Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1093-1100  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Artificial Intelligence Approach to Predicting River  
Water Quality: A Review  
1,3  
1,2*  
1,2  
1,2  
1,2  
Ariani Dwi Astuti , Azmi Aris , Mohd Razman Salim , Shamila Azman , Salmiati and  
Mohd Ismid Md Said1  
,2  
1
Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia  
2
Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, Johor Bahru, Malaysia  
3
Department of Environmental Engineering, Faculty of Landscape Architecture and Environmental Technology, Universitas Trisakti, Jakarta, Indonesia  
Received: 26/05/2020  
Accepted: 07/07/2020  
Published: 20/09/2020  
Abstract  
Precise prediction of the water quality time series may provide directions for early warning of water pollution and help policymakers to  
manage water resources more effectively. This prediction may reveal the proclivity of the characteristic water quality according to the most  
recent water quality, shifting, and transformation rule of the pollutant in the watershed. The predictive capability of traditional models is  
constrained due to variability, complexity, uncertainty, inaccuracy, non-stationary, and the non-linear interactions of the water quality  
parameters. Since the middle of the 20th century, Artificial Intelligence (AI) approaches have been found efficient in bridging gaps,  
simulating, complementing deficiencies, and improving the precision of the predictive models in terms of multiple evaluation measures for  
better planning, design, deployment, and handling of multiple engineering systems. This article discusses the state-of-the-art implementation  
of AI in water quality prediction, the type of AI approaches, the techniques adopted include the knowledge-based system as well as literature  
and their potential future implementation in water quality modelling and prediction. The study also discusses and presents several possibilities  
for future research.  
Keywords: Water quality simulation; Artificial Intelligence; Knowledge-based system; Review  
Introduction1  
have parameter-wide nonlinear relationships with each other.  
1
Conventional data processing cannot address this significant  
limitation (1012). Nonlinear Artificial Intelligence (AI) models,  
on the other hand, play a significant role in simulating complex  
and nonlinear processes (13). This situation creates a big gap  
between model designers and professionals. Selecting a suitable  
numerical model is a challenging task for novice application  
users. The forecast precision of traditional models is restricted  
due to the uncertainty, unpredictability, obscurity, and inaccuracy  
of water quality information. Progress in AI technology has made  
it possible over the past decade to apply the developments in  
computational modelling systems to bridge the gap, as mentioned  
above (8).  
Chemical, physical, and biological properties found in water  
are generally referred to as the quality of water (1). Accurate  
evaluation of water quality using the Water Quality Management  
program is important if decision-makers are to understand,  
interpret, and use these data to support resource management  
practices (2,3). Modelling of water quality parameters is an  
essential part of every water systems analysis. In order to properly  
manage the watershed, it is necessary to predict the quality of  
surface water so that appropriate measurements can be taken to  
avoid pollution from the permissible concentrations. Ideal  
management of water resources is based on accurate and reliable  
estimates of future changes (1,46).  
QUAL2E, Water Quality Analysis Simulation, and the U.S.  
Army Corps of Engineers Hydrological Engineering Center-5Q  
are several models commonly applied to water quality  
management (7). These models, however, are not only time  
consuming and expensive, but also lack user-friendliness and  
effective knowledge transfer in model interpretation. Therefore,  
more models, which do not suffer from these problems, are  
needed to be developed (8,9). Several scientists noted that the  
prediction of water quality is impacted by various variables that  
AI methods are currently capable of mimicking this behaviour  
(14), complementing the defect, and improving the precision of  
forecast models in terms of multiple assessment measures for  
better planning, design, operation, and management of distinct  
engineering systems (15, 16). The significant contributions of the  
present review article are 1) to categorise AI methods  
comprehensively and 2) to discuss their advanced application to  
water quality modelling and prediction.  
Corresponding author: Azmi Aris, (a) Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of  
Engineering, Universiti Teknologi Malaysia, Johor, Malaysia and (b) Centre for Environmental Sustainability and Water Security (IPASA),  
Universiti Teknologi Malaysia, Johor Bahru, Malaysia. Email: azmi.aris@utm.my.  
1
093  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1093-1100  
extremely precise because it conveys all kinds of interactions  
expressed in the information, including fundamental physics and  
chemistry (9). Some studies (6, 11, 22-27) that explored river  
water quality modelling issues using AI methods have revealed  
encouraging outcomes in recent decades (Table 1).  
Several researchers have attempted to predict water quality  
parameters using AI-based models such as ANN, SVM, and k-  
NN. In these studies, ANN has been frequently found a stronger  
predictive model compared to conventional modelling  
techniques. In the case of 47 sources (2007-2019) reviewed,  
ANN, SVM, and k-NN have been used in 38, 10, and 1 source,  
respectively. ANN has been widely used between 2007 and 2015,  
but from 2015 to 2019, ANFIS and SVM have surpassed ANN,  
as more recent approaches of AI. Some studies made a  
comparison between the models.  
The study found that different parameters are needed to be  
used in water quality assessments using various techniques.  
Different output parameters predictions have been studied, but the  
ten most important parameters are DO, BOD, TSS, Total  
3
Nitrogen, temperature, COD, turbidity, Total Phosphate, NH ,  
and WQI. The monthly water quality data have been used most in  
many of these studies to simulate water quality parameters [4, 5,  
2
Artificial Intelligence-Based Model for River  
Water Quality Simulation  
The 1956 Dartmouth Conference was held at a time when AI  
earned its name, purpose, and first accomplishments; it was  
widely recognised as the birth of AI. Across various fields, the AI  
field is currently playing an important role, focusing on machines  
with a human-like mind (17). By incorporating descriptive  
understanding, procedural knowledge, and reasoning, AI methods  
enable researchers to simulate human knowledge in clearly  
defined domains. In addition, advances in AI techniques have  
enabled the creation of intelligent management systems through  
the use of shells under established platforms such as MathLab,  
Visual Basic, and C++. (8, 18).  
Recently, AI has achieved significant progress in multiple  
programs such as autonomous driving, big data, information  
processing, smart search, image understanding, automatic  
software development, robotics, and human-computer games,  
which will have a significant effect on human society. Some of  
the most important AI-based algorithms include artificial neural  
networks (ANNs), support vector machine (SVM), random forest  
(
RF), genetic algorithm (GA), enhanced regression tree (ERT),  
simulated annealing (SA), imperialist competitive algorithm  
ICA), and decision tree (DT). AI methods are also associated  
1
2
0, 11, 16-28], which was followed by daily water quality data (3,  
5, 35-40).  
(
with experimental design (e.g., response surface methodology,  
and standardised design) to improve the precision of the optimal  
solution prediction (19). Advances in data science and data  
mining techniques such as neural networks (NNs), supporting  
vector machines (SVMs), and k-nearest neighbours (k-NN) have  
helped to solve some complicated high-dimensional issues in  
river water quality prediction (Figure 1).  
3
Artificial Neural Network Modelling in River  
Water Quality Monitoring  
The theory of artificial neurons was first launched in 1943,  
with the implementation of the back-propagation practice (BP)  
algorithm for feedforward ANNs in 1986 (23). ANN is a recent  
method with a versatile mathematical structure that can identify  
complicated non-linear interactions between input and output  
information compared to other traditional modelling approaches  
(1, 25).  
Over the past two decades, river water pollutants have been  
considered as one of the global issues that need the full attention  
of environmental scientists. River water quality, however, is one  
of the main characteristics to which environmental scholars need  
to pay full attention. In all developing countries, water quality is  
a growing concern. Water abstraction mechanisms of domestic  
use, farming, mining, energy generation, and forestry practices  
may lead to a decline of water quality and quantity, which affects  
not only aquatic ecosystems but also the allocation of safe water  
for human consumptives (20). Thus, the assessment of surface  
water quality is important in the management of water resources  
and is very important in monitoring the concentration of  
pollutants in rivers. Monitoring water quality is costly because  
pollution control and efficient water resource management  
require large quantities of data (21). Therefore, AI can be  
recommended as an alternative technique with high prediction  
accuracy for predicting the river water quality. AI benefits from  
traditional techniques since they take account of the non-linear  
relationship between influential variables and reduce the  
complexity required to obtain experimental equations (20).  
The overall concept behind AI techniques is to explore hidden  
interactions in large quantities of information and to create  
models that represent physical procedures governing the system  
being studied. A model derived from data reflects a correlation  
between variables of input and output. Such a model can be  
ANNs are common instruments applicable to modeling  
extremely complex relations, processes, and phenomena. ANNs  
have been also widely used to predict water quality variables to  
address contaminant source uncertainty and nonlinearity of water  
quality data. Nevertheless, the issue with the initial weight  
parameter and the unbalanced training data set makes it hard to  
determine the optimal outcomes and hinders ANN modeling  
efficiency (25). ANN consists of very basic processors called  
neurons that are strongly interconnected and act together to solve  
a problem (41). A neuron is an information processing unit,  
essential for the functioning of the NN; it comprises weight and  
activation.  
From 2007 to 2019, eight types of ANN were applied by  
different researchers to the prediction of river water quality,  
namely Back Propagation NN (BPNN), Wavelet NN, Generalized  
Regression NN (GRNN), Radial Basic NN (RBNN), Feed  
Forward NN (FFNN), Multi-layer Perceptron NN (MLPNN),  
Multi-layer Feed Forward NN (MLFFNN) and Adaptive  
Network-Based Fuzzy Inference System (ANFIS). Among them,  
five most widely-used models MLPNN (10), RBNN (6), FNNN  
(5), ANFIS (5), and MLFFNN (4).  
1
094  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1093-1100  
Artificial Neural Network (ANN)  
Single Approach  
Support Vector Machine  
k-nearest neighbors  
Artificial Intellegency (AI)  
Technique  
WAVELET-ANFIS  
WAVELET-ANN  
ANN-ARIMA  
Hybrid Approach  
Figure 1: Classification Tree of AI Techniques Applied in Literature to River Water Quality  
Several indicators often used to evaluate the ANN model's  
simplified architecture of two weight layers with basic function  
parameters in the first layer, while the second layer contains linear  
combinations of those basic functions for the processing of the  
output and also contains parameters for water quality (1). Some  
performance are as follow: Coefficient of correlation (R) between  
the values observed and the expected values, the mean square  
error (which can be used to calculate how well the network output  
corresponds to the expected output), mean absolute error (MAE),  
root mean square error (RMSE); Coefficient of efficiency (CE),  
Mean absolute prediction error (MAPE) (which usually expresses  
accuracy as a percentage), interquartile range (IQR) (which refers  
3
researchers have predicted DO, COD, TDS, NH -N, Turbidity,  
and WQI using RBFNN. Cobaner et al. in 2009 used GRNN,  
MLP, and RBNN to forecast SS. Their results confirmed that  
RBNN performed slightly better than the others (37). In addition,  
Ahmed (2017) compared some models regarding the DO  
prediction, which again showed the superiority of the RBNN's  
performance over the rivals (33).  
th  
th  
to difference between the 25 and 75 percentile and is used to  
calculate the entire bias error between the means of the ensemble  
and the values observed), Nash-Sutcliffe coefficient (NSC), and  
Determination coefficient (DC) (Table. 2).  
FFNN propagates the data linearly from input to output; in many  
practical applications, they are the most popular and widely-used  
models (43). FFNN is used to predict DO, BOD, TN, and  
temperature. Four scientists implemented monthly data in FFNN  
to predict DO using different input parameters (11, 13, 33, 43).  
Ahmed in 2017 predicted DO using BOD and COD parameters  
as input, and obtained R = 0.936 and RMSE = 0.709. Ranković et  
al. in 2010 used FFNN to check its capability to predict DO. They  
added more variables of water quality. Their findings showed that  
pH and the water temperature are the most powerful variables in  
DO prediction. In (44), ANFIS was used to learn neural network  
algorithms and fuzzy logic was used to construct a non-linear  
mapping between inputs and outputs. Ahmed et al. (2017) and  
Khaled et al. (2018) conducted a study into BOD prediction using  
ANFIS, and they suggested that the ANFIS technique could be  
successfully applied to building models for predicting the river  
water quality (34, 55). Elkiran et al. (2018) attempted to predict  
DO at Yamuna River using ANFIS, FFN, and MLR. They found  
that even both FFNN and ANFIS were found capable of handling  
nonlinear interactions, the ANFIS model performed better than  
FFNN (13). The most predicted parameters for ANN are done,  
DO, BOD, COD and WQI, respectively 13, 5, 5, and 4 studies.  
And so far, for certain output parameters from certain inputs, each  
NN type has achieved good results.  
The fundamental MLPNN model has three layers: (i) input  
layer, (ii) hidden layer, and (iii) output layer. The input layer  
supplies the input data set, the hidden layer processes the features,  
and finally, the output layer shows the expected results. As can be  
seen in Table 2, MLPNN is widely used to predict the DO  
parameters. (15, 28, 31, 32). Moreover, MLPNN is used to predict  
BOD, COD, EC, TDS, turbidity, and WQI. In predicting the DO  
parameters, different inputs are used. However, Olyaie et al. in  
2
017 and Ay and Kişi in 2017 both used pH, EC, temperature,  
and flow as input parameters (15,31). The difference is that Olyaie  
et al. used daily data of seven years, while Ay and Kişi used  
monthly data of 15 years. Regarding the performance, Olyaie et  
2
al. obtained R = 0.955 and root mean square error (RMSE) =  
2
0
.594, while Ay and Kişi obtained R = 0.98 and RMSE = 0.52.  
The time scale of the data does not seem to have any impact on  
outcomes.  
Radial basis function neural network (RBFNN) is a type of  
NN applicable to general purposes and to various problems. The  
RBFNN model is more advantageous than other types of NN that  
have a grouping phase during training, where the hidden node's  
central location is calculated (36). RBFNN was developed as one  
of the most common three-layer neural feedforward networks  
(42) to determine parameters of water quality. This model has a  
1
095  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1093-1100  
Table 1: Artificial Intelligence-Based Models Applied to Water Quality Prediction  
Type of  
Approach  
Artificial  
Neural  
Methods  
Output Parameter  
River  
Authors  
Back Propagation  
neural networks  
COD, DO, NH  
Sediment  
3
,
Dahan River, Taiwan; Jishan  
Lake, China; River Suktel,  
India; Yuqiao reservoir in  
Tianjin  
Zhao et al. (2007); Xu and  
Liu (2013); Chang et al.  
(2015); Ghose and  
Network  
(ANN)  
Samantaray (2018)  
Wavelet Neural  
Network  
DO  
Jishan Lake, China  
Xu and Liu (2013)  
Generalized  
COD  
Cark Creek, Turkey  
Ay and Kisi (2014)  
Regression NN  
Radial Basic  
Neural Networks  
COD, DO, NH  
3
,
Surma River, Bangladesh;  
Yangtze River, China; Johor  
River, Malaysia; Cark Creek,  
Turkey; Kopili River, India  
Ahmed (2017); Basis et al.  
(2014); Najah et al. (2013);  
Ay and Kisi (2014); Kumar et  
al. (2016)  
TDS, Turbidity,  
Suspended  
sediment  
Feed Forward  
Neural Network  
BOD, DO, Total  
Nitrogen,  
Temperature,  
WQI  
Gomti river, India; Melen River, Singh et al. (2009); Dogan et  
Turkey; Surma River,  
al. (2009); Ahmed (2017); He  
et al. (2011); Gazzaz et al.  
(2012); Elkiran et al. (2018)  
Bangladesh; 59 rivers in Japan;  
Kinta River, Malaysia; Yamuna  
River  
Multi-layer  
Perceptron Neural  
Networks  
WQI, DO, BOD,  
COD, TDS,  
Turbidity,  
Johor River, Malaysia; Heihe  
River, China; Cark Creek,  
Turkey; Langat River, Malaysia; al. (2013); Ay and Kişi (2014,  
Najah et al. (2011; 2013);  
Gazzaz et al. (2012); Wen et  
Electrical  
conductivity  
Aji-Chay River, Iran  
2017); Raheli et al. (2017);  
Keshtegar and Heddam  
(2018); Zhang et al. (2019);  
Barzegar et al. (2016)  
Dogan et al. (2009); Kim and  
Seo (2015); Ömer Faruk  
(2010)  
Multi-layer Feed  
Forward Neural  
Networks  
BOD, DO, pH  
Temperature,  
Turbidity, TN,  
TP, Boron  
Melen River, Turkey; Nakdong  
River, South Korean; Buyuk  
Menderes River, Turkey  
Adaptive Network-  
Based Fuzzy  
Inference System  
BOD  
5
Yangtze River, China; Beas  
River, Hong Kong; Surma  
River, Bangladesh; Aji-Chay  
River, Iran; Ouizert Reservoir,  
Algeria; Yamuna River  
Deng et al. (2015); Barzegar  
et al. (2016); Ahmed and  
Shah (2017); Khaled et al.  
(2018); Elkiran et al. (2018)  
(ANFIS)  
Support Vector Machine (SVM)  
DO, BOD, COD,  
CODMn, NH N,  
BOD  
Johor River, Malaysia; Weihe  
River, China; Sefidrood River,  
Iran; Yamuna River, India;  
Changle River, China; Kopili  
River, India; Wen-Rui Tang  
River, China; Small Prespa  
Lake, Macedonia, Greece; Pond  
at Dongying city, China  
Najah et al. (2011); Wang et  
al. (2011); Noori et al. (2012);  
Liu and Lu (2014); Kisi and  
Parmar (2016); Kumar et al.  
(2016); Ji et al. (2017); Li et  
al. (2018); Fijani et al. (2019)  
3
5
k-nearest neighbors  
ANN-ARIMA  
TDS, EC  
DO, temperature,  
NH3-N, Boron  
Lighvan Chay River, Iran  
Yangtze River, China; Buyuk  
Menderes River, Turkey  
Sattari et al. (2016)  
Ömer Faruk, (2010); Basis et  
al. (2014)  
Wavelet-ANFIS  
Wavelet-ANN  
TDS, EC,  
Turbidity  
EC  
Johor River, Malaysia; Aji-Chay Najah et al. (2012); Barzegar  
River, Iran  
et al. (2016)  
Aji-Chay River, Iran  
Barzegar et al. (2016)  
1
096  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1093-1100  
Table 2: ANN Application to DO Prediction  
Output  
Parameter  
BOD and  
DO  
Time Scale  
Data  
R , RMSE, and bias Monthly  
Methods  
FFNN  
Input Parameter  
Evaluation Criteria  
Authors  
2
pH, total  
Singh et al.  
(2009)  
alkalinity, total hardness, total  
computed  
(10 years)  
4
solids, COD, DO, BOD, NH -N,  
NO -N, Cl, PO , K, and Na  
3
4
FFNN  
pH, T, chloride, total phosphate,  
nitrites, nitrates, ammonia, iron,  
manganese, and EC  
DO  
R, MAE, and MSE  
Monthly  
(1 year)  
Ranković et  
al. (2010)  
FFNN and DO, BOD, pH, and T  
ANFIS  
FFNN and BOD and COD  
RBFNN  
DO  
DO  
RMSE, MSE, and  
DC  
Daily  
(1999-2012)  
Monthly  
(2010-2012)  
Elkiran et  
al. (2018)  
Ahmed  
R, MSE, and  
coefficient of  
efficiency (E)  
R. RMSE, MAPE,  
and NSC  
(2017)  
MLFFNN T, boron, and DO  
temperature,  
boron, and  
DO  
pH, DO,  
turbidity,  
TN, and TP  
Monthly  
(8 years)  
Ömer  
Faruk,  
(2010)  
Kim and  
Seo (2015)  
2
MLFFNN pH, DO, turbidity, TN, and TP  
R , RMSE, and IQR Daily  
(2009-2012)  
-
2+  
MLPNN  
MLPNN  
MLPNN  
pH, EC, Cl , Ca , total alkalinity, DO  
R, RMSE, and MSE Monthly  
(6 years)  
Wen et al.  
(2013)  
3 4  
total hardness, NO -N, and NH -  
N
COD, PO4, TS, K, Na, Cl, EC,  
pH, and NH -N  
BOD and  
DO  
R, RMSE, %RMSE, Monthly  
and Willmott’s  
index of agreement  
RMSE, Nashe  
Sutcliffe efficiency  
coefficient (NSC),  
MARE and, R  
Raheli et al.  
(2017)  
4
(2001-2010)  
pH, EC, T, and river discharge  
Q)  
DO  
Daily  
(July 2007-  
Jan 2014)  
Olyaie et al.  
(2017)  
(
MLPNN  
RBFNN  
pH, EC, T, river discharge (Q),  
and DO  
DO  
RMSE, MAE, and  
R
R, MAP, and RMSE Weekly  
(2005-2014)  
Monthly  
(1996-2010)  
Ay and Kişi  
(2017)  
Basis et al.  
(2014)  
2
DO and NH  
3
-N  
DO and  
NH -N  
3
training vectors incorporated in the models as support vectors to  
improve future predictions through learning from past experience.  
On the other hand, SVMs have some disadvantages. Because of  
the inherent complexity of mapping non-linear input spaces to  
high-dimensional character-spaces and the extrapolation of  
models, it is not easy to understand and interpret the behavior of  
nonlinear SVM models. Moreover, the model is entirely  
dependent on records when data inconsistencies occur (57). In  
several studies, SVM has been successfully applied to water  
quality prediction in case of BOD (56, 60), DO (40, 53), COD  
4
Support Vector Machine Approach in River  
Water Quality Monitoring  
SVM has raised expectations in recent years since it has been  
successful in the context of classification problems, regression,  
and prediction; for example in machine learning concepts and  
methods, statistics, statistical analysis, and convex optimization  
(57). Several previously-conducted studies have confirmed the  
high potential and outstanding performance of SVM. This level  
of effectiveness is largely due to the concept of structural risk  
minimization (SRM) in SVM, which is more generalized and  
superior to the theory of empirical risk minimization (ERM),  
when applied to neural networks (24).  
The results of this study are in line with those of the study  
conducted by Chen (2010) who claimed that the concept of SRM  
in SVM, which is focused on the theory of statistical learning,  
may successfully resolve the Neural Network deficiency (58).  
SVMs are able to produce reliable and stable classification tests  
even if the input data are neither monotonous nor linearly  
separable. They can quickly determine more relevant information.  
A key feature of SVM is that during the training process, it  
automatically defines and integrates support vectors and avoids  
the control of non-supporting vectors over the configuration; this  
means that the model can handle noisy conditions well (59). SVM  
has the ability to track events in the past with some primary actual  
(30), Total Phosphate, and Total Nitrogen (53).  
5
Hybrid Approach to River Water Quality  
Monitoring  
Due to the robustness and accuracy of wavelet-AI models,  
their application to hydrology has gradually increased in recent  
years. The success of this model is attributable to the efficiency  
of multi-resolution processing wavelet transformations, the  
identification of noise and edge effects via a signal, and the high  
capability of AI in dealing with optimization and prediction  
problems (4). Some researchers have investigated a number of  
hybrid models in terms of water quality prediction. Their results  
have shown that high-vanishing wavelets could help improve the  
robustness and efficiency of hybridized wavelet-AI models. The  
1
097  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1093-1100  
performance of these hybrid models was compared to wavelet  
models. Najah et al. (2012) used the integrated wavelet-ANFIS  
model to predict monthly water TDS, EC, and turbidity. They  
found the greatest accuracy level obtained by making the fifth  
cross-validation length of data records. Additionally, they  
confirmed the superiority of the wavelet-ANFIS model compared  
to ANFIS model in terms of prediction accuracy (16). It can be  
inferred that wavelets with long vanishing times can be useful for  
improving the quality and reliability of wavelet-AI hybrid  
models. The wavelet-ANFIS model has been also found more  
successful than the ANN wavelet model in terms of EC prediction  
phenomena. Several plans for the future are investigated and  
submitted for further advancement and their potential. More  
progress in function modeling in this direction is expected to be  
promising with the ever-increasing potential of AI technologies.  
Acknowledgment  
The authors thank Universiti Teknologi Malaysia for its  
financial support, (High Impact Research Grant Research No.  
PY/2018/02893), No. vote Q.J130000.2451.04G62.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(12).  
6
Evaluation and Assessment  
After ANNs and (chronologically) fuzzy theory, the largest  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
development in hydrological parameters is SVM. In most  
literature reviews, conventional predictive regression models  
have been found ineffective compared to AI-based models such  
as ANN, ANFIS, and SVM. Although ANN is vulnerable to the  
hidden nodes number, the SVM is responsive to the selection of  
mapping kernels, which means the optimization of these variables  
will achieve comparable results with both models. In the latest  
studies conducted in this field, ANN has been the most popular  
technique.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses.  
7
Recommendation for Future Research  
Another promising strategy in AI development is the hybrid  
combination of two or more of the above techniques to create a  
further flexible modelling scheme for water quality. Moreover,  
progress in AI is made in two fields in parallel: fundamental tool  
capabilities and actual implementations in solving water quality  
issues. Research is presently ongoing to develop better AI  
instruments that can provide better representational knowledge  
systems, alternative analysis methods, and alternate processes to  
address uncertain or insufficient information. The use of database  
management systems, visual displays, and knowledge  
improvement modules can improve the precision of existing  
modelling systems worldwide. In this context, with simulation  
systems evolving, the criteria for better AI software will be  
increased, which in turn may lead to better AI technology  
implementation strategies. Most notably, simulation systems must  
step out from the laboratory and onto real practice. Continued  
research will develop AI technology and its implementation in the  
simulation of water quality.  
References  
1
.
Najah A, El-Shafie A, Karim OA, El-Shafie AH. Application of  
artificial neural networks for water quality prediction. Neural  
Computing and Applications. 2013;22(SUPPL.1):187201.  
Behmel S, Damour M, Ludwig R, Rodriguez MJ. Water quality  
monitoring strategies A review and future perspectives. Science of  
the Total Environment. 2016;571:131229.  
2
.
3. Fijani E, Barzegar R, Deo R, Tziritis E, Skordas K. Design and  
implementation of a hybrid model based on two-layer decomposition  
method coupled with extreme learning machines to support real-time  
environmental monitoring of water quality parameters. Science of the  
Total Environment. 2019;648:83953.  
4
.
Nourani V, Hosseini Baghanam A, Adamowski J, Kisi O.  
Applications of hybrid wavelet-Artificial Intelligence models in  
hydrology: A review. Journal of Hydrology. 2014;514:35877.  
5. Ömer Faruk D. A hybrid neural network and ARIMA model for water  
quality time series prediction. Engineering Applications of Artificial  
Intelligence. 2010;23(4):58694.  
6
.
Dogan E, Sengorur B, Koklu R. Modeling biological oxygen demand  
of the Melen River in Turkey using an artificial neural network  
technique. Journal of Environmental Management. 2009;90(2):1229–  
8
Conclusion  
Current models applied to water quality prediction are not  
3
5.  
user-friendly enough and mostly their implementation is  
subjected to substantial restrictions. Selecting suitable  
7. Chen JC, Chang NB, Shieh WK. Assessing wastewater reclamation  
potential by neural network model. Engineering Applications of  
Artificial Intelligence. 2003;  
a
numerical model is a challenging task for novice application  
users. The incorporation of current heuristic understanding of  
model manipulation and the intellectual manipulation of  
calibration parameters are therefore instrumental. The latest  
developments in AI technology provide a way of filling the gap  
between the designer and the model professional. This article  
examined the state-of-the-art models proposed for water quality  
prediction and the progress made in integrating AI into these  
models. The ANN method can contribute distinctly to the  
embedded model.This approach can help novice users to assess  
whether digital models produced by function modelling are actual  
8
.
Chau K wing. A review on integration of artificial intelligence into  
water quality modelling. Marine Pollution Bulletin. 2006;52(7):726–  
3
3.  
9
.
Sattari MT, Joudi AR, Kusiak A. Estimation of water quality  
parameters with data-driven model. Journal - American Water Works  
Association. 2016;108(4):E2329.  
10. Zhao Y, Nan J, Cui F, Guo L. Water quality forecast through  
application of BP neural network at Yuqiao reservoir. Journal of  
Zhejiang University-SCIENCE A. 2007;8(9):14827.  
1
1. Singh KP, Basant A, Malik A, Jain G. Artificial neural network  
modeling of the river water quality-A case study. Ecological  
Modelling. 2009;220(6):88895.  
1
098  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1093-1100  
1
2. Barzegar R, Adamowski J, Moghaddam AA. Application of wavelet-  
artificial intelligence hybrid models for water quality prediction: a  
case study in Aji-Chay River, Iran. Stochastic Environmental  
Research and Risk Assessment. 2016;30(7):1797819.  
3. Elkiran G, Nourani V, Abba SI, Abdullahi J. Artificial intelligence-  
based approaches for multi-station modelling of dissolve oxygen in  
river. Global Journal of Environmental Science and Management.  
Civil Engineering. 2017;21(5):16319.  
32. Raheli B, Aalami MT, El-Shafie A, Ghorbani MA, Deo RC.  
Uncertainty assessment of the multilayer perceptron (MLP) neural  
network model with implementation of the novel hybrid MLP-FFA  
method for prediction of biochemical oxygen demand and dissolved  
oxygen: a case study of Langat River. Environmental Earth Sciences.  
2017;76(14).  
33. Ahmed AAM. Prediction of dissolved oxygen in Surma River by  
biochemical oxygen demand and chemical oxygen demand using the  
artificial neural networks (ANNs). Journal of King Saud University -  
Engineering Sciences. 2017;29(2):1518.  
34. Khaled B, Abdellah A, Noureddine D, Heddam S, Sabeha A.  
Modelling of biochemical oxygen demand from limited water quality  
variable by anfis using two partition methods. Water Quality  
Research Journal of Canada. 2018;53(1):2440.  
35. Ay M, Kisi O. Modelling of chemical oxygen demand by using  
ANNs, ANFIS and k-means clustering techniques. Journal of  
Hydrology. 2014;511:27989.  
36. Kumar D, Pandey A, Sharma N, Flügel WA. Daily suspended  
sediment simulation using machine learning approach. Catena.  
2016;138:7790.  
37. Cobaner M, Unal B, Kisi O. Suspended sediment concentration  
estimation by an adaptive neuro-fuzzy and neural network  
approaches using hydro-meteorological data. Journal of Hydrology.  
2009;367(12):5261.  
38. He B, Oki T, Sun F, Komori D, Kanae S, Wang Y, et al. Estimating  
monthly total nitrogen concentration in streams by using artificial  
neural network. Journal of Environmental Management.  
2011;92(1):1727.  
39. DeWeber JT, Wagner T. A regional neural network ensemble for  
predicting mean daily river water temperature. Journal of Hydrology.  
2014;517:187200.  
1
1
1
1
1
2
018;4(4):43950.  
4. Hassen EB, Asmare AM. Predictive Performance Modeling of  
Habesha Brewery ’ s Wastewater Treatment Plant Using Artificial  
Neural Networks. Journal of Environmental Treatment Techniques.  
2
018;6(2):1525.  
5. Olyaie E, Zare Abyaneh H, Danandeh Mehr A. A comparative  
analysis among computational intelligence techniques for dissolved  
oxygen prediction in Delaware River. Geoscience Frontiers.  
2
017;8(3):51727.  
6. Najah AA, El-Shafie A, Karim OA, Jaafar O. Water quality  
prediction model utilizing integrated wavelet-ANFIS model with  
cross-validation.  
012;21(5):83341.  
Neural  
Computing  
and  
Applications.  
2
7. Kornienko AA, Kornienko A V., Fofanov OB, Chubik MP.  
Knowledge in Artificial Intelligence Systems: Searching the  
Strategies for Application. Procedia - Social and Behavioral Sciences.  
2
015;166:58994.  
8. Freeman JA, Skapura DM. Neural Networks Algorithms  
Applications. Vol. 7, Computation and Neural Systems Series. 1994.  
09212 p.  
1
1
2
2
,
2
9. Fan M, Hu J, Cao R, Ruan W, Wei X. A review on experimental  
design for pollutants removal in water treatment with the aid of  
artificial intelligence. Chemosphere. 2018;200:33043.  
0. Chou JS, Ho CC, Hoang HS. Determining quality of water in  
reservoir using machine learning. Ecological Informatics.  
2
018;44(February):5775.  
40. Li C, Li Z, Wu J, Zhu L, Yue J. A hybrid model for dissolved oxygen  
prediction in aquaculture based on multi-scale features. Information  
Processing in Agriculture. 2018;5(1):1120.  
41. Abbaspour B, Haghiabi AH. Comparing the Estimation of Suspended  
Load using Two Methods of Sediments Rating Curve and Artificial  
Neural Network ( A Case Studyꢀ: Cham Anjir Station , Lorestan  
Province ). Journal of Environmental Treatment Techniques.  
2015;3(4):21522.  
1. Sengorur B, Koklu R, Ates A. Water Quality Assessment Using  
Artificial Intelligence Techniques: SOM and ANNA Case Study of  
Melen River Turkey. Water Quality, Exposure and Health.  
2
015;7(4):46990.  
2
2. Diamantopoulou MJ, Papamichail DM, Antonopoulos VZ. The use  
of a Neural Network technique for the prediction of water quality  
parameters. Operational Research. 2005;5(1):11525.  
2
2
3. Palani S, Liong S, Tkalich P. An ANN application for water quality  
forecasting. Marine Pollution Bulletin. 2008;56:158697.  
4. Najah A, Karim O a, Jaafar O, El-shafie AH. An application of  
different artificial intelligences techniques for water quality  
prediction. International Journal of the Physical Sciences.  
42. Basis R, Neural F, Function B, Integrated A. Water Quality  
Prediction Based On A Novel Hybrid Model of ARIMA and RBF  
Neural. In: Proceedings ojCCIS2014. IEEE; 2014. p. 3340.  
43. Rankov V, Radulović J, Radojević I, Ostojić A, Čomić L. Neural  
network modeling of dissolved oxygen in the Gruža reservoir, Serbia.  
Ecological Modelling. 2010;221(8):123944.  
2
011;6(22):5298308.  
2
2
2
2
2
5. Kim SE, Seo IW. Artificial Neural Network ensemble modeling with  
conjunctive data clustering for water quality prediction in rivers.  
Journal of Hydro-Environment Research. 2015;9(3):32539.  
44. Solgi A, Pourhaghi A, Bahmani R, Zarei H. Improving SVR and  
ANFIS performance using wavelet transform and PCA algorithm for  
modeling and predicting biochemical oxygen demand ( BOD ).  
Ecohydrology & Hydrobiology. 2017;17(2):16475.  
45. Ahmed AAM, Shah SMA. Application of adaptive neuro-fuzzy  
inference system (ANFIS) to estimate the biochemical oxygen  
demand (BOD) of Surma River. Journal of King Saud University -  
Engineering Sciences. 2017;29(3):23743.  
46. Xu L, Liu S. Study of short-term water quality prediction model based  
on wavelet neural network. Mathematical and Computer Modelling.  
2013;58(34):8017.  
47. Ghose DK, Samantaray S. Modelling sediment concentration using  
back propagation neural network and regression coupled with genetic  
algorithm. Procedia Computer Science. 2018;125:8592.  
48. Gazzaz NM, Yusoff MK, Aris AZ, Juahir H, Ramli MF. Artificial  
neural network modeling of the water quality index for Kinta River  
(Malaysia) using water quality variables as predictors. Marine  
Pollution Bulletin. 2012;64(11):240920.  
6. Sarkar A, Pandey P. River Water Quality Modelling Using Artificial  
Neural  
Network  
Technique.  
Aquatic  
Procedia.  
2
015;4(Icwrcoe):10707.  
7. Salami Shahid E, Ehteshami M. Application of artificial neural  
networks to estimating DO and salinity in San Joaquin River basin.  
Desalination and Water Treatment. 2016;57(11):488897.  
8. Wen X, Fang J, Diao M, Zhang C. Artificial neural network modeling  
of dissolved oxygen in the Heihe River, Northwestern China.  
Environmental Monitoring and Assessment. 2013;185(5):436171.  
9. Chang FJ, Tsai YH, Chen PA, Coynel A, Vachaud G. Modeling water  
quality in an urban river using hydrological factors - Data driven  
approaches. Journal of Environmental Management. 2015;151:87–  
9
6.  
3
3
0. Kisi O, Parmar KS. Application of least square support vector  
machine and multivariate adaptive regression spline models in long  
term prediction of river water pollution. Journal of Hydrology.  
49. Keshtegar B, Heddam S. Modeling daily dissolved oxygen  
concentration using modified response surface method and artificial  
2
016;534:10412.  
1. Ay M, Kişi Ö. Estimation of dissolved oxygen by using neural  
neural network: a comparative study. Neural Computing and  
Applications. 2018;30(10):29953006.  
networks and neuro fuzzy computing techniques. KSCE Journal of  
1
099  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1093-1100  
5
0. Zhang Y, Fitch P, Vilas MP, Thorburn PJ. Applying Multi-Layer  
Artificial Neural Network and Mutual Information to the Prediction  
of Trends in Dissolved Oxygen. Frontiers in Environmental Science.  
2
019;7(April):111.  
5
5
1. Wang X, Fu L, He C. Applying support vector regression to water  
quality modelling by remote sensing data. International Journal of  
Remote Sensing. 2011;32(23):861527.  
2. Noori R, Karbassi A, Ashrafi K, Ardestani M, Mehrdadi N, Bidhendi  
GRN. Active and online prediction of BOD 5 in river systems using  
reduced-order support vector machine. Environmental Earth  
Sciences. 2012;67(1):1419.  
5
5
5
3. Liu M, Lu J. Support vector machine―an alternative to artificial  
neuron network for water quality forecasting in an agricultural  
nonpoint source polluted river? Environmental Science and Pollution  
Research. 2014;21(18):1103653.  
4. Ji X, Shang X, Dahlgren RA, Zhang M. Prediction of dissolved  
oxygen concentration in hypoxic river systems using support vector  
machine: a case study of Wen-Rui Tang River, China. Environmental  
Science and Pollution Research. 2017;24(19):1606276.  
5. Fijani E, Barzegar R, Deo R, Tziritis E, Konstantinos S. Design and  
implementation of a hybrid model based on two-layer decomposition  
method coupled with extreme learning machines to support real-time  
environmental monitoring of water quality parameters. Science of the  
Total Environment. 2019;648:83953.  
5
5
5
6. Deng W, Wang G, Zhang X. A novel hybrid water quality time series  
prediction method based on cloud model and fuzzy forecasting.  
Chemometrics and Intelligent Laboratory Systems. 2015;149:3949.  
7. N SR, Deka PC. Support vector machine applications in the field of  
hydrologyꢀ: review. Applied Soft Computing Journal.  
A
2
014;19:37286.  
8. Chen P. Prediction of Water-quality Based on Wavelet Transform  
Using Vector Machine. In: 2010 Ninth International Symposium on  
Distributed Computing and Applications to Business, Engineering  
and Science. IEEE; 2010. p. 7681.  
5
6
9. Han D, Chan L, Zhu N. Flood forecasting using support vector  
machines. Journal of Hydroinformatics. 2007;9(4):26776.  
0. Noori R, Yeh H, Abbasi M, Torabi F, Moazami S. Uncertainty  
analysis of support vector machine for online prediction of five-day  
biochemical oxygen demand. Journal of Hydrology. 2015;527:833–  
4
3.  
1
100