Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 861-869  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Application of Box-Behnken Design (BBD) to  
Optimizing COD Removal from Fresh Leachate  
using Combination of Ultrasound and Ultraviolet  
1
2*  
3
Neamatollah Jaafarzadeh , Mohammad Hasan Zarghi , Mobina Salehin , Aliakbar  
4
2
Roudbari , Amir Zahedi  
1Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran  
2
Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran  
3
Department of Environmental Health Engineering, Semnan University of Medical Sciences, Semnan, Iran  
4
Center for Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran  
Received: 16/04/2020 Accepted: 03/05/2020 Published: 20/09/2020  
Abstract  
Municipal Solid Waste (MSW) landfill leachate contains highly concentrated organic substances which must be treated before  
discharged into aqueous environments. This study was done to optimize the removal of COD from fresh landfill leachate using  
combination of ultrasound and ultraviolet. The sample of fresh landfill leachate was obtained from a municipal landfill, and its COD  
was measured. Box-Behnken design was applied to analyze and optimize the removal of COD by different variables, including pH,  
contact time, ultrasound frequency and UV intensity. Based on this, 29 samples and three replications were tested. The analysis of  
variance indicated quadratic model was significant for removal of COD. According to the model, the removal efficiency of COD was  
obtained 92.1 % at optimal conditions (pH at 9.2, contact time of 54min, ultrasound frequency of 54 kHz and UV intensity of 45w). The  
removal efficiency of COD was 91.8 % in these conditions which agrees well with the predicted response value. The BOD5/COD ratio  
increased to 0.38 after treatment. Also, the values of average oxidation state (AOS) and carbon oxidation state (COS) increased to +1.9  
and 3.49, respectively. This means that the treated leachate was much easier to biodegrade than the initial leachate.  
Keywords: COD, Leachate, Ultrasound, Ultraviolet, BBD  
1
Introduction1  
Lifestyle changes and commercial and industrial growth  
soil and mutagenic effect of human being as well as affecting  
the ecology balance, etc [61].  
The removal of organic matter based on COD (chemical  
oxygen demand) is a common precondition before leachate  
discharge into natural water bodies [8]. The concentration of  
COD in young leachate is 36 times higher than in domestic raw  
sewage. The pollutant potential of leachate is mainly related to  
its organic load [62]. Most recently, a variety of physical,  
biological and chemical processes have been widely used to  
remove COD from landfill leachate [9, 10]. Advanced  
oxidation processes (AOPs) as an innovative technique are  
extremely promising, owing to their unique potential for the  
generation of hydroxyl radicals (OH) that are highly reactive in  
chemical solutions [9, 11, 12]. The produced hydroxyl radicals  
in this process degrade the organic matter present in the  
leachate of the landfill site [11]. AOPs include numerous  
combinations of ultraviolet (UV) radiation, ultrasound (US),  
photocatalysts, catalysts, fenton and strong oxidants [9, 13, 14].  
Ultrasonic can degrade pollutants by applying thermal  
dissociation (pyrolysis) and shear forces in addition to  
producing hydroxyl radicals [15, 16]. The strong cavitations  
and hot spots produced by ultrasound in an aqueous solution,  
that causing shock waves (physical effect) and reactive free  
radicals (chemical effect) by the violent collapse of the  
capitation bubbles [17]. These effects accelerate the  
decomposition of toxic chemicals [18]. Another method used  
in many countries over the past years have led to a rapid  
increase in the production of solid industrial and municipal  
waste [1, 2]. The method of hygienic landfill for the final  
disposal of solid waste material continues to be widely avowed  
and used due to its economic benefits [3, 4]. The production of  
leachate remains an unavoidable result of the waste disposal  
[2]. The aqueous effluent produced as a result of the infiltration  
of rainwater into the waste, together with biochemical  
processes in the waste cells and the intrinsic water content of  
the waste, constitute the leachate [5]. Leachate includes many  
amounts of organic matter, which its humic constituents are  
ammonia nitrogen, chlorinated organic, inorganic salts and  
heavy metals [6, 7]. When leachate leaks out of them due to the  
decomposition of waste materials, it carries all the biological  
and chemical substances in the waste materials. The leachate of  
the landfill is one of the most polluted types of sewage, which  
has caused many health and environmental concerns due to the  
extensive use of urban landfills for the final disposal of waste  
[59]. Due to percolation of leachate through the soil and  
migration of leachate by surface runoff contaminates the soil,  
groundwater and surface water bodies in and around the landfill  
site [60]. Discharge of landfill leachate to the environment  
causes detrimental effect to the aquatic life, infertility of the  
Corresponding author: Mohammad Hasan Zarghi, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences,  
Ahvaz, Iran. E-mail: mohandesmhz@gmail.com, zarghi.mh@ajums.ac.ir, phone: +989101107810.  
8
61  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 861-869  
to treat fluids in recent years is ultraviolet radiation (UV). This  
ray is part of an electromagnetic wave with an amplitude range  
of 100 to 400 nm [19]. The common benefits of both methods  
include: 1. Non-production of mutagenic/carcinogenic side  
products 2. No odor and taste problem 3. No need to use and  
store dangerous chemicals [20, 21]. Combined methods appear  
to be the most useful solution for the treatment of waters  
containing high loads of pollutants. According to the  
mentioned points, and while no research has yet been done to  
remove COD by ultrasound and ultraviolet, this study was done  
to optimize the removal of COD from fresh landfill leachate  
using combination of ultrasound and ultraviolet.  
5220-D, 5220-B, 4500-NH  
pH was measured by Bench Top pH Meters (Cole-Parmer Co.  
Ltd.) [25].  
3
and 5310-B, respectively [24]. The  
First, the raw leachate sample was filtered by filter paper  
(0.45 μm) to remove any suspended solid impurities [23]. The  
leachate sample of 1000 ml was placed in a cylindrical glass  
vessel [23]. Ultrasound and ultraviolet were used  
simultaneously to remove COD. For ultrasonic source used an  
ultrasound generator (Model UGMA-5000) with 30, 45, and 60  
kHz transducers having 120 w input power and a titanium  
probe with 2 cm diameter [17]. UVC lamps (15 W-Philips)  
were placed around the glass vessel at a distance of 3 cm to  
provide ultraviolet radiation. The influence of UV light power  
was tested by application of one, two, and three lamps  
corresponding to 15, 30, and 45 W, respectively. The glass  
vessel and the light sources were placed inward a black box to  
prevent ultraviolet emission [22].  
2
Materials and Methods  
All of the main chemical reagent for COD analysis were  
prepared from Merck Company (Germany), which included  
sulfuric acid (H SO -99 %), silver sulfate (Ag SO -99.9 %),  
mercury sulfate (HgSO -99 %), potassium dichromate  
Cr -99.9 %), sodium hydroxide (NaOH99 %),  
ammonium chloride (NH Cl-99.8 %), and Potassium hydrogen  
phthalate (C KO 99.5 %) [22]. Sample of fresh landfill  
2
4
2
4
Box-Behnken design based on Response Surface Method  
4
(RSM) was applied to analyze and optimize the removal of  
(
K
2
2 7  
O
COD by different variables, including pH, contact time,  
ultrasound frequency and UV intensity on the removal of COD  
from fresh landfill leachate [26, 27, 28].  
4
8
H
5
4
leachate (<10 days old) was obtained Based on EPA guidelines  
for sampling leachate from a municipal landfill (>10 years old)  
located in Shahroud city (Semnan province, Iran) (Figure 1),  
brought to the laboratory in a cold box within 2 h, stored at 4°C,  
and tested within a maximum 6 days [23]. The UTM  
coordinates (WGS84) of Shahroud are: Zone 40S E: 322121.87  
The optimization by response surface reveals the effect of  
operating variables and also interactive effects of independent  
variables on the response [27, 29]. The coded levels of the  
variables were shown in Table 1. Each individual variable was  
varied over three levels between -1 and +1 at the determined  
ranges [26]. The optimizing experiments were carried out  
following a three-level-four-variable Box-Behnken design  
based on RSM [26].  
5 3  
N: 4030834.19. Then, its features such as COD, BOD , NH -  
N, TOC and pH were analyzed. COD, BOD, NH -N and TOC  
measurements were determined following standard methods  
3
Figure 2: Map of Shahroud municipal landfill  
8
62  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 861-869  
The number of experiments was obtained 29 steps using  
equation (1):  
3.1 Establishment of the response surface model  
The application of response surface offers an empirical  
relationship between the independent variables and the  
response function [37]. In this research, the response value  
푁 = 2퐾(퐾 − 1) + 퐶0  
(1)  
(removal efficiency of COD) was fitted by a quadratic model  
Where C  
0
is the number of repetitions at the central point  
[26], which was shown in equation 3 (in terms of coded  
factors):  
(C =5) and K is the number of variables studied (K=4) [30, 31].  
0
The data obtained from the BBD experiments were analyzed by  
Design Expert 9.0.6 software, and a statistical model with  
response surface curves was given [26]. The model could be  
described by a second-order regression equation (2).  
푌 = 76.98 + 4.ꢁ2푋 + 1ꢁ.98푋 + 14.33푋 + 3.66푋 +  
ꢁ.ꢁꢁ푋 푋 − ꢁ.28푋 푋 − ꢁ.5푋 푋 + ꢁ.48푋 푋 +  
ꢀ ꢃ  
ꢁ.ꢁ25푋 푋 + ꢁ.1푋 푋 + 1.23푋 − 7.9푋 − 8.53푋 −  
1
.69푋ꢄ  
푌 = 푏 + ∑ 푏 푥 + ∑ 푏 푥 + ∑ 푏 푥 푥  
(2)  
0
푖푖  
푖푗  
where Y is COD removal efficiency (%), X  
contact time (min), X  
is UV intensity (w). Among the coefficients of the variables in  
this equation, the coefficient of X has the highest value,  
which states ultrasound frequency has the greatest effect on  
the model equation.  
1
is pH, X  
2
is  
Where Y is the response value (COD removal efficiency),  
and X are the i, jth variable which are called the independent  
variable in coded values, b is the offset term (constant), b is  
the coefficient of the linear parameter X , bij is the coefficient  
, and bii is the coefficient  
[32, 26]. Analysis of variance  
3 4  
is ultrasound frequency (kHz) and X  
X
i
j
0
i
3
i
of the interaction parameters X  
of the quadratic parameters X  
i
and X  
j
2
i
was done to evaluate the adequacy of the response surface  
model and the significance of independent variables and  
interaction parameters in the model [29, 26]. All experimental  
data are expressed in terms of arithmetic averages obtained  
from three repetitions [22]. In the end, the biodegradability  
potential of the treated leachate was estimated by the  
BOD5/COD ratio, average oxidation state (AOS) and carbon  
oxidation state (COS) indices [33, 34].  
3.2 Analysis of variance (ANOVA) for response surface  
model  
ANOVA results of the model presented in Table 3 indicate  
that it can be used to navigate the design space [38]. The model  
F-value of 1041.96 with a low probability value (P value  
<0.0001) in Table 3 implies that the model is significant for  
COD removal. Adequate precision indicates the signal to noise  
ratio and generally a ratio greater than 4 indicates the model is  
desirable [39, 40]. Therefore, in the model of COD removal,  
the ratio of 123.585 indicates there is adequate signal for the  
model obtained to navigate the design space. The satisfaction  
of the fit of the model was checked by the determination  
Table 1: RSM design for variable and levels  
Level  
Variable  
Code  
2
2
coefficient (R ). The closer the R value is to 1, the model is  
stronger and it predicts better the removal of COD. The value  
-
1
0
1
2
pH  
X
X
X
X
1
2
3
4
4
7
10  
60  
60  
45  
of the determination coefficient (R =0.9990 for COD removal)  
indicates that 99.9% (COD removal) of the variability in the  
response was explained by the model. Also, the value of the  
Contact time (min)  
20  
30  
15  
40  
45  
30  
2
adjusted determination coefficient (Radj =0.9981) was very  
Ultrasound frequency (kHz)  
UV intensity (W)  
high for COD removal, showing a high significance of the  
2
model. The adjusted determination coefficient (Radj ) corrects  
2
the determination coefficient (R ) for the sample size and the  
number of terms in the model. If there are many terms in the  
2
3
Results and discussion  
model and the sample size is not very large, the Radj value may  
2
Characteristics of the fresh landfill leachate sample were  
be noticeably smaller than the R value [39]. In this study, the  
Radj value was very close to the R value, which is similar to  
2
2
COD=4830 mg/l, BOD  
5
=715 mg/l, NH  
3
-N=530 mg/l,  
TOC=1130 mg/l and pH of 7.9 derived from the arithmetic  
mean of three repetitions. The design matrix in coded units and  
the experimental results of COD removal efficiency are  
presented in Table 2. The five steps of the experiments are at  
the central point (repeatable) to determine the amount of error  
the reports by Zhang et al. (2011). In addition, the value of  
2
predicted R is also high to support a high significance of the  
2
model [41]. The predicted R of 0.9949 is in reasonable  
2
agreement with the adjusted R of 0.9981 for COD removal.  
[
35]. According to this table, the highest COD removal  
efficiency (88%) was obtained at pH=10 (X =1), contact  
time=40 (X =0), ultrasound frequency=60 (X =1) and UV  
intensity=30 (X =0) that indicate the high ultrasound frequency  
3.3 Effect of variables on the response  
1
Figure 2 is showing the effect of the interaction variable  
at the response surface. It was observed in Fig.2 (a, b and c),  
that the removal efficiency of COD increased with increasing  
pH, but the effect of pH is relatively low. Since there are  
different types of organic compounds in leachate and the  
optimum pH for sonolysis of different organic compounds is  
quite different, the optimum pH for sonochemical  
decomposition may be different for leachate in different  
landfills [42]. Similar results were also observed by Wang et al.  
2
3
4
and contact time have a significant effect on the increase of  
COD removal efficiency. Wang et al. (2008) in their study  
indicated that all studied variables (ultrasound power, pH,  
initial concentration and contact time) have a strong effect on  
COD removal. But, ultrasound power was the most influential  
parameter [36].  
(2008).  
8
63  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 861-869  
Table 2: Design matrix in coded units and experimental responses  
X3: Ultrasound  
frequency  
X4: UV  
intensity  
COD removal efficiency  
(%)  
Run No.  
X1: pH  
X2: Contact time  
1
2
3
4
5
6
7
8
9
-1  
0
0
0
0
-1  
-1  
-1  
0
-1  
-1  
0
67.6  
49.1  
34.7  
55.8  
77  
0
-1  
0
0
1
0
0
0
0
1
1
0
86.9  
76.3  
84  
-1  
1
0
0
1
0
0
1
0
0
0
0
77.4  
85.2  
55.4  
74.5  
77.1  
59.2  
81.9  
56.8  
52.4  
60.7  
63.5  
77.3  
84.6  
76.8  
76.5  
88  
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
1
1
0
0
-1  
0
-1  
1
0
0
0
-1  
0
-1  
1
1
0
0
-1  
0
0
0
1
1
0
1
-1  
-1  
0
0
-1  
0
0
0
-1  
-1  
0
1
1
0
0
1
0
-1  
1
0
0
1
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
77.2  
62.9  
80.1  
53.4  
77.5  
0
-1  
0
1
0
-1  
0
1
0
-1  
0
0
-1  
-1  
0
1
The results in Fig.2 (a, d and e) show that contact time  
increases COD removal efficiency so far due to the increase of  
cavitation of the organic compound. According to this figure,  
although the removal efficiency of COD increases but its speed  
decreases. The results of this study are consistent about contact  
time with the results of Mahvi et al. (2012) study [23]. Figure  
at or above the cavity threshold, the bubbles form easily and  
the cavities collapse extremely, according to the sonochemistry  
theory. Increasing the ultrasonic frequency causes cavitation  
energy and the amount of cavitation bubbles to increase. It also  
reduces the cavitation threshold limit. In other words, the  
higher intensity causes the molecules to be more degraded  
because of the higher hydroxyl radical concentration and mass  
transfer [43, 44]. Similar results were also observed by Goel et  
al. (2004) [45].  
2
(b, d and f) shows the ultrasound frequency significantly  
influences on the removal efficiency of COD. Also, the  
efficiency of COD removal increases as the increasing of  
ultrasound frequency [36]. When the intensity of ultrasound is  
8
64  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 861-869  
Table 3: Analysis of variance for Response Surface Quadratic model  
Sum of  
Squares  
Mean  
Square  
F
p-value  
Prob > F  
Source  
Model  
A-x1  
B-x2  
C-x3  
D-x4  
AB  
df  
Value  
5111.31  
14  
365.09  
1041.96  
< 0.0001  
significant  
194.41  
1447.60  
2465.33  
160.60  
0.000  
0.30  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
194.41  
1447.60  
2465.33  
160.60  
0.000  
0.30  
554.83  
4131.37  
7035.91  
458.35  
0.000  
0.86  
< 0.0001  
< 0.0001  
< 0.0001  
< 0.0001  
1.000  
AC  
0.3686  
0.1133  
0.1308  
0.9339  
0.7405  
0.0001  
< 0.0001  
< 0.0001  
< 0.0001  
-
AD  
1.00  
1.00  
2.85  
BC  
0.90  
0.90  
2.58  
BD  
2.5E-3  
0.040  
9.89  
2.5E-3  
0.040  
9.89  
7.13E-3  
0.11  
CD  
A2  
28.24  
1156.07  
1346.16  
52.87  
-
B2  
405.08  
471.69  
18.53  
4.91  
405.08  
471.69  
18.53  
0.35  
C2  
D2  
Residual  
Lack of Fit  
Pure Error  
Cor Total  
14  
10  
4
4.42  
0.44  
3.62  
0.1132  
-
Not significant  
0.49  
0.12  
-
5116.22  
28  
-
-
-
2
R-Squared (R )=0.9990  
Adj R-Squared=0.9981  
Pred R-Squared=0.9949  
Adeq Precision=123.585  
Figure 2 (c, e and f) displays an increase in COD removal  
efficiency with increase in light intensity. This increase causes  
an increase in the reaction rate of photocatalytic degradation of  
molecules [9, 46]. This observation was in good agreement  
with Jia et al. (2011) study [47].  
by aiding ultrasound with additional AOP, such as the UV  
process [50]. Mahmuni and Adewuyi (2010) showed that by  
combining sonolysis with the additional AOP, the cost of  
wastewater treatment could be reduced by 110-fold [51].  
Combined methods appear to be the most useful solution for  
the treatment of waters containing high loads of complex  
pollutants. However, these processes require further  
investigation.  
3
.4 Process  
Recently, advanced oxidation processes coupled with  
cavitation has been used in the treatment of contaminations  
48]. The combinations of cavitation with AOPs are listed in  
[
3.5 COD removal  
the introduction used for the treatment. Cavitation is a good  
alternative to the technologies used in wastewater treatment  
technologies. But its operating cost is high because of the  
energy consumption of ultrasonic generators [49, 48].  
Economics has an impact on process suitability for industrial  
applications. The results of the research discussed in this study  
relate solely to the laboratory scale. Subsequent studies can be  
carried out by scaling up the pilot-scale workflow to a real  
scenario to evaluate its feasibility in industrial practice.  
However, the cost of treatment of wastewater can be reduced  
In this study, the optimum value of COD removal  
efficiency was determined using the mentioned software. In the  
software optimization step, the requested goal for each  
operational variable (pH, contact time, ultrasound frequency  
and UV intensity) was chosen “within the range”, while the  
response (COD removal efficiency) was placed in “maximum”  
to achieve the highest performance [29, 28]. This program  
combines the individual desirability into a single number, then  
searches to maximize this function [28]. A value of one  
indicates that all responses are in desirable limits [52].  
8
65  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 861-869  
a
b
d
c
e
f
Figure 2: Response surface displaying effect of interaction of (a) pH×contact time, (b) pH×ultrasound frequency, (c) pH×UV intencity, (d) contact  
time×ultrasound frequency, (e) contact time×UV intencity and (f) ultrasound frequency×UV intencity on COD removal efficiency (%)  
The results showed the 92.1% removal of COD was  
predicted according to the model under optimized operational  
conditions (pH=9.2, contact time=54min, ultrasound  
frequency=54 kHz and UV intensity=45w). The desirability  
function value was 1 for these optimum conditions. In addition,  
another experiment was performed to confirm the optimal  
results obtained from the software [35]. The removal of COD  
was obtained 91.8 from the laboratory experiment that was in  
good agreement with the predicted response value. The study  
of Gao et al. (2013) has assessed the performances of Fenton,  
ultraviolet/Fenton, ultrasound/Fenton and tri-hybrid process to  
remove COD from actual pharmaceutical industrial  
wastewater. The ultraviolet/Fenton treatment showed a better  
COD removal efficiency than using Fenton alone which can be  
explained by the fact of synergetic effect. The combination of  
ultrasound with 60-minute Fenton oxidation provides greater  
COD removal efficiency, 61.1%, than that of ultrasound alone  
and Fenton oxidation alone which suggests that the  
combination of two individual processes can produce a  
synergistic effect. The tri-processes hybrid method can  
8
66  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 861-869  
significantly increase the COD removal efficiency compared to  
that of individual and bi-process combination. Increasing UV  
exposure time can significantly increase the COD removal  
efficiency. The highest COD removal rate, 91%, was found at  
the tri-hybrid process with 120 min ultrasound, 90 min UV  
irradiation [63]. The paper of Liu et al. (2014) explored the  
effects of the Ultrasound/Ultraviolet - Aged Refuse Bioreactor  
combined process on aged landfill leachate. The test results  
showed that the COD removal effects by ultrasound or  
ultraviolet radiation alone were unsatisfactory. But the  
for AOS and COS respectively. Thus, both AOS and COS  
values significantly increased after treatment by ultrasound and  
ultraviolet, confirming that great improvement has been made  
in the biodegradability of treated leachate [34, 33]. These  
results also depict that the simultaneous use of US and UV, as  
a pretreatment, can provide appropriate conditions for the  
biological treatment of leachate. In the study of Mahvi et al.  
(2012) an ultrasonic process was used for the pre-treatment of  
landfill leachate with the objective of improving its overall  
biodegradability, evaluated in terms of the BOD5/COD ratio,  
up to a value compatible with biological treatment. Under  
optimized experimental conditions, this method showed  
suitability for the removal of chemical oxygen demand (COD).  
The biodegradability was significantly improved (BOD5/COD  
increased from 0.210 to 0.786) which allowed an almost total  
removal of COD by a sequential activated sludge process [65].  
ultrasonic and ultraviolet light has  
a complementary  
cooperation. The COD removal rate of the combined process  
was over 80% as a whole without any pretreatment, and it has  
positive significance for the treatment of aged leachate [64].  
These two studies also agree with our research on the combined  
effectiveness of ultrasound and ultraviolet in the removal of  
COD.  
Response surface methodology is an important branch of  
experimental design and has been applied as an efficient  
experimentation technique in a vast range of fields including  
food and drug industry, biological and chemical processes, etc  
4
Conclusions  
This study shows that the combination of ultrasound  
waves and ultraviolet irradiation could effectively remove  
COD from fresh landfill leachate. BoxBehnken statistical  
experiment design was proved to be a suitable response surface  
methodology to determine the effects of operative variables and  
their interactions on the removal of COD from fresh landfill  
leachate. According to the model, the removal efficiency of  
COD was obtained 92.1 % at optimal conditions (pH at 9.2,  
contact time of 54min, ultrasound frequency of 54 kHz and UV  
intensity of 45 w). The removal efficiency of COD was 91.8 %  
in these conditions which agrees well with the predicted  
response value. Significant improvement of biodegradability  
[53]. It is well known in assessing the effect of parameters on  
treatment results [54]. The RSM is efficient to optimize  
multiple variables with the minimum number of experiments  
by using a set of designed experiments to get an optimal  
response [55]. In BoxBehnken design there is not any  
embedded factorial or fractional factorial points where the  
treatment combinations are at the midpoints of the edges of the  
experimental space and in the center [54]. Among all the RSM  
designs, BoxBehnken requires a lower number of runs and  
allows calculations of the response function at intermediate  
levels and enables estimation of the system performance at any  
experimental point within the range studied through careful  
design and analysis of experiments [56]. In general, BBD can  
be an effective approach to: 1) evaluate the performance of  
composite systems; 2) analyze the relationship of input with an  
output; 3) understand the interaction of parameters; and 4)  
optimize the input parameters [57]. Also, due to rotatable  
design features, BBD is considered an efficient technique [52].  
For instance, Silveira et al. (2015) optimized the effect of  
current density, time of treatment, and supporting electrolyte  
dosage to the treatment of landfill leachate using BBD model  
5
for treated leachate was observed by BOD /COD as well as  
AOS and COS values. This method drastically reduces the  
pollution load and reduces the risk of leachate toxicity and even  
makes it much easier for natural and biological treatment.  
Economics has an impact on process suitability for  
industrial applications. The results of the research discussed in  
this study relate solely to the laboratory scale. Subsequent  
studies can be carried out by scaling up the pilot-scale  
workflow to a real scenario to evaluate its feasibility in  
industrial practice. Combined methods appear to be the most  
useful solution for the treatment of waters containing high loads  
of complex pollutants. However, these processes require  
further investigation.  
[53].  
3
.6 Biodegradability  
Acknowledgments  
In this study, the biodegradability potential of the treated  
The authors would like to thank Ahvaz Jundishapur  
University of Medical Sciences for financial support.  
5
leachate was evaluated by BOD /COD ratio, average oxidation  
state (AOS) and carbon oxidation state (COS) indices [34, 33].  
Characteristics of the treated leachate were: COD=381 mg/l,  
BOD  
BOD  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
5
=143 mg/l, NH  
/COD ratio of the initial leachate was 0.14, indicating that  
/COD ratio  
3
-N=165 mg/l and TOC=282 mg/l. The  
5
leachate was difficult to biodegrade. The BOD  
5
(avoidance of guest authorship), dual submission, manipulation  
increased to 0.38 after 54 min of treatment by the US and UV.  
This means that the treated leachate was much easier to  
biodegrade than the initial leachate, which comes from  
removing/reducing recalcitrant compounds as well as  
producing simple-biodegradable materials [33, 43]. The values  
of AOS and COS can be obtained using the following equations  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
3
and 4 [58]:  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
ꢅꢆ퐷  
퐴푂푆 = 4 − 1.5 [ꢅ  
]
(3)  
(4)  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
ꢅꢆ퐷  
푇ꢆꢅꢇ  
퐶푂푆 = 4 − 1.5 [  
]
The values of AOS and COS in the initial leachate were -  
.41. After treatment, these values increased to +1.9 and 3.49  
2
8
67  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 861-869  
1
1
8. Bohdziewicz J, Neczaj E, Kwarciak A. Landfill leachate  
treatment by means of anaerobic membrane bioreactor.  
Desalination. 2008 Mar 1;221(1-3):559-65.  
9. Song K, Mohseni M, Taghipour F. Application of  
ultraviolet light-emitting diodes (UV-LEDs) for water  
References  
1
2
3
.
.
.
Abdel-Shafy HI, Mansour MS. Solid waste issue: Sources,  
composition, disposal, recycling, and valorization.  
Egyptian journal of petroleum. 2018 Dec 1;27(4):1275-90.  
Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin  
P. Landfill leachate treatment: Review and opportunity.  
Journal of hazardous materials. 2008 Feb 11;150(3):468-93.  
Derco J, Gotvajn AŽ, Zagorc-Končan J, Almásiová B,  
Kassai A. Pretreatment of landfill leachate by chemical  
oxidation processes. Chemical papers. 2010 Apr  
disinfection:  
;94:341-9.  
A review. Water research. 2016 May  
1
2
0. Torres RA, Pétrier C, Combet E, Moulet F, Pulgarin C.  
Bisphenol A mineralization by integrated ultrasound-UV-  
iron (II) treatment. Environmental science & technology.  
2
007 Jan 1;41(1):297-302.  
1
;64(2):237-45.  
2
2
1. Zhao Y, Feng R, Shi Y, Hu M. Sonochemistry in China  
between 1997 and 2002. Ultrasonics sonochemistry. 2005  
Feb 1;12(3):173-81.  
2. Jorfi S, Alavi S, Jaafarzadeh N, Ghanbari F, Ahmadi M.  
COD removal from high salinity petrochemical wastewater  
using photo-assisted peroxi-coagulation. Chemical and  
biochemical engineering quarterly. 2018 Jul 5;32(2):229-  
4
5
.
.
Mohtashami SR, Karimie A, Bidokhti T. Performance of  
Anaerobic Baffled Reactor (ABR) in landfill leachate  
treatment. Water and Wastewater. 2008 Jan 1;66:10-8.  
Gandhimathi R, Durai NJ, Nidheesh PV, Ramesh ST,  
Kanmani S. Use of combined coagulation-adsorption  
process as pretreatment of landfill leachate. Iranian journal  
of environmental health science & engineering. 2013 Dec  
3
8.  
1
;10(1):24.  
2
2
2
3. Mahvi AH, Roodbari AA, Nabizadeh RN, Nasseri S,  
Dehghani MH, Alimohammadi M. Improvement of landfill  
leachate biodegradability with ultrasonic process. PloS one.  
6
7
.
.
Kurniawan TA, Lo W, Chan G, Sillanpää ME. Biological  
processes for treatment of landfill leachate. Journal of  
Environmental Monitoring. 2010;12(11):2032-47.  
Castillo-Suárez LA, Bruno-Severo F, Lugo-Lugo V,  
Esparza-Soto M, Martínez-Miranda V, Linares-Hernández  
I. Peroxicoagulation and Solar Peroxicoagulation for  
Landfill Leachate Treatment Using a CuFe System. Water,  
Air, & Soil Pollution. 2018 Dec 1;229(12):385.  
2
012;7(7):e27571-.  
4. Rice EW, Baird RB, Eaton AD, Clesceri LS. Standard  
methods for the examination of water and wastewater.  
American Public Health Association, Washington, DC.  
2
012 Feb;541.  
5. Zarghi MH, Roudbari A, Jorfi S, Jaafarzadeh N. Removal  
of Estrogen Hormones (17β-Estradiol and Estrone) from  
Aqueous Solutions Using Rice Husk Silica. Chemical and  
biochemical engineering quarterly. 2019 Jul 31;33(2):281-  
8
9
1
.
.
Tripathy BK, Ramesh G, Debnath A, Kumar M. Mature  
landfill  
persulfate/hydrogen peroxide oxidation: Optimization of  
process parameters. Ultrasonics sonochemistry. 2019 Jun  
leachate  
treatment  
using  
sonolytic-  
9
3.  
1
;54:210-9.  
2
2
6. Song W, Li Z, Liu F, Ding Y, Qi P, You H, Jin C. Effective  
removal of ammonia nitrogen from waste seawater using  
crystal seed enhanced struvite precipitation technology with  
response surface methodology for process optimization.  
Environmental Science and Pollution Research. 2018 Jan  
Rahimi M, Moradi N, Faryadi M, Safari S. Removal of  
ammonia by high-frequency ultrasound wave (1.7 MHz)  
combined with TiO2 photocatalyst under UV radiation.  
Desalination and Water Treatment. 2016 Jul  
2
0;57(34):15999-6007.  
1
;25(1):628-38.  
0. Alavi N, Azadi R, Jaafarzadeh N, Babaei AA. Kinetics of  
nitrogen removal in an anammox up-flow anaerobic  
bioreactor for treating petrochemical industries wastewater  
7. Godini H, Dargahi A, Mohammadi M, Ahagh MH,  
Mohammadi S, Jalilian Z. Application of Response Surface  
Methodology for Optimization of Ammonia Nitrogen  
Removal from Aqueous Solutions Using Powdered  
Activated Carbon. Research Journal of Environmental  
Sciences. 2017;11(1), 36-47.  
8. Erkan HS, Apaydin O. Final treatment of young, middle-  
aged, and stabilized leachates by Fenton process:  
optimization by response surface methodology.  
Desalination and Water Treatment. 2015 Apr 10;54(2):342-  
(ammonia plant). Asian Journal of chemistry. 2011 Dec  
1
;23(12):5220.  
1
1
1
1. Boczkaj G, Fernandes A. Wastewater treatment by means  
of advanced oxidation processes at basic pH conditions: a  
review. Chemical Engineering Journal. 2017 Jul  
2
2
3
3
3
3
1
5;320:608-33.  
2. Jaafarzadeh N, Ghanbari F, Moradi M. Photo-electro-  
oxidation assisted peroxymonosulfate for decolorization of  
acid brown 14 from aqueous solution. Korean Journal of  
Chemical Engineering. 2015 Mar 1;32(3):458-64.  
3. Jyothi KP, Yesodharan S, Yesodharan EP. Ultrasound (US),  
Ultraviolet light (UV) and combination (US+ UV) assisted  
semiconductor catalysed degradation of organic pollutants  
in water: Oscillation in the concentration of hydrogen  
peroxide formed in situ. Ultrasonics sonochemistry. 2014  
Sep 1;21(5):1787-96.  
5
7.  
9. Bashir MJ, Aziz HA, Yusoff MS, Adlan MN. Application  
of response surface methodology (RSM) for optimization of  
ammoniacal nitrogen removal from semi-aerobic landfill  
leachate using ion exchange resin. Desalination. 2010 May  
1
5;254(1-3):154-61.  
0. Nair AT, Ahammed MM. Coagulant recovery from water  
treatment plant sludge and reuse in post-treatment of UASB  
reactor  
Environmental Science and Pollution Research. 2014 Sep  
;21(17):10407-18.  
effluent  
treating municipal wastewater.  
1
1
4. Jafarzadeh NA, Daneshvar N. Treatment of textile  
wastewater containing basic dyes by electrocoagulation  
process. J. of Water and Wastewater. 2006 Jan 1;57:22-9.  
5. Teh CY, Wu TY, Juan JC. An application of ultrasound  
technology in synthesis of titania-based photocatalyst for  
degrading pollutant. Chemical Engineering Journal. 2017  
Jun 1;317:586-612.  
1
1. Ferreira SC, Bruns RE, Ferreira HS, Matos GD, David JM,  
Brandao GC, da Silva EP, Portugal LA, Dos Reis PS, Souza  
AS, Dos Santos WN. Box-Behnken design: an alternative  
for the optimization of analytical methods. Analytica  
chimica acta. 2007 Aug 10;597(2):179-86.  
2. Kartnaller V, Romualdo MV, Lobo VT, Cajaiba J. Kinetic  
Modeling of a Heat Generator for the Fluidization of  
Paraffin Deposits Using In-line Infrared Spectroscopy with  
the Development of a Graphical User Interface. Energy &  
Fuels. 2016 May 19;30(5):3660-5.  
3. Ahmadi M, Kakavandi B, Jaafarzadeh N, Babaei AA.  
Catalytic ozonation of high saline petrochemical  
wastewater using PAC@ FeIIFe2IIIO4: optimization,  
mechanisms and biodegradability studies. Separation and  
Purification Technology. 2017 Apr 28;177:293-303.  
1
1
6. Liu B, Peng XY, Zhao H, Tian Q. Degradation of Landfill  
Leachate  
by  
Ultrasound/Ultraviolet-Aged  
Refuse  
Bioreactor Combined Process. InApplied Mechanics and  
Materials 2014 (Vol. 448, pp. 532-535). Trans Tech  
Publications Ltd.  
7. Arabameri M, Allahbakhsh J, Roudbari A. The Use of  
Artificial Neural Network (ANN) for Modeling of  
Ammonia Nitrogen Removal from Landfill Leachate by the  
Ultrasonic Process. International Journal of Health Studies.  
2
016 Jan 30;1(3):13-9.  
8
68  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 861-869  
3
3
4. Vilar VJ, Capelo SM, Silva TF, Boaventura RA. Solar  
photo-Fenton as pre-oxidation step for biological  
treatment of landfill leachate in a pilot plant with CPCs.  
Catalysis Today. 2011 Mar 17;161(1):228-34.  
5. El-Gendy NS, Abu Amr SS, Aziz HA. The optimization of  
biodiesel production from waste frying sunflower oil using  
53. Silveira JE, Zazo JA, Pliego G, Bidóia ED, Moraes PB.  
Electrochemical oxidation of landfill leachate in a flow  
reactor: optimization using response surface methodology.  
Environmental Science and Pollution Research. 2015 Apr  
1;22(8):5831-41.  
54. Li M, Feng C, Zhang Z, Liu X, Ma W, Xue Q, Sugiura N.  
Optimization of electrochemical ammonia removal using  
BoxBehnken design. Journal of electroanalytical  
chemistry. 2011 Jul 1;657(1-2):66-73.  
a
a
heterogeneous catalyst. Energy Sources, Part A:  
Recovery, Utilization, and Environmental Effects. 2014  
Aug 3;36(15):1615-25.  
3
3
3
3
4
4
6. Wang S, Wu X, Wang Y, Li Q, Tao M. Removal of organic  
matter and ammonia nitrogen from landfill leachate by  
ultrasound. Ultrasonics sonochemistry. 2008 Sep  
55. Hanrahan G, Lu K. Application of factorial and response  
surface methodology in modern experimental design and  
optimization. Critical Reviews in Analytical Chemistry.  
2006 Dec 1;36(3-4):141-51.  
56. Hamed E, Sakr A. Application of multiple response  
optimization technique to extended release formulations  
design. Journal of controlled release. 2001 Jun 15;73(2-  
3):329-38.  
57. Baş D, Boyacı IH. Modeling and optimization I: Usability  
of response surface methodology. Journal of food  
engineering. 2007 Feb 1;78(3):836-45.  
58. Moradi M, Ghanbari F. Application of response surface  
method for coagulation process in leachate treatment as  
pretreatment for Fenton process: biodegradability  
improvement. Journal of Water Process Engineering. 2014  
Dec 1;4:67-73.  
1
;15(6):933-7.  
7. Catalkaya EC, Kargi F. Advanced oxidation of diuron by  
photo-Fenton treatment as function of operating  
a
parameters. Journal of Environmental Engineering. 2008  
Dec;134(12):1006-13.  
8. Körbahti BK, Rauf MA. Application of response surface  
analysis to the photolytic degradation of Basic Red 2 dye.  
Chemical Engineering Journal. 2008 May 1;138(1-3):166-  
7
1.  
9. Zhang H, Ran X, Wu X, Zhang D. Evaluation of electro-  
oxidation of biologically treated landfill leachate using  
response surface methodology. Journal of hazardous  
materials. 2011 Apr 15;188(1-3):261-8.  
0. Mohajeri S, Aziz HA, Isa MH, Zahed MA, Adlan MN.  
Statistical optimization of process parameters for landfill  
leachate treatment using electro-Fenton technique. Journal  
of hazardous materials. 2010 Apr 15;176(1-3):749-58.  
1. Mallieswaran K, Padmanabhan R, Balasubramanian V.  
Friction stir welding parameters optimization for tailored  
welded blank sheets of AA1100 with AA6061 dissimilar  
alloy using response surface methodology. Advances in  
Materials and Processing Technologies. 2018 Jan  
59. Negi P, Mor S, Ravindra K. Impact of landfill leachate on  
the groundwater quality in three cities of North India and  
health risk assessment. Environment, Development and  
Sustainability. 2020 Feb;22(2):1455-74.  
60. Durai NJ, Gopalakrishna GV, Padmanaban VC, Selvaraju  
N. Oxidative removal of stabilized landfill leachate by  
Fenton's process: process modeling, optimization  
&
analysis of degraded products. RSC Advances.  
2020;10(7):3916-25.  
2
;4(1):142-57.  
61. Asaithambi P, Govindarajan R, Yesuf MB, Alemayehu E.  
Removal of color, COD and determination of power  
consumption from landfill leachate wastewater using an  
electrochemical advanced oxidation processes. Separation  
and Purification Technology. 2020 Feb 15;233:115935.  
62. Sharma A, Ganguly R, Kumar Gupta A. Impact Assessment  
of Leachate Pollution Potential on Groundwater: An  
Indexing Method. Journal of Environmental Engineering.  
2020 Mar 1;146(3):05019007.  
63. Gao A, Gao H, Wan J, Wu C. Treatment of pharmaceutical  
wastewater using Fenton oxidation, ultraviolet, and  
ultrasound processes. Fresenius Environmental Bulletin.  
2013;22(2):449-54.  
4
2. Jiang J, Gong C, Wang J, Tian S, Zhang Y. Effects of  
ultrasound pre-treatment on the amount of dissolved  
organic matter extracted from food waste. Bioresource  
technology. 2014 Mar 1;155:266-71.  
4
4
4
3. Li W, Zhou Q, Hua T. Removal of organic matter from  
landfill leachate by advanced oxidation processes: a review.  
International Journal of Chemical Engineering. 2010.  
4. Entezari MH, Kruus P. Effect of frequency on  
sonochemical reactions II. Temperature and intensity  
effects. Ultrasonics Sonochemistry. 1996 Feb 1;3(1):19-24.  
5. Goel M, Hongqiang H, Mujumdar AS, Ray MB.  
Sonochemical decomposition of volatile and non-volatile  
organic compoundsa comparative study. Water  
Research. 2004 Nov 1;38(19):4247-61.  
64. Liu B, Peng XY, Zhao H, Tian Q. Degradation of Landfill  
Leachate  
by  
Ultrasound/Ultraviolet-Aged  
Refuse  
4
6. Heidari Z, Motevasel M, Jaafarzadeh N. Effect of UV light  
on pentachlorophenol removal in the electro-Fenton  
process. Environmental Health Engineering and  
Management Journal. 2017 Aug 30.  
Bioreactor Combined Process. In Applied Mechanics and  
Materials 2014;448:532-535.  
65. Mahvi AH, Roodbari AA, Nabizadeh RN, Nasseri S,  
Dehghani MH, Alimohammadi M. Improvement of landfill  
leachate biodegradability with ultrasonic process. PloS one.  
2012;7(7):e27571-.  
4
4
7. Jia C, Wang Y, Zhang C, Qin Q. UV-TiO 2 photocatalytic  
degradation of landfill leachate. Water, Air,  
Pollution. 2011 May 1;217(1-4):375-85.  
& Soil  
8. Gągol M, Przyjazny A, Boczkaj G. Wastewater treatment  
by means of advanced oxidation processes based on  
cavitationa review. Chemical Engineering Journal. 2018  
Apr 15;338:599-627.  
4
5
5
9. Gallego-Juarez JA. High-power ultrasonic processing:  
recent developments and prospective advances. Physics  
Procedia. 2010 Jan 1;3(1):35-47.  
0. Babu SG, Ashokkumar M, Neppolian B. The role of  
ultrasound on advanced oxidation processes. Topics in  
Current Chemistry. 2016 Oct 1;374(5):75.  
1. Mahamuni NN, Adewuyi YG. Advanced oxidation  
processes (AOPs) involving ultrasound for waste water  
treatment: a review with emphasis on cost estimation.  
Ultrasonics sonochemistry. 2010 Aug 1;17(6):990-1003.  
2. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira  
LA. Response surface methodology (RSM) as a tool for  
optimization in analytical chemistry. Talanta. 2008 Sep  
5
1
5;76(5):965-77.  
8
69