-250005, E-mail: 2013rch9513@mnit.ac.in.  
1
144  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1144-1150  
major process parameters such as solution pH, adsorbent  
dosage and initial Cr(VI) concentration on the removal  
efficiency of Cr (VI). The mixture was stirred at 150 rpm for a  
fixed period of time. The adsorbent laden Cr (VI) was separated  
by Whatman filter paper and the clear solution was analyzed  
for Cr (VI) concentration. Experimental set-up with range of  
process parameters is shown in Fig.2. To optimize the pH  
value, the effect of solution pH on the removal of Cr (VI) was  
investigated over a pH range of 1.07.0. The effect of adsorbent  
dosages from 0.5 to 1.5 g/100mL was carried out. Effect of  
initial Cr (VI) concentration was studied by varying the  
concentration of Cr (VI) from 100 to 200 mg/L. Adsorption  
isotherm was studied with different initial concentrations of  
Cr(VI) from 100 to 200 mg/L at the constant adsorbent dosage  
of 1g/100 mL, temperature of 25°C and pH of 3. The observed  
results were analyzed by two isotherm models such as  
Freundlich and Langmuir.  
2
Materials and methods  
2
.1 Materials  
2 2 7  
Potassium dichromate (K Cr O ) was purchased from  
Central Drug House (P) Ltd. India. The stock solution  
comprising 1,000 ppm of Cr(VI) was prepared by dissolving  
1
.4134 g of K  
concentrations were prepared by appropriately diluting of the  
stock solution. 0.1 M NaOH and 0.1 M H SO were used to  
2 2 7  
Cr O in 500 ml of distilled water. All desired  
2
4
adjust the required pH of solution before starting the  
experiments. Distilled water was used throughout all the  
experiments.  
2
.2 Preparation of adsorbent  
Black gram (Vigna Mungo) Husk (BGH) was collected  
from flour mill located at Gajraula, UP, India. Initially, the  
BGH was washed thoroughly in running tap water followed by  
distilled water to remove color and dirt particles. It was then  
dried in oven at 110°C for 2 h. After drying, BGH was crushed  
in mixer grinder to make fine powder and sieved through a 25  
mesh sieve tray. Synthesized adsorbent was kept in air-tight  
polythene bag for future use. Flow diagram for the presentation  
of the absorbent is shown in Figure 1. The proximate analysis  
of the adsorbent was carried out and the obtained results are  
shown in Table 1.  
2
.5 Analytical procedure  
The remaining concentration of Cr(VI) in the solution after  
experiments was determined by UVvisible spectrophotometer  
JASCO, V-530) at 540 nm. Solution pH was determined by  
(
digital pH meter. Reproducibility of experimental results was  
examined by performing the experiments at least two times to  
obtain an average value and the experimental errors were found  
to be within ± 4%. The percentage removal efficiency of Cr  
2
.3 Characterization of BGH  
(VI) was determined by following Eq. (1).  
The BGH adsorbent was characterized using FTIR spectra.  
To check the presence of functional groups in BGH, Fourier-  
transform infrared spectroscopy (FTIR) of the adsorbent was  
done by infrared spectrophotometer (model: 8400S, Shimadzu)  
0  퐶  
%
Removal of Cr (VI) =  
× 1ꢀꢀ  
(1)  
0  
1  
1  
ranging from 400 cm to 4000 cm .  
0
where, C is initial Cr (VI) concentration and Ce are the final  
2
.4 Batch adsorption studies  
The adsorption of Cr (VI) from aqueous solution was  
concentration of Cr (VI) in the sample (when equilibrium was  
achieved).  
carried out in a batch system. The experiments were conducted  
with 100 mL solutions of 100 ppm Cr (VI) concentration in 250  
mL glass flasks at the temperature of 25°C. The batch  
adsorption experiments were studied to check the effect of  
Washed with  
tap water  
Then, washed with  
distilled water  
Black gram husk (BGH)  
Crushed and  
powdered  
Dried for 2 h at  
110°C in an oven  
Sieved (mesh 25)  
Prepared adsorbent  
Figure 1: Flow diagram for the preparation of adsorbent  
1
145  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1144-1150  
Adsorption capacity (q  
2).  
e
) was determined using following Eq.  
Fig. 3) was measured within the range of 500-4000 cm-1 wave  
number. FTIR study indicated that functional groups like C=O,  
CO, OH and NH were present onto the BGH surface. The  
(
-
1
0  퐶푒  
observed peak at 3745.50 and 3407.98 cm is assigned due to  
the presence of O-H groups on the surface of BGH. A  
푒  
=
× 푉  
(2)  
-
1
characteristic peak at around 3339.51 cm may be due to the  
where, V is volume of the solution in L and M is the mass of  
the adsorbent used in g.  
NH symmetric stretching vibration indicating the presence of  
amino (-NH ) groups (16). The presence of peaks observed at  
2
-1 -1 -1  
2
899.78 cm , 2888.20 cm and 2833.24 cm may be due to  
Table 1: Proximate analysis of adsorbent (BGH)  
the stretching vibration of the C-H group (5). The band  
2
-1  
363.60 cm is the result of stretching vibrations of C=O or N-  
Parameters  
Value (%)  
6.80  
H groups possibly due to amines and ketones (24). The peak at  
Moisture Content  
Volatile matter  
Ash content  
-1  
around 1632.63 cm may be due to the stretching vibration of  
-
1
70.80  
14.10  
8.30  
amide groups. The absorption band near 1520.77 cm may be  
assigned to the C-H deformation vibration indicating the  
presence of alkanes group. The characteristics peak at 1397.33  
Fixed Carbon  
-1  
cm was due to the stretching vibration of CO. The peak  
-
1
-1  
observed at 1326.93 cm and 1088.74 cm may be assigned to  
the C-OH stretching vibration of carboxylic acid and alcohols  
(
3
3
Results and Discussions  
.1 FTIR analysis  
In the present study, the FTIR spectrum was obtained to  
identify the functional groups present on the surface of  
prepared adsorbent. FTIR spectrum of the adsorbent (Shown in  
-1  
5, 24). The absorption band between 600 and 900 cm  
comprises several bands associated to the aromatic and out of  
plane CH bending (5, 25).  
Thermometer  
Black Gram  
Husk (BGH)  
Wastewater  
Range of Process parameters  
2
5 C  
Solution pH  
1 to 7)  
Adsorbent dosage  
(0.5 to 1.5 g/100 mL)  
Reaction vessel  
(
Initial Cr (VI)  
concentration  
100 to 200 mg/L)  
Contact time  
0 to 30 min)  
Magnetic Bid  
(
(
1
50  
rpm  
Power supply  
Magnetic Stirrer  
Optimum conditions:  
Solution pH = 3;  
Adsorbent dosage = 1 g/100 mL;  
Initial Cr (VI) concentration =100 mg/L  
Contact time = 15 min  
Maximum Cr (VI) removal  
efficiency = 65.23%  
Figure 2: Experimental set-up with range of process parameters  
1
146  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1144-1150  
Figure 3: FTIR spectrum of BGH  
3
.2 Optimization of Solution pH  
The solution pH is an important parameter in deciding the  
for the adsorption of Cr (VI) is directly proportional to surface  
area of the adsorbent (5). It was further observed that the  
increasing amount of BGH had no noticeable effect on the  
removal efficiency of Cr(VI).  
removal efficiency of Cr (VI). To find the optimum pH,  
experiments were conducted over a various range of pH values  
from 1.0 to 7.0. Fig. 4 depicts the removal efficiency of Cr (VI)  
versus solution pH. Figure 4 shows th at the % removal of  
Cr(VI) was increased from 42.14 to 65.23% for an increase in  
solution pH from 1 to 3. Then, the percentage removal was  
reduced to 19.32% with more increase in the pH up to 7.0. The  
obtained results showed that the maximum 65.23% of Cr(VI)  
by the prepared adsorbent (BGH) was removed at the optimized  
pH of 3.0. Hence, the optimum pH was selected as 3.0 to  
achieve the suitable removal efficiency of Cr(VI) for all the  
remaining experiments. Hexavalent chromium (Cr(VI)) may  
occur in the aqueous medium in various anionic forms i.e.  
70  
6
5
4
3
0
0
0
0
20  
1
0
0
4
7−  
O
2
chromate (CrO  
chromate (HCrO ) as per the following Eq. (3):  
2
), dichromate (Cr  
2
), or hydrogen  
4  
1
3
5
7
ꢃꢂ  
2
퐻 푂  
+  2퐻퐶푟푂 4 ↔ 2퐻 퐶푟푂 ↔ 2퐻 푂 ꢁ 퐶푟푂 ↔ 2퐶푟푂 ꢁ  
Solution pH  
Figure 4: Effect of solution pH on the removal efficiency of Cr (VI)  
Experimental conditions: Adsorbent dosage = 1 g/100 mL; T = 25°C;  
4
7
3
(3)  
(
Time = 15 min; Initial Cr (VI) concentration = 100 mg/L, Solution  
volume = 100 mL)  
It is well reported in literature that the dominant form of  
4  
Cr(VI) at lower pH is HCrO (5). When the solution pH  
4
increases, the concentration of HCrO is shifted to other forms  
7−  
2 2  
such as CrO2ꢀ4−ꢀandꢀCr O . It can be established that the  
4  
The decrease in the adsorption efficiency is mainly because  
of remained unsaturated sites during the adsorption process.  
Maximum % removal of Cr (VI) was achieved with 1g/100 mL  
of adsorbent dosage at solution pH of 3, temperature of 25°C,  
time of 15 min and initial Cr (VI) concentration of 100 mg/L.  
Hence, 1 g/100 mL of the BGH was chosen for all the  
remaining experiments.  
active form of Cr(VI) is HCrO that can be adsorbed by the  
BGH in this work.  
3
.3 Effect of Adsorbent dosage  
The effect of adsorbent dosage was investigated by varying  
the amount of adsorbent from 0.5 to 1 g/100 mL. The obtained  
results of adsorbent dosage on the % removal of Cr (VI) are  
depicted in the Fig. 5. It can be seen from figure 5, the  
adsorption of Cr (VI) increases with an increase in adsorbent  
dosage due to an increase in the number of adsorption sites and  
enhance surface area (22). Number of adsorption sites available  
3
.4 Effect of initial Cr(VI) concentration  
The effect of initial Cr(VI) concentration on the removal  
efficiency was studied under the optimum conditions i.e.  
solution pH of 3, time of 15 min, temperature of 25°C and  
1
147  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1144-1150  
adsorbent dosage of 1 g/100 mL. The initial Cr (VI)  
concentration was varied from 100 to 200 mg/L. The observed  
results are shown in Fig.6.  
equilibrium adsorption data were fitted to the Freundlich and  
Langmuir as following.  
3
.6.1 Freundlich isotherm  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
The linear form of Freundlich isotherm can be represented  
by Eq. (4):  
1
푙표푔푞 = 푙표푔푘 ꢁ 푙표푔퐶푒  
(ꢄ)  
where C  
e
is equilibrium concentration (mg/L), K  
F
is the  
Freundlich isotherm constant (L/mg) and n is the Freundlich  
adsorption intensity. Freundlich isotherm model has been  
plotted between log q against log C (shown in Fig. 8 (a)).  
e e  
0
0.5  
1
1.5  
2
Adsorbent dosage, g/100 mL  
7
6
0
0
Figure 5: Effect of adsorbent dosage on the removal efficiency of Cr  
VI) (Experimental conditions: Solution pH = 3; T = 25°C; Time = 15  
(
min; Initial Cr (VI) concentration = 100 mg/L, Solution volume = 100  
mL)  
50  
4
0
It was observed that percentage removal of Cr(VI) was  
decreased from 65.23% to 41.25% when the initial Cr(VI)  
concentration increased from 100 to 200 mg/L. This may be  
attributed to enhance in the number of chromium ions for a  
fixed dosage of the adsorbent, the total available adsorption  
sites were restricted and therefore decreasing trend in %  
removal of Cr (VI) (2, 5). The observed results are consistent  
with the previous studies reported showing that the Cr (VI)  
removal efficiency using adsorption is inversely proportional  
to the initial concentration of Cr (VI) (2, 20-21).  
30  
2
0
10  
0
0
5
10  
15  
20  
25  
30  
35  
Time, min  
Figure 7: Effect of contact time on the removal efficiency of Cr (VI)  
Experimental conditions: Adsorbent dosage = 1 g/100 mL; Solution  
pH = 3; T = 25°C; Initial Cr (VI) concentration = 100 mg/L; Solution  
volume = 100 mL)  
(
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
3
.6.2 Langmuir isotherm  
The linear form of Langmuir isotherm model is given by  
the following Eq. (5):  
푒  
푒  
1
=
  푞  
퐿 푚푎푥  
(5)  
푒  
where, q  
equilibrium, qmax is the maximum monolayer adsorption  
capacity (mg/g) and K is the Langmuir isotherm constant  
L/mg) that is associated to adsorption energy. Langmuir plot  
e
is the amount of the adsorbate adsorbed (mg/g) at  
L
1
00  
150  
200  
(
Initial Cr (VI) concentration, mg/L  
of C  
parameters K  
e
/q  
e
v/s C  
e
is depicted in Fig. 8(b). The values of Langmuir  
Figure 6: Effect of initial Cr (VI) concentration on the removal  
efficiency of Cr (VI) (Experimental conditions: Adsorbent dosage = 1  
g/100 mL; Solution pH = 3; T = 25°C; Time = 15 min; Solution volume  
L
andqmax were determined using the intercept and  
2
slope. The isotherm parameters and correlation coefficient (R )  
are presented in Table 2. The value of Freundlich constant (n)  
was greater than 1 indicating a strong interaction between BGH  
and Cr (VI). Amongst the correlation coefficient obtained from  
different two isotherms, Langmuir isotherm model provided  
the best fitted data for the adsorption of Cr (VI) giving the  
=
100 mL)  
3
.5 Effect of contact time  
The experiments were conducted at the optimized  
conditions such as adsorbent dosage of 1 g/100 mL, pH of 3,  
initial Cr (VI) concentration of 100 mg/L and temperature of  
2
higher value of regression coefficient (R = 0.9804).  
2
5°C. It was observed that percentage removal of Cr (VI) was  
3
.7 Reusability of the prepared adsorbent  
Reusability of the any prepared new material is the most  
improved from 29.54 to 65.23% in initial 15 min after that no  
removal in chromium was seen. This is mainly because of the  
fact that all the available adsorbing sites on the adsorbent  
surface are engaged and no further adsorption is possible (5).  
Therefore, time was selected as 15 min for all the experiments  
in the present study.  
notable advantage for the treatment of wastewater. Hence, a  
reusability test of the adsorbent was conducted at the optimized  
conditions (Initial Cr (VI) concentration = 100 mg/L; pH = 3.0;  
Temperature = 25°C; Contact Time = 15 min, adsorbent dosage  
=
1 g/100 mL) where the maximum removal efficacy was  
achieved. In the present work, reusability of the used material  
was examined by regenerating the adsorbent laden with Cr (VI)  
using the method reported in literature (26). The regeneration  
study for Cr (VI) adsorption was carried out using 1 M HCl and  
found that the removal efficiency of Cr(VI) was reduced from  
3
.6 Adsorption Isotherms  
In order to optimize the design of an adsorption method, it  
is necessary to create the most suitable correlation for the  
equilibrium curve. Several isotherms are available for  
analyzing experimental data but in this study the obtained  
1
148  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1144-1150  
6
5.23% to 45.19% after one cycle. Almost 31% reduction in  
may be utilized efficiently in the removal of Cr (VI) from  
aqueous solutions for the purposes of environmental cleaning.  
the efficiency of Cr (VI) removal was obtained after one cycle.  
1
Acknowledgement  
0
0
0
0
0
.95  
.9  
.85  
.8  
.75  
.7  
.65  
.6  
.55  
.5  
(a)  
Authors are thankful to Chemical Engineering Department,  
MIET, Meerut for providing the necessary facilities to conduct  
the research work. The authors also acknowledge the  
Department of Pharmacy, MIET Meerut for providing the  
characterization facility of FTIR.  
0
R² = 0.6168  
0
0
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
0
(avoidance of guest authorship), dual submission, manipulation  
0
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
16  
14  
12  
10  
8
6
4
2
0
(b)  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
R² = 0.9804  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
References  
1. Rozada.ꢀF,ꢀOtero.ꢀM,ꢀMora´n.ꢀA,ꢀGarcıaꢀA.I.ꢀAdsorptionꢀofꢀheavyꢀ  
metals onto sewage sludge-derived materials, Bioresource  
Technology 2008; 99: 63326338.  
0
50  
100  
150  
2
3
4
.
.
.
Owalude SO, Tella AC. Removal of hexavalent chromium from  
aqueous solutions by adsorption on modified groundnut hull, beni-  
suef university journal of basic and applied sciences. 2016; 5: 377–  
Figure 8: (a) Freundlich isotherm (b) Langmuir isotherm for the Cr (VI)  
adsorption on BGH (Experimental conditions: Adsorbent dosage = 1  
g/100 mL; Solution pH = 3; T = 25°C; Time = 15 min; Solution volume  
3
88.  
=
100 mL)  
Gorzin F, Abadi MMBR. Adsorption of Cr(VI) from aqueous  
solution by adsorbent prepared from paper mill sludge: Kinetics  
and thermodynamics studies, Adsorption Science & Technology.  
2018; 36: 149169.  
WHO, 2nd ed. Guidelines for Drinking Water Quality vol. 1,  
World Health Organization, 1993, p. 2016.  
Table 2: Freundlich and Langmuir isotherm parameters for the  
adsorption of Cr (VI) onto BGH  
Isotherm model  
Isotherm parameter  
(mg/g)  
R
n
Values  
3.22  
0.61  
4.79  
9.19  
0.98  
0.09  
K
F
2
5. Nigam M, Rajoriya S, Singh SR, Kumar P. Adsorption of Cr (VI)  
ion from tannery wastewater on tea waste: Kinetics, equilibrium  
and thermodynamics studies, Journal of Environmental Chemical  
Engineering. 2019; 7: 103188.  
6. Raji C, Anirudhan TS. Batch Cr (VI) removal by polyacrylamide-  
grafted sawdust:kinetics and thermodynamics, Water Research.  
Freundlich  
q
R
K
max (mg/g)  
2
Langmuir  
L
(L/mg)  
1
998; 32: 37723780.  
7
8
.
.
Tiravanti G, Petruzzelli D, Passino R. Pretreatment of tannery  
wastewaters by an ion exchange process for Cr(III) removal and  
recovery, Water Science Technology. 1997; 36: 197206.  
Shi T, Wanga Z, Liub Y, Jiaa S, Changminga D. Removal of  
hexavalent chromium from aqueous solutions by D301, D314 and  
D354 anion-exchange resins, Journal of Hazardous Material. 2009;  
4
Conclusion  
The present study has shown the efficiency of BGH as an  
effective adsorbent for the removal of Cr(VI) from aqueous  
solution. The effect of solution pH, adsorbent dosage, initial Cr  
(VI) concentration and contact time were examined in order to  
1
61: 900906.  
optimize the process conditions for the maximum removal of  
Cr(VI). Maximum 65.23% of Cr (VI) was removed from  
wastewater at the optimum conditions i.e. pH of 3, adsorbent  
dosage of 1 g/100 mL, initial Cr (VI) concentration of 100  
mg/L and contact time of 15 min. It was observed that  
adsorption using BGH was very much dependent on the  
solution pH. Langmuir isotherm was found to be well fitted  
9
1
.
Mohammadi T, Moheb A, Sadrzadeh M, Razmi A. Modeling of  
metal ion removal from wastewater by electrodialysis, Separation  
and Purification Technology. 2005;41:7382.  
0. Song Z, Williams CJ, Edyvean RGJ. Treatment of tannery  
wastewater by chemical coagulation, Desalination. 2004; 164:  
2
49261.  
11. Assadi A, Dehghani MH, Rastkari N, Nasseri S, Mahvi AH.  
Photocatalytic reduction of hexavalent chromium in aqueous  
solution with zinc oxide nanoparticles and hydrogen peroxide,  
Environment Protection Engineering. 2012; 38: 516.  
2
with a high correlation coefficient (R = 0. 9804) as compared  
to Freundlich isotherm with a correlation coefficient (R  
2
=
0
.6168). Moreover, the monolayer maximum adsorption  
1
2. Kozlowski CA, Walkowiak W. Removal of chromium (VI) from  
aqueous solution by polymer inclusion membranes, Water  
Research. 2002; 36: 48704876.  
3. Dermentzis K, Christoforidis A, Valsamidou E, Lazaridou A,  
Kokkinos N. Removal of hexavalent chromium from  
capacity (qmax) was found to be 9.19 mg/g. The reusability test  
of the BGH revealed that the % removal of Cr (VI) was reduced  
from 65.23% to 45.19% after one cycle. The obtained results  
from the present work, the BGH is an effective adsorbent and  
1
1
149  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1144-1150  
electroplating wastewater by electrocoagulation with iron  
electrodes, Global NEST Journal. 2011; 13: 412418.  
1
1
1
4. Ali I, Asim M, Khan TA. Low cost adsorbents for removal of  
organic pollutants from wastewater, Journal of Environmental  
Management. 2012; 113: 170183.  
5. Tahir SS, Naseem R. Removal of Cr (III) from tannery wastewater  
by adsorption onto bentonite clay, Separation and Purification  
Technology. 2007; 53: 312321.  
6. Hossain KFB, Sikder MdT, Rahman MdM, Uddin MdK, Kurasaki  
M. Investigation of Chromium Removal Efficacy from Tannery  
Effluent by Synthesized Chitosan from Crab Shell, Arabian  
Journal for Science and Engineering. 2017; 42: 1569-1577.  
7. Rajoriya S, Haquiqi A, Chauhan B, Tyagi G, Pundir AS, Jain AK.  
Influence of Adsorption Process Parameters on the Removal of  
Hexavalent Chromium (Cr(VI)) from Wastewater: A Review,  
Journal of Environmental Treatment Techniques. 2020; 8: 597-  
1
6
03.  
1
1
8. Babu BV, Gupta S. Adsorption of Cr(VI) using activated neem  
leaves: kinetic studies, Adsorption. 2008; 14: 8592.  
9. Ahalya N,  
Kanamadi  
RD,  
Ramachandra  
TV.  
Biosorption of chromium (VI) from aqueous solutions  
by the husk of Bengal gram (Cicer arientinum), Electronic  
Journal of Biotechnology. 2005; 8: 258-264.  
2
2
0. Chen S, Yue Q, Gao B, Li Q, Xu X. Removal of Cr(VI) from aqu  
eous solution using modified corn stalks: Characteristic,  
equilibrium,  
kinetic  
and  
thermodynamic  
study, Chemical Engineering Journal. 2011; 168: 909-917.  
1. Gupta VK, Rastogi A, Nayak A. Adsorption studies on the  
removal of hexavalent chromium from aqueous solution using a  
low cost fertilizer industry waste material, Journal of Colloid and  
Interface Science. 2010; 342: 135-141.  
2
2
2
2
2
2. Selvaraj K, Manonmani S, Pattabhi S. Removal of hexavalent  
chromium using distillery sludge, Bioresource Technology. 2003;  
8
9: 207-211.  
3. Tan WT, Ooi ST, Lee CK. Removal of chromium(VI) from  
solution by coconut husk and palm pressed fibres, Environmental  
Technology. 1992; 14: 277-282.  
4. Gode F, Atalay ED, Pehlivan E. Removal of Cr(VI) from aqueous  
solutions using modified red pine sawdust, Journal of Hazardous  
Materials. 2008; 152: 1201-1207.  
5. Uzun BB, Apaydin-Varol E, Ates F, Özbay N, Pütün AE.  
Synthetic fuel production from tea waste: Characterization of bio-  
oil and bio-char, Fuel. 2010; 89: 176184.  
6. Dehghani MH, Sanaei D, Ali I, Bhatnagar A. Removal of  
chromium(VI) from aqueous solution using treated waste  
newspaper as a low-cost adsorbent: Kinetic modeling and isotherm  
studies, Journal of Molecular Liquids. 2016; 215: 671679.  
1
150