Journal of Environmental Treatment Techniques  
2020, Volume 8 Issue 3, Pages: 961-966  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Assessment of Physical-Chemical Water Quality  
Characteristics and Heavy Metals Content of Lower  
Johor River, Malaysia  
1
1, 2  
3
1
1
1
Y.Q. Liang , K.V. Annammala *, P. Martin , E.L. Yong , L.S. Mazilamani , M.Z.M. Najib  
1
Department of Water and Environmental Engineering, School of Civil Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia  
2
Centre of Environmental Sustainability & Water Security (IPASA), Universiti Teknologi Malaysia, Johor Bahru, Malaysia  
3
Asian School of the Environment, Nanyang Technological University, Singapore  
Received: 09/03/2020  
Accepted: 16/06/2020  
Published: 20/09/2020  
Abstract  
Surface freshwater quality has received more attention in recent years, which is since fresh water is regarded as a limited resource and  
many threats can negatively affect the water quality. The expansion of urban pollution in the Johor River in Johor State, Malaysia, has been  
induced by different anthropogenic activities being carried out, which bring potential risks to freshwater quality. The aim of this study was  
to quantify the physical-chemical properties of water and heavy metal concentrations at 11 sampling sites (S 01-S 11) selected along the  
Johor River. Eight water quality parameters were determined, and nine heavy metals were determined using Inductively Coupled Plasma-  
Mass Spectrometry (ICP-MS). Findings revealed that total suspended solid concentration and pH of the water samples satisfied the Class II  
outlined in the National Water Quality Standards for Malaysia (NWQSM). Most of the ammonia concentrations satisfied the Class II except  
at stations S 01 to S 03. The nutrient concentration (nitrate, nitrite, and phosphate) were found quite low. On the other hand, the range of  
certain elements such as Fe (1.75 to 6.90 ppm), Cu (0.06 to 1.34 ppm), and As (0.01 to 0.29 ppm) was found to exceed the Class II standard  
at all stations. A strong relationship between TSS, As, and Cu concentrations was found, which may be due to Cu and As carried along the  
river by suspended sediments, coming from the anthropogenic sources into the catchment areas. The results indicated that the river water  
quality is extremely sensitive to the local land use and practices. Further detailed research into the concentration of the elements in storm  
water could be the next research focus.  
Keywords: Water Quality, Heavy Metal, National Water Quality Standard in Malaysia, River Water  
Introduction1  
Peninsular Malaysia have been classified as slightly polluted and  
1
3
9 rivers as polluted. Therefore, identification of the pollutants  
Rivers ecosystems have received more attention in recent  
provenance and providing plans to manage the constantly  
polluted rivers are important measures [6].  
years due to their high economic value as food sources and their  
wide use for recreational purposes, nature tourism, etc. [1,2].  
Freshwater is regarded as a limited resource whose retention is  
becoming a significant challenge due to the input of pollutant to  
its resources [3, 35]. The natural processes such as weathering,  
precipitation, soil erosion, etc. and anthropogenic processes such  
as agricultural, urban, and industrial activities are recognised as  
parameters affecting the water quality [3, 34]. Therefore, river  
water quality is recognised as one of the main issues, especially  
in developing countries due to the industrialization and economic  
growth [4, 1, 5]. Such countries, including Malaysia, where the  
rivers water is recognised as the main water resource, are  
supporting daily subsistence and multipurpose uses of water  
resources for local communities [6, 34, 35]. Rapid development  
causes the expansion of developing areas within river basins,  
which may increase the pollution loading into rivers [6, 7, 8].  
Based on the river analysis in Malaysia, 150 out of 646 rivers in  
Water quality degradation is often resulted from non-point  
source pollution; thus, it is hard to control [9]. The water quality  
in rivers is often influenced by sediment runoff, nutrient inputs,  
and other harmful chemical pollutants, which originate from land  
use activities around the catchment area [1]. Different kinds of  
pollutants enter rivers, which are resulted from different  
anthropogenic activities [1, 10]. Based on previous studies, the  
ammoniacal and nutrient input indicates untreated municipal  
sewage and fertiliser [6, 11]. The higher erosion rate, the higher  
total suspended solid (TSS) concentration is found in agriculture  
and urban areas [11]. The spatial variation of physiochemical  
parameters can be used to determine the pollution status of a river  
[
1, 7, 35]. Physicochemical parameters include the physical  
parameters (e.g., TSS and temperature) and chemical parameters  
e.g., dissolve oxygen (DO), pH, ammoniacal nitrogen (AN),  
(
Corresponding author: K.V. Annammala, (a) Department of Water and Environmental Engineering, School of Civil Engineering, Universiti  
Teknologi Malaysia, Johor Bahru, Malaysia, and (b) Centre of Environmental Sustainability & Water Security (IPASA), Universiti Teknologi  
Malaysia, Johor Bahru, Malaysia. Email: kogila@utm.my.  
9
61  
Journal of Environmental Treatment Techniques  
2020, Volume 8 Issue 3, Pages: 961-966  
nitrate, nitrite, and phosphate). Therefore, a reliable water quality  
evaluation is important as the scientific proof for the water  
resource management to control the pollution and develop better  
management and planning [12, 35].  
5 stations were at the selected tributaries of the river. There were  
different types of land uses along the river. The site description  
and the coordinate of the sampling points are summarized in  
Table 1.  
The anthropogenic activities also cause the entrance of large  
amount of heavy metals into water system, which has been  
widespread and stated in many previous studies [13]. The heavy  
metal pollution, in comparison to other pollutions, is more  
alarming due to the non-biodegradable characteristic of heavy  
metal with bio-accumulative behaviour in the system [14, 34].  
The excessive heavy metal forms through various processes and  
pathways, which include natural and anthropogenic sources [15].  
Heavy metals are mainly released from anthropogenic sources,  
especially industrial activities, and mining [13, 16, 17, 34].  
Therefore, the physicochemical parameter and heavy metals  
concentrations are measured to evaluate the water quality.  
Many previous studies stated that inappropriate land use  
induces the deterioration of water quality [9]. Water quality  
evaluation is important to have effective management control and  
improve the water quality [3,6]. The Johor River is the main river  
in Johor State, Malaysia, which is the main freshwater resource in  
Johor State and for the neighbouring country, Singapore [18].  
Based on previously conducted studies, the water quality index of  
the Johor River is ranged from 47 to 52 and fall into Class IV,  
which is only suitable for irrigation purposes. There are various  
anthropogenic activities, including industrial and sand mining  
activities, along the Johor River, and the end of the estuarine is  
close to Singapore. Thus, the water quality of the Johor River is  
of regional concerning interest to control the water pollution and  
to secure the water supply and quality control to be safe for both  
countries [19, 40].  
The main purpose of this study was to quantify the physical-  
chemical water quality characteristics and heavy metals  
concentrations at 11 sampling sites (Figure 1) along the Johor  
River and to determine the current quality of the river system.  
Therefore, the objectives of this study are: 1) To compare the  
water quality status and concentration of heavy metals in the  
Johor River based on Class II outlined in the National Water  
Quality Standards for Malaysia (NWQSM), and 2) To study the  
relationship between the water quality and heavy metals  
concentration in the Johor River in relation to major land uses  
within the catchment area. The selection of the Class II outline in  
NWQSM for comparison purposes was because there are villages  
confined within the system, such as kampong Berangan where the  
river is used for recreational purposes.  
Figure 1: Study area and the water sampling stations of the Johor River  
Table 1: The coordinates and the descriptions of the sampling  
stations  
Sampling  
Station  
Coordinate of the Sampling Station  
Name  
of the Latitude  
river  
Site Description  
Cod  
e no.  
Longitude  
Kota Tinggi Town, located in  
1° 38' 4.4874"N 103° 58' 19.308"E the upstream, mainly consisting  
of industrial areas  
Johor  
River  
S 01  
Johor  
River  
Seluyut 1°  
River 41'56.7234"N  
Johor 1° 41'  
Sand mining, Oil Palm  
1° 43' 35.832"N 103° 53' 58.5954"E  
Plantation  
S 02  
S 03  
S 04  
Sand mining, Oil Palm  
Plantation  
103° 55' 32.0874"E  
103° 56' 55.968"E Oil Palm Plantation  
River 23.1354"N  
Pulau Dendang, Oil Palm  
103° 55' 53.8674"EPlantation, Surrounded with  
mangrove and nipah trees  
Johor 1° 39'  
River 55.4394"N  
S 05  
Sengi  
River  
Johor 1° 35'  
River 34.4034"N  
Redan  
River  
Temon  
River  
S 06  
S 07  
S 08  
S 09  
1° 35' 3.9114"N 103° 59' 14.1714"EOil Palm Plantation  
103° 57' 17.5314"EDownstream, Village  
1° 37' 15.132"N 103° 58' 17.4"E  
Oil Palm Plantation  
Village, Urban area, Oil palm  
plantation  
1° 37' 6.24"N 103° 59' 1.032"E  
Sand mining, Small restaurants  
1° 36' 58.32"N 103° 57' 27.108"E close to the riverbank, Oil Palm  
Plantation  
Tiram  
River  
S 10  
S 11  
Johor 1° 37'  
River 37.1994"N  
103° 58' 2.1"E  
Village, Oil Palm Plantation  
2
Materials and Methods  
2
.1 Study Area  
Surface water samples were collected in pre-cleaned bottles  
The study area selected for the present research is the Johor  
from the eleven sampling stations. Three physicochemical  
properties of water (temperature, salinity, and pH) were  
determined on site by in-situ water quality checker (Horiba U-50  
multi-parameter checker). Water samples for dissolved inorganic  
nutrient concentrations (nitrate, nitrite, phosphate, and ammonia)  
were syringe-filtered (0.2 µm pore-size Acrodisc filters) into  
polypropylene centrifuge tubes, frozen in a liquid nitrogen dry  
shipper in the field, and stored at -20 ºC until analysis on a SEAL  
AA3 segmented-flow auto-analyser system using SEAL methods  
for seawater analysis. Concentrations for all nutrients were  
measured in µmol/L and converted into mg/L. For total suspended  
solid (TSS) measurements, 1 L of surface river water was  
River basin located in Johor, Peninsular Malaysia (Figure 1). The  
catchment area is around 2636 km and the mainstream length is  
around 122.7 km [20]. The tributaries of the Johor River include  
the Seluyut River, Sengi River, Redan River, Temon River, and  
Tiram River. The mean discharge rate of the Johor River is 37.5  
2
3
m /s. The annual mean rainfall intensity in this region is about  
2
360 mm, with mean temperature is around 27 °C.  
2
.2 Sampling Collection and Analysis  
As mentioned earlier, 11 water sampling stations were  
selected along the Johor River (Figure 1). 6 out of 11 sampling  
stations were at the mainstream of the Johor River and the other  
9
62  
Journal of Environmental Treatment Techniques  
2020, Volume 8 Issue 3, Pages: 961-966  
collected from each station and filtered through a pre-weighed 25-  
mm diameter Whatman GF/F filter and stored at -20 ºC until sent  
to the laboratory. Samples were dried for 24 h at 75 ºC and re-  
weighed on a Mettler-Toledo microbalance, and were expressed  
in mg/L. A total of 11 surface water samples were collected and  
preserved from the sampling stations to measure and analyse the  
heavy metals concentration. The water samples were digested by  
following the standard methods APHA 3030K Microwave-  
Assisted Digested and were analysed by ICP-MS following the  
standard methods of APHA 3120B. Nine most-commonly  
reported heavy metal elements, namely iron (Fe), copper (Cu),  
arsenic (As), manganese (Mn), silver (Ag), zinc (Zn), nickel (Ni),  
lead (Pb), and chromium (Cr) were selected, analysed, and  
presented in this paper (Wuana & Okieimen, 2011).  
Correlation coefficient (r) is a statistical analysis of the  
interdependence of two or more random variables [14]. The  
correlation coefficients for all the water parameters were  
calculated to determine the relationship between the  
physiochemical water quality parameter and heavy metals  
concentrations.  
3
30.0  
0.5  
30  
2
2
1
1
5
0
5
0
5
0
2
2
2
28.0  
27.5  
9.5  
9.0  
8.5  
2
7.0  
S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9  
Sampling station  
S S  
10 11  
S 1S 2 S 3S 4S 5S 6 S 7S 8S 9 S  
S
Sampling station  
10 11  
(
a)  
(b)  
TSS  
NWQSM  
7
7
7
7
6
6
.6  
.4  
.2  
.0  
.8  
.6  
6
0
0
5
40  
30  
20  
10  
0
6.4  
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S  
S
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S  
S
10 11  
1
0 11  
Sampling station  
Sampling station  
(d)  
(c)  
Nitrite  
5
4
.0  
.0  
1.40  
Ammonia  
NWQSM  
3
Results and Discussion  
The results of the physicochemical parameter of water  
1
1
0
.20  
.00  
.80  
NWQSM  
samples were presented in Figure 2. The physicochemical water  
parameters considered in this study included temperature, salinity,  
pH, TSS, phosphate, nitrite, nitrate, and ammonia concentration.  
Figure 2 (a) shows the temperature of the river water samples. The  
temperature range of the water samples was between 28.3 to 30.2  
3.0  
2.0  
0.60  
0.40  
0.20  
1
0
.0  
.0  
0
.00  
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S  
S
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S  
S
1
0 11  
°C, which satisfied the Class II outlined in the NWQSM (normal  
10 11  
Sampling station  
Sampling station  
+2 °C). Figure 2 (b) presents the salinity of the river water  
(e)  
(f)  
increased down the river from 0.5 mg/L to 26.8 mg/L. The river  
flows in a roughly north-south direction end out with the sea  
water. The saltwater intrusion might cause the salinity of the  
downstream water to be higher than the upstream. The pH range  
of the water samples was between 6.8 and 7.5 within the range for  
the Class II (6 to 9). The TSS concentrations were still acceptable  
for the Class II. The ammonia concentration guidelines for the  
Class II is 0.3 mg/L, where stations S 01 to S 03 exceeded the  
threshold level whereas the other stations were still within the  
acceptable limit, ranged from below the detection limit (BDL) to  
Nitrate  
Phosphate  
NWQSM  
0
0
0
0
.25  
NWQSM  
8.00  
.20  
.15  
.10  
7
.00  
6
.00  
5.00  
4
3
2
1
.00  
.00  
.00  
.00  
0.05  
0.00  
0.00  
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S  
S
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S  
S
1
0 11  
10 11  
Sampling station  
Sampling station  
0
.3 mg/L. The highest ammonia concentration was found in  
(g)  
(h)  
station S 01 (3.93 mg/L). The level observed herein was slightly  
higher compared to the average concentration obtained by Yusop  
et al. (2017) who sampled the water in Kota Tinggi town (2.86  
mg/L) [8]. It is tentatively hypothesised that it originates from  
Kota Tinggi town because the high ammonia concentration was  
found in Kota Tinggi town [8]. The present study showed a lower  
nitrate concentration (less than 7 mg/L), which satisfied the Class  
II. The nitrite concentrations ranged from 0.11 to 1.19 mg/L  
exceeded the acceptable threshold of 0.04 mg/L. This might be  
since nitrite is in an unstable state in the oxidation of ammonia to  
nitrate [21]; therefore, the nitrite concentration increased as the  
ammonia concentration decreased in Figure 2 (f) and (h).  
However, the nitrate and nitrite concentrations were still  
considered quite low. The phosphate concentrations satisfied the  
Class II with the acceptable threshold of 0.2 mg/L. The nutrient  
concentrations (nitrate, nitrite, and phosphate) in the Johor River  
were considered quite low and no significant nutrient pollution  
was found in this study.  
Figure 2: The physicochemical parameters of water samples collected  
from the Johor River: (a) temperature, (b) salinity, (c) pH, (d) TSS, (e)  
ammonia, (f) nitrite, (g) nitrate, and (h) phosphate  
Heavy metals reviewed in this paper included some  
significant metals such as Fe, Cu, As, Mn, Ag, Zn, Ni, Pb, and Cr.  
The selected heavy metal concentrations of the sampling stations  
were determined and showed in Figure 3. The heavy metal  
concentrations of iron (Fe) and copper (Cu) of all sampling  
stations were found to be exceeding the Class II, like arsenic (As)  
concentration at all sampling stations except S 02. The detected  
Fe concentrations ranged from 1.75 to 6.9 ppm, which is more  
than the allowable limit of 1 ppm. The Cu concentrations ranged  
from 0.06 to 1.34 ppm, also exceeding the acceptable threshold of  
0
.02 ppm. As concentrations were found ranging from 0.01 to 0.29  
ppm, which is more than the limit allowed in the guidelines (0.05  
mg/L).  
9
63  
Journal of Environmental Treatment Techniques  
2020, Volume 8 Issue 3, Pages: 961-966  
Fe  
Cu  
were detected at S 09 with 6.9, 1.34, and 0.29 ppm, respectively.  
Fe has been reported to be present in significant amount in both  
soil and rock [22]. High Cu concentration might be due to  
fertilizing activities because Cu is one of the micronutrients for oil  
palm cultivation and also it is the main composition of chemical  
fertilizers [23, 24]. Based on previous studies, the input of  
arsenical herbicides and insecticide could contribute to As traces  
in receiving river system [25, 26]. There are about 172 common  
herbicides brands in Malaysia, which are glyphosphate-based  
herbicides, containing Arsenic [27, 28, 29]. Therefore, Fe, Cu, and  
As were hypothesized to originate from oil palm plantation area  
adjacent to S 09.  
Manganese (Mn) and silver (Ag) concentrations from most of  
the stations were less than the Class II (0.1 and 0.05, respectively)  
except at S 02 where the concentrations were 0.15 and 0.05 ppm,  
respectively. Mn is commonly found in rocks and sediments,  
which is transported into water through surface runoff [30]. Tesi  
et al. (2019) and Ako et al. (2014) stated that the Mn and Ag  
concentrations could be influenced by the sand mining as  
observed to be present at this sampling site [31, 32]. This could be  
concluded that the large amount of Mg and Ag are highly possible  
to be related to the sand mining activities around S 02.  
1
.60  
8
7
6
5
4
3
2
1
0
.0  
.0  
.0  
.0  
.0  
.0  
.0  
.0  
.0  
NWQSM  
NWQSM  
1.40  
1.20  
1.00  
0
0
0
.80  
.60  
.40  
0.20  
S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9  
Sampling station  
S
S
11  
0
.00  
1
0
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S  
S
10 11  
Sampling station  
(
a)  
(b)  
0
.16  
Mn  
As  
NWQSM  
0
0
0
0
0
0
0
0
.35  
.30  
.25  
.20  
.15  
.10  
.05  
.00  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S  
S
S 1S 2S 3S 4S 5S 6S 7S 8S 9S 1 0S 11  
Sampling station  
1
0 11  
Sampling station  
(d)  
(c)  
The Ag, Zn, Ni, and Pb concentrations from all sampling  
stations were below the Class II. Based on NWQSM, these  
concentrations are not significant pollution source for water  
resources. Chromium concentrations from most of the stations  
were less than the Class II outlined in the NWQSM except at  
stations S 08 and S 11 (which were recorded as 0.09 and 0.08 ppm,  
respectively). According to literature, the chromium  
concentrations commonly come from anthropogenic sources,  
especially industrial waste produced by the production of  
corrosion inhibitors and pigments [21, 33]. Stations S 08 and S 11  
are surrounded with oil palm plantation, but there is not any  
previously conducted study showing a relationship between the  
oil palm plantation and the chromium concentration. Thus, further  
studies are needed to determine the source of chromium  
concentration.  
Ag  
Zn  
0
0
0
0
0
0
0
.06  
.05  
.04  
.03  
.02  
.01  
.00  
NWQSM  
0
.16  
0.14  
0
0
0
.12  
.10  
.08  
0.06  
0
0
0
.04  
.02  
.00  
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S  
S
S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9  
Sampling station  
S
S
Sampling station  
10 11  
10 11  
(e)  
(f)  
Ni  
NWQSM  
Pb  
0
0
0
0
0
0
0
.06  
.05  
.04  
.03  
.02  
.01  
.00  
0.0250  
0
0
0
.0200  
.0150  
.0100  
The correlation between the physicochemical parameter and  
the heavy metal concentration was calculated and presented in  
Table 2. A significant correlation was observed in the change of  
several heavy metal concentration with TSS concentration.  
0.0050  
.0000  
0
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S  
S
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S  
S
Table 2: The correlation coefficient between physicochemical  
parameters and heavy metal concentrations.  
1
0 11  
Sampling station  
Sampling station  
10 11  
(g)  
(h)  
Temp  
Salinity  
pH  
TSS  
Nitrite  
Phosphate  
Ammonia  
Nitr  
Cr  
NWQSM  
Cr  
Mn  
Fe  
0.30  
-0.04  
0.17  
0.00  
0.11  
-0.36  
0.11  
0.42  
-0.31  
0.40  
0.12  
0.37  
-0.22  
0.38  
0.26  
0.06  
-0.06  
-0.38  
-0.04  
0.25  
0.36  
-0.29  
0.43  
0.00  
0.12  
-0.01  
0.30  
-0.25  
0.13  
-0.  
0.  
0
0
0
0
0
0
.10  
.08  
.06  
.04  
.02  
.00  
0.35  
*0.52  
*0.54  
**0.80  
-0.10  
-0.16  
-0.28  
-0.27  
-0.22  
-0.34  
-0.19  
0.02  
-0.  
-0.  
-0.  
0.  
Ni  
-0.37  
-0.01  
0.05  
Cu  
Zn  
As  
-0.14  
0.25  
S 1S 2S 3S 4S 5S 6S 7S 8S 9 S  
S
1
0 11  
-0.02  
**0.73  
-0.12  
-0.  
Sampling station  
*
*
-
0.51  
*-0.65  
0.39  
-0.24  
0.33  
-0.07  
-0.31  
-0.06  
0.04  
-0.40  
*0.55  
0.47  
*0.  
-0.  
(
i)  
Figure 3: The heavy metal elements concentration in surface water of  
the sampling stations: (a) Fe, (b) Cu, (c) As, (d) Mn, (e) Ag, (f) Zn,  
g) Ni, (h) Pb, and (i) Cr  
Ag  
Pb  
0.34  
-0.26  
** very strong correlation  
strong correlation  
*
(
The correlations between Ag concentration with temperature  
Based on Figure 3, the highest Fe, Cu, and As concentrations  
9
64  
Journal of Environmental Treatment Techniques  
2020, Volume 8 Issue 3, Pages: 961-966  
and salinity were -0.51 and -0.65, respectively, which indicates a  
negative significant relationship. The correlation between the Ag  
concentration and nitrate concentration was 0.55, which indicates  
a positive significant relationship. Both Pb and phosphate  
concentrations were 0.55, which indicates a positive significant  
relationship.  
submitted work is original and has not been published elsewhere  
in any language.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
A
very strong relationship was found between TSS  
concentration and Cu and As (with correlation coefficient of 0.8  
and 0.73, respectively). The correlation between Fe and Ni  
concentrations and TSS concentration were 0.52 and 0.54,  
respectively, which is considered a strong correlation. The heavy  
metals are carried along with organic load and/or sediment [14].  
Therefore, this is probably due to the suspended sediment brought  
along the Cu, As, Fe, and Ni into the channel through surface run-  
off. The highest concentrations of TSS, Cu, and As were found in  
SC 9; this can support the predictive statement that the surface  
sediment carries heavy metals from anthropogenic sources into  
the river water.  
Authors’ contribution  
K.V. Annammala, P.Martin and M.Z.M. Najib collected  
the samples and carried out the experiment. Y.Q. Liang wrote  
the manuscript with support from K.V. Annammala, E.L. Yong  
and L.S. Mazilamani. All the authors provided critical  
feedback to improve the manuscript.  
References  
1
.
Sun, X., Zhang, H., Zhong, M., Wang, Z., Liang, X., Huang, T.,  
Huang, H. 2019, Analyses on the Temporal and Spatial  
Characteristics of Water Quality in  
a Seagoing River Using  
Multivariate Statistical Techniques: A Case Study in the Duliujian  
River, China. International Journal of Environmental Research and  
Public and Health. 16,1020: 1-18  
Aris, A. Z., Lim, W.Y., Praveena, S.M., Yusoff, M.K., Ramli, M.F.,  
Juahir, H. Water Quality Status of Selected Rivers in Kota Marudu,  
Sabah, Malaysia and its Suitability for Usage. Sains Malaysiana.  
4
Conclusion  
The present study conducted the physicochemical water  
2
3
.
.
quality evaluation and heavy metal analysis on the selected  
tributaries and main rivers in the Johor River flowing through the  
Johor State in Malaysia. Findings revealed that temperature, TSS  
concentration, and pH of the water samples satisfied the Class II  
outlined in the NWQSM. Most of ammonia concentrations were  
within the acceptable limit except at stations S01 to S 03. The  
phosphate, nitrate, and nitrite concentrations were considered  
quite low with no significant pollution to the river.  
2
014. 43(3): 377-388.  
Wu, Z., Wang, X., Chen, Y., Cai, Y., Deng, J. Assessing River Water  
Quality Using Water Quality Index in Lake Taihu Basin, China.  
Science of the Total Environment. 2018.612: 914-922  
4. Villa-Achupallas, M., Rosada, D., Aguilar, S., Galindo-Riano, M. D.  
Water Quality in the Tropical Andes Hotspot: The Yaciambi River  
(Southeastern Ecuador). Science of the Total Environment. 2018.  
The range of certain elements such as Fe (1.75 to 6.90 ppm),  
Cu (0.06 to 1.34 ppm), and As (0.01 to 0.29 ppm) were found to  
be exceeding the Class II standard at all stations. The highest Fe,  
Cu, and As concentrations were found from S 09 (Tenom River),  
which is mainly dominated by oil palm plantation areas. Most of  
the heavy metal’s concentrations showed that the most possible  
sources of heavy metals are non-point source run-off from  
anthropogenic sources. A strong positive relationship between Fe,  
Ni, As, and Cu with TSS concentration was detected, which can  
be due to the heavy metals being carried by suspended sediments  
into adjacent water body. To conclude with, proper execution of  
erosion and sediment control plans could protect the river health  
from further deteriorating impacts. Further detailed research into  
the concentration of the elements induced by storm water could be  
the next research focus.  
6
33: 50-58.  
5
6
.
.
Loos, S., Chan, M. S., Sumihar, J., Kim, K., Cho, J. Weerts, A.  
Ensemble Data Assimilation Methods for Improving River Water  
Quality Forecasting Accuracy. 115343. Water Research. 2019.  
Mohtar, W.H.M.W., Maukud, K.N.A., Muhammad, N.S., Yaseen,  
Z.M. Spatial and Temporal Risk Quotient Based River Assessment  
for Water Resource Management. Environmental Pollution. 2019.  
248:133-144.  
Juahir, H., Zain, S. M., Yusoff, M. K., Hanidza, T. I. T., Armi, A. S.  
M., Toriman, M. E., & Mokhtar, M. (2011). Spatial water quality  
assessment of Langat River Basin (Malaysia) Using Environmetric  
Techniques. Environmental Monitoring and Assessment, 173(1-4),  
7
.
6
25-641.  
8
9
.
.
Yusop, Z. Kadir, A. A., Noor, Z. Z. Benthic Macroinvertebrate  
Composition and Water Quality Status in Sungai Johor, Johor,  
Malaysia. Chemical Engineering Transactions. 2017. 56.  
Xu, G., Li, P., Lu, K., Zhan, T., Ren, Z., Wang, X., Yu, K., Shi, P.,  
Cheng, Y. Seasonal Changes in Water Quality and its Main  
Influencing Factors in the Dan River Basin. Catena. 2019. 173: 131-  
Acknowledgment  
We would like to thank Associate Professor Dr. Patrick from  
Nanyang Technology University who expertise that greatly  
assisted the field sampling with UTM students, Mohd Rizal Bin  
Roslie and Alwievie Flories Alip. We would to thank the  
technicians for helping with laboratory analysis, Mr. Fuad and  
Mrs. Mariam from Faculty of Science, and Mrs. Zubaidah from  
UPMU laboratory.  
1
40.  
10. Sagar, S. S., Chavan, R. P., Patil, C. L., Shinde, D. N., Kekane, S. S.  
Physio-chemical Parameters for Testing of Water- A Review.  
International Journal of Chemical Studies. 2015. 3(4): 24-28  
1. Mello, K., Valente, R. A., Randhir, T. O., Santos, A.C.A., Vettorazzi,  
C.A. Effects of Land Use and Land Cover on Water Quality of Low-  
order Streams in Southeastern Brazil: Watershed versus Riparian  
Zone. Catena. 2018 167:130-138.  
1
1
1
2. Zhang, X. H. A Study on the Water Environmental Quality  
Assessment of Fenjiang River in Taan City of Sichuan Province in  
China. IERI Procedia. 2014. 9: 102-109.  
3. Ezugwu, C. K., Onwuka, O. S., Egbueri, J. C., Unigwe, C. O.,  
Ayejoto, D. A. Multi- criteria Approach to Water Q and Hhealth Risk  
Assessments in a Rural Agricultural Province, Southeast Nigeria.  
HydroResearch. 2019. 2:40-48.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission, manipulation of  
figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
1
4. Bhaskar, M. & Dixit, A. K. Water Quality Appraisal of Hasdeo River  
9
65  
Journal of Environmental Treatment Techniques  
2020, Volume 8 Issue 3, Pages: 961-966  
at Korba in Chhattisgarh, India. International Journal of Science and  
Research. 2013. 1252-1258  
Global Journal of Science Frontier Research: H Environment and  
Earth Science. 2014. 14(2): 7-15.  
1
5. Saha, P. & Paul, B. Assessment of Heavy Metal Pollution in Water  
Resources and their Impacts: A Review. Journal of Basic and Applied  
Engineering Research. 2016. 3(8): 671-675  
6. Patel, P., Raju, N. J., Reddy, B. C. S. R., Suresh, U., Sankar, D. B.,  
Reddy, T. V. K. Heavy Metal Contamination in River Water and  
Sediments of the Swarnamukhi River Basin, India: Risk Assessment  
and Environmental Implications. Environ Geochem Health. 2018.  
33. Al-Badah, F., Halim, A. A., Othman, M.S. Evaluation of Dissolved  
Heavy Metals in Water of the Sungai Semenyih (Peninsular  
Malaysia) using Environmetric Methods. Sains Malaysiana. 2016.  
45(6):841-852.  
34. Mukhtar, F. & Chisti, H. The Study of Heavy Metals in Sediments  
Sampled From Dal Lake. J. Environ, Treat. Tech., 6(2): 33-35.  
35. Aigberua, A. & Tarawou, T. Water Quality Index (WQI) Assessment  
along Inland Fresh Water of Taylor Creek in Bayelsa State, Nigeria.  
J. Environ. Treat. Tech., 7(3): 260-269.  
1
1
4
0:609623.  
7. Ezemonye, L. I., Adebayo, P. O., Enuneku, A. A., Tongo, I.,  
Ogbomida, E. Potential Health Risk Consequences of Heavy Metal  
Concentration in Surface Water, Shrimp (Macrobrachium  
macrobrachion) and fish (Brycinus longipinnis) from Benin River,  
Nigeria. Toxicology Reports. 2019. 6: 1-9.  
1
1
8. Tan, M. L., Ibrahim, A. L., Yusof, Z., Zheng, D., Ling. Impacts of  
Land-use and Climate Variability on Hydrological Component in the  
Johor River Basin Malaysia. Hydrological Sciences Journal. 2015.  
6
0: 873-889.  
9. Channel News Asia (CAN). Singapore Raises Concerns over Johor  
th  
River, Seeks Sustainable Water Supply for Both Countries. 9 April  
2
2
2
0. Majlis Daerah Kota Tinggi (MDKT). Sejarah Sungai Johor. Portal  
1. Environmental Protection Agency (EPA). Parameters of Water  
Quality: Interpretation and Standard. Ireland. Environmental  
Protection Agency. 2001.  
2. Ekstrom, S. M., Regnell, O., Reader, H. E., Nilsson, P.A., Lofgren,  
S., Kritzberg, E. S. Increasing Concentration of Iron in Surface Water  
as a Consequence of Reducing Conditions in the Catchment Area.  
Journal of Geophysical Research: Biogeosciences, 2016. 121(2).  
3. Manan, W.N.A., Sulaiman, F.R., Alias, R., Laiman, R. Determination  
of Selected Heavy Metal Concentration in an Coil Palm Plantation  
Soil. Journal of Physical Science. 2018. 29(3): 63-70.  
4. Nadzi, N. S. C., Abdullah, M. Z., Sulaiman, F. R. Surface Water  
Quality in Palm Oil Plantation. Malaysian Journal of Fundamental  
and Applied Science. 2019. 15(1): 85-87.  
5. Lim, W.Y., Aris, A.Z., Zakaria, M.P. Spatial Variability of Metals in  
Surface Water and Sediment in the Langat River and Geochemical  
Factors that Influence their Water-Sediment Interactions. Scientific  
World Journal. 2012.  
2
2
2
2
2
2
6. Wuana, R. A., Okieimen, F. E. Heavy Metals in Contaminated Soils:  
A Review of Sources, Chemistry, Risks and Best Available Strategies  
for Remediation. Ecology. 2011.  
7. Sarmani, S. B. The determination of heavy metal in water, suspended  
materials and sediments from Langat River, Malaysia.  
Hydrobiologia. 1989. 176/177:233-238.  
8. StarOnline, ‘Ban Herbicides that Contain Glyphosate’. 2016.  
2
3
3
9. Defarge, N., Vendomois, J. S., Seralini, G. E. Toxicity of Formulants  
and Heavy Metals in Glyphosate- based Herbicides and Other  
Pesticides. 2018. Toxicology Reports. 5: 156-163.  
0. Munger, Z. W. The Sources and Cycle of Iron and Manganese in  
Surface Water Supplies. Dissertation submitted to the faculty of the  
Virginia Polytechnic Institute and State University. 2016.  
1. Tesi, G. O., Tesi, J. A., Ogluta, A. A., Iniaghe, P. O., Enete, C. I.  
Assessment to Effect of Sand Mining Activities on Physiocochemical  
Properties and Metal Concentrations of Surface Water of Warri  
River, Niger Delta, Nigeria. Journal of Science. 2019. 3 (1): 72-83.  
2. Ako, T. A., Onoduku, U. S., Oke, S. A., Idris, F. N., Umar, A. N.,  
Ahmed, A. A., Abba, F. M. Environmental Effects of Sand and  
Gravel Mining on Land and Soil in Luku, North Central Nigeria.  
3
9
66